JPS60243261A - Ionic application multipurpose heat treatment and apparatus - Google Patents

Ionic application multipurpose heat treatment and apparatus

Info

Publication number
JPS60243261A
JPS60243261A JP9779484A JP9779484A JPS60243261A JP S60243261 A JPS60243261 A JP S60243261A JP 9779484 A JP9779484 A JP 9779484A JP 9779484 A JP9779484 A JP 9779484A JP S60243261 A JPS60243261 A JP S60243261A
Authority
JP
Japan
Prior art keywords
wall
furnace
heat
heat treatment
ionic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9779484A
Other languages
Japanese (ja)
Inventor
Terufusa Watanabe
渡辺 輝興
Tadao Sugano
菅野 忠雄
Hitoshi Imai
今井 仁司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP9779484A priority Critical patent/JPS60243261A/en
Publication of JPS60243261A publication Critical patent/JPS60243261A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To perform the ionic carburizing treatment necessitating high temp. and the ionitriding treatment treated at low temp. by means of the same apparatus by making double walls having through-holes of the peripheral wall of a vacuum heating furnace in an ionic application heat-treatment apparatus and performing the adjustment of the temp. of the inside of the furnace with the opening and closing of the through-holes. CONSTITUTION:The material 18 to be treated is put on a cathode jig 34 of the inside of a vacuum heating furnace 16 provided with a vacuum pump 30 and the surface treatment is performed by causing glow discharge between an anode 36 and the cathode. In this case, ionitriding and ionic carburizing treatments are performed on the surface of the material 18 to be treated by introducing gaseous nitrogen or gaseous hydrocarbon from a gas introducing pipe 24. Since the ionitriding treatment may be performed at the low temp. of 400-600 deg.C, the through-holes 49 of inner wall 44 are allowed to coincide with the through-holes 51 of outer wall 46 to lower the temp. of the inside of the furnace by moving the outer wall 46 of double walls provided to the surrounding. In case of the ionic carburizing, the through-holes of inner and outer walls are closed by moving the outer wall 46 and the inside of the furnace is elevated to 900-1,050 deg.C with a heater 40 to perform the ionic carburizing treatment.

Description

【発明の詳細な説明】 本発明はイオン応用多目的熱処理方法および装置に関し
、一層詳細には高温処理対応と低温処理対応とを同一炉
で効果的に対処できるようにしたイオン応用多目的熱処
理方法および装置 。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ion-applied multi-purpose heat treatment method and apparatus, and more particularly to an ion-applied multi-purpose heat treatment method and apparatus that can effectively handle both high-temperature treatment and low-temperature treatment in the same furnace. .

に関する。Regarding.

、グロー放電により雰囲気中のN2 (窒素)やC3H
a(炭化水素)等のガスをイオン化し、被処理物へイオ
ンボンバードにより浸透拡散させる表面熱処理方法は、
イオン浸炭、イオン窒 。
, N2 (nitrogen) and C3H in the atmosphere due to glow discharge.
A surface heat treatment method in which a gas such as a (hydrocarbon) is ionized and permeated and diffused into the object to be treated by ion bombardment.
Ionic carburizing, ionic nitrogen.

化あるいはCV D (Chemical Vapor
 Deposition)法への応用へと今後の表面技
術への発展に対し大きな可能性を有し、各メーカーで量
産への適応が進んでいる。
or CV D (Chemical Vapor
It has great potential for application to the surface technology (deposition) method and future development of surface technology, and manufacturers are progressing in adapting it to mass production.

このイオンボンバードを利用した熱処理の特長は希薄な
ガスを効率よくイオン化し、被処理物の表面へ衝突させ
加熱と同時にC,N等の原子を浸透拡散させ−ること、
また、02等の強酸化原子が炉内に存在せず鉄表面にお
いて粒界酸化が生じないこと、更には排気ガスを燃焼処
理する必要がなく炉が汚れず周囲の環境がよいことなど
数々のメリットがある。
The feature of heat treatment using this ion bombardment is that it efficiently ionizes a dilute gas, causes it to collide with the surface of the object to be treated, and at the same time allows atoms such as C and N to permeate and diffuse.
In addition, strong oxidizing atoms such as 02 do not exist in the furnace, so grain boundary oxidation does not occur on the iron surface, and there is no need to burn exhaust gas, so the furnace does not become dirty and the surrounding environment is good. There are benefits.

然しながら、現在みられるイオン浸炭炉やイオン窒化炉
はその処理にあたって個別に使用され共用化されていな
い。そのため多機種少量の生産ラインにおいては、少な
くともイオン窒化等に用いられる低温処理用の炉とイオ
ン浸炭等に用いられる高温処理用の炉との二種の炉を設
置しなくてはならず、設備投資に相当な経済的負担がか
かり、さらに二種の炉が広大なスペースを占有するため
に工場空間の有効な活用がはかれない等の問題があった
However, the currently available ion carburizing furnaces and ion nitriding furnaces are used individually for the treatment and are not shared. Therefore, in a multi-model, small-volume production line, it is necessary to install at least two types of furnaces: a low-temperature processing furnace used for ion nitriding, etc., and a high-temperature processing furnace used for ion carburization, etc. There were problems such as the considerable financial burden of investment and the fact that the two types of furnaces occupied a vast space, making it difficult to make effective use of the factory space.

このような背景から一台の炉で浸炭、窒化あるいは規準
、調質を行えれば前記の難点を解消することが可能とな
るがその実現にあたっては被処理物の熱をいかにバラン
スさせるかという別異の問題点が指摘されていた。
Given this background, if carburizing, nitriding, standardization, and thermal refining could be performed in one furnace, it would be possible to overcome the above-mentioned difficulties, but in order to realize this, there is a separate issue of how to balance the heat of the workpiece. Different problems were pointed out.

すなわち、イオン浸炭を行う場合は900〜1050℃
と大変高い温度領域を利用するため、被処理物あるいは
ヒータから輻射される熱を断熱する必要があることから
、炉壁の断熱とは別に被処理物の周辺に熱遮断のための
断熱壁を設けて省エネルギの対応と被処理物の保温に努
めている。一方、イオン窒化においては、400〜60
0℃と比較的低い温度で処理されているが、イオンボン
バードにより被処理物の温度が上昇し易いことから、炉
壁を水冷する等の強制冷却処理を行い当該熱がバランス
されるよう熱吸収できる構造となっている。従って、イ
オン浸炭炉において窒化を行った場合には、前記断熱壁
の介在等により各部所において均熱化せず窒化層のバラ
ツキが発生し品質上好ましくない。また逆に、イオン窒
化炉において浸炭を行おうとした場合には、前記炉壁の
水冷構造等により被処理物の昇温速度が遅くなる等温度
制御が困難となると共に均熱時の熱エネルギが大きくな
って各部品の熱的条件が悪化するので量産上好ましくな
い。
In other words, when performing ion carburization, the temperature is 900 to 1050°C.
In order to utilize a very high temperature range, it is necessary to insulate the heat radiated from the object to be processed or the heater, so in addition to insulating the furnace wall, an insulating wall is installed around the object to block the heat. We are working to save energy and keep the materials being processed warm. On the other hand, in ion nitriding, 400 to 60
Processing is carried out at a relatively low temperature of 0℃, but since the temperature of the processed material tends to rise due to ion bombardment, forced cooling treatment such as water cooling of the furnace wall is performed to absorb heat to balance the heat. The structure is such that it can be done. Therefore, when nitriding is performed in an ion carburizing furnace, the heat is not uniformly heated at each location due to the presence of the heat insulating wall, resulting in variations in the nitrided layer, which is unfavorable in terms of quality. Conversely, when attempting to carburize in an ion nitriding furnace, the water-cooling structure of the furnace wall, etc. slows down the rate of temperature rise of the workpiece, making temperature control difficult and reducing the thermal energy during soaking. As the size increases, the thermal conditions of each component worsen, which is not preferable for mass production.

本発明はこのような事情を考慮して提案されたもので、
高温処理対応と低温処理対応とを同一炉で効果的に対処
できるイオン応用多目的熱処理方法および装置を提供す
ることを目的とする。
The present invention was proposed taking these circumstances into consideration,
The object of the present invention is to provide an ion-applied multipurpose heat treatment method and apparatus that can effectively handle both high-temperature treatment and low-temperature treatment in the same furnace.

前記目的を達成するために、本発明では真空炉内に陽極
と陰極とを対極させてこれらの電極間でグロー放電を行
い被処理物に熱処理を施すイオン処理システムにおいて
、前記被処理物を囲繞する断熱壁を被処理物に対応させ
て開閉制御し、断熱壁内の雰囲気温度を調整することに
より熱処理することを特徴とする。
In order to achieve the above object, the present invention provides an ion processing system in which an anode and a cathode are opposed to each other in a vacuum furnace, and a glow discharge is generated between these electrodes to heat-treat the object. The heat treatment is performed by controlling the opening and closing of the heat insulating wall in accordance with the object to be treated and adjusting the atmospheric temperature within the heat insulating wall.

また、前記方法を実施するために、本発明はさらに真空
炉内に陽極と陰極とを対極させてこれらの電極間でグロ
ー放電を行い被処理物に熱処理を施すイオン処理装置に
おいて、前記真空炉の内部に前記被処理物を囲繞する断
熱壁を設けると共にこの断熱壁を駆動装置に係合させ、
前記駆動装置の付勢下に断熱壁を変位させるよう構成す
ることを特徴とする。
In addition, in order to carry out the method, the present invention further provides an ion processing apparatus in which an anode and a cathode are placed as opposite electrodes in a vacuum furnace, and glow discharge is generated between these electrodes to heat-treat the workpiece. a heat insulating wall surrounding the object to be processed is provided inside, and the heat insulating wall is engaged with a drive device;
The heat insulating wall is configured to be displaced under the bias of the drive device.

次に、本発明の方法についてそれを実施する装置との関
連において好適な実施例を挙げ、添付の図面を参照しな
がら以下詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of the present invention will now be described in detail with reference to the accompanying drawings, with reference to preferred embodiments and apparatus for carrying out the method.

第1図および第2図は本発明に係る熱処理装置の全体構
成図および要部断面図である。
FIG. 1 and FIG. 2 are an overall configuration diagram and a sectional view of essential parts of a heat treatment apparatus according to the present invention.

第1図において、参照符号10は熱処理装置本体を示し
、この熱処理装置本体10はローラコンベア12Aを含
む試料移動台12、リフト装置14Aを含む油冷却室1
4および後述の加熱室(真空炉)16等から構成される
。なお、参照符号18は被処理物を示し、また、参照符
号20は油冷却室14に設けられたガス冷却ファンを示
す。
In FIG. 1, reference numeral 10 indicates a heat treatment apparatus main body, and this heat treatment apparatus main body 10 includes a sample moving stage 12 including a roller conveyor 12A, and an oil cooling chamber 1 including a lift device 14A.
4, a heating chamber (vacuum furnace) 16, etc., which will be described later. Note that reference numeral 18 indicates the object to be processed, and reference numeral 20 indicates a gas cooling fan provided in the oil cooling chamber 14.

一方、前記真空炉16は第2図に示すように断面円形の
密閉筒体に形成されると共にその炉室22内にはガス導
入管24の先端部が臨入する。ガス導入管24にはバル
ブ26が介装される。さらに、前記炉室22には排気管
32が臨み、この排気管32にはバルブ28が介装され
且つバキュームポンプ30がこれに接続している。
On the other hand, as shown in FIG. 2, the vacuum furnace 16 is formed into a sealed cylindrical body with a circular cross section, and the tip of a gas introduction pipe 24 enters into the furnace chamber 22 thereof. A valve 26 is interposed in the gas introduction pipe 24 . Further, an exhaust pipe 32 faces the furnace chamber 22, a valve 28 is interposed in the exhaust pipe 32, and a vacuum pump 30 is connected to the exhaust pipe 32.

次に、前記炉室22の中央に位置して被処理物18を載
置するための治具34が配設される。この治具34は、
この場合、陰極としての電極を兼ねる。また、前記炉室
22の内部には前記被処理物18を第2図中の上方から
覆うようにして架柱状の陽極からなる電゛極36が配置
される。前記治具34および陽極36はそのロンド状の
後端部34Aおよび36Aにおいて真空炉16の炉壁1
6Aに貫通支持される。勿論、前記治具34および陽極
36の各後端部34Aおよび36Aは高電圧用電源38
に夫々電気的に接続しておく。
Next, a jig 34 is provided at the center of the furnace chamber 22 for placing the workpiece 18 thereon. This jig 34 is
In this case, it also serves as an electrode as a cathode. Further, inside the furnace chamber 22, an electrode 36 consisting of a columnar anode is arranged so as to cover the object to be processed 18 from above in FIG. The jig 34 and the anode 36 are connected to the furnace wall 1 of the vacuum furnace 16 at their rounded rear ends 34A and 36A.
It is supported through 6A. Of course, the rear ends 34A and 36A of the jig 34 and the anode 36 are connected to a high voltage power source 38.
electrically connected to each.

さらに、炉室22には前記治具34および陽極36を囲
繞するようにしてヒータ40およびこのヒータ40の外
側に位置する断熱壁42が配設される。
Furthermore, a heater 40 and a heat insulating wall 42 located outside the heater 40 are provided in the furnace chamber 22 so as to surround the jig 34 and the anode 36.

前記断熱壁42は両端が解放され且つ断面が略正方形の
角筒状に構成されると共にその四つの壁面が夫々内壁4
4a乃至44dおよび外壁46a乃至46dからなる二
重壁で構成される。また、前記内壁44a乃至44dお
よび外壁46a乃至46dには、この場合、夫々直径1
00+amの通孔48および50が複数個形成される。
The heat insulating wall 42 is open at both ends and has a rectangular cylindrical shape with a substantially square cross section, and its four wall surfaces are respectively connected to the inner wall 4.
It is composed of double walls consisting of walls 4a to 44d and outer walls 46a to 46d. In this case, the inner walls 44a to 44d and the outer walls 46a to 46d each have a diameter of 1
A plurality of through holes 48 and 50 of 00+am are formed.

好ましくは、前記通孔48および50は夫々の壁面にお
いて開口率が50%となるようにその形成される個数が
選択される。
Preferably, the number of through holes 48 and 50 to be formed is selected so that the opening ratio of each wall surface is 50%.

さらに、前記外壁46a乃至46dは後述するように所
定方向にスライド自由になっており、これによって内壁
46a乃至46dおよび外壁46a乃至46dの通孔4
8および50間で形成される断熱壁42の開口面積が増
減制御される。なお、本実施例では第2図中の左右壁面
である外壁46bおよび46dが上下方向に油圧シリン
ダ52aおよび52bにより変位する一方、上下壁面で
ある外壁46aおよび46cが同じく油圧シリンダ52
Gおよび52dにより前後方向に変位する。勿論、四つ
の外壁46a乃至46dをすべて前後方向にスライドさ
せるようにしてもよい。また、前記油圧シリンダ52a
乃至52dは炉壁16Aに対してスティ54a乃至54
dを介して支持され、しかも、前記炉壁16Aには前記
油圧シリンダ52a乃至52dのピストンロンドが貫通
する部位においてシール部材が設けられる。なお、前記
断熱壁42は治具34および架柱状の電極36等を利用
して適宜支持される。なお、参照符号49および51は
断熱壁42の閉塞時におけるガス通流用の通孔であ゛る
Further, the outer walls 46a to 46d are free to slide in a predetermined direction as described later, so that the through holes 4 in the inner walls 46a to 46d and the outer walls 46a to 46d
The opening area of the heat insulating wall 42 formed between 8 and 50 is controlled to increase or decrease. In this embodiment, the outer walls 46b and 46d, which are the left and right wall surfaces in FIG.
G and 52d for displacement in the front-rear direction. Of course, all four outer walls 46a to 46d may be slid in the front-rear direction. Moreover, the hydraulic cylinder 52a
The stays 54a to 54 d are connected to the furnace wall 16A.
Furthermore, seal members are provided on the furnace wall 16A at portions through which the piston rods of the hydraulic cylinders 52a to 52d pass. Note that the heat insulating wall 42 is appropriately supported using a jig 34, a columnar electrode 36, and the like. Note that reference numerals 49 and 51 are holes for gas flow when the heat insulating wall 42 is closed.

本発明に係る真空炉16は基本的には以上のように構成
されるものであり、次に当該真空炉16を用いてイオン
窒化を行う場合の作用について説明する。
The vacuum furnace 16 according to the present invention is basically constructed as described above.Next, the operation when performing ion nitriding using the vacuum furnace 16 will be explained.

本発明に係る真空炉では前記被処理物18は、先ず、試
料移動台12より油冷却室14を経て真空炉16に送ら
れる。この真空炉16で適宜表面熱処理された後、被処
理物18は再び油冷却室14に戻され、ここでリフト装
f14Aを介して低温の油中にひたされて冷却される。
In the vacuum furnace according to the present invention, the object to be processed 18 is first sent from the sample moving stage 12 to the vacuum furnace 16 via the oil cooling chamber 14 . After being subjected to appropriate surface heat treatment in the vacuum furnace 16, the workpiece 18 is returned to the oil cooling chamber 14, where it is cooled by being immersed in low-temperature oil via the lift device f14A.

冷却後、被処理物18は試料移動台12に戻され熱処理
が完了する。
After cooling, the object to be processed 18 is returned to the sample moving stage 12 and the heat treatment is completed.

これが基本動作である。This is the basic operation.

そこで、前記のようなプロセスにおいて被処理物18を
治具34上にセットする。この時、断熱壁42の開口面
積は設定温度の500℃までは外壁46a乃至46dが
所定方向に移動された状態のまま保持されることから内
壁44a乃至44dおよび外壁46a乃至46dの通孔
48および50が連通せず全閉の状態である。
Therefore, the workpiece 18 is set on the jig 34 in the process described above. At this time, the opening area of the heat insulating wall 42 is determined by the through holes 48 and 50 is not communicating and is in a fully closed state.

次に、真空炉16゛はバキュームポンプ30を備えた排
気管32を介して10 ’ 〜1O−3T orrに減
圧された後、導入管24によりN2+H2のガスが導入
され、炉内圧が0.5〜10Torr程度に保持される
Next, the vacuum furnace 16' is depressurized to 10' to 10-3 Torr through the exhaust pipe 32 equipped with the vacuum pump 30, and then N2+H2 gas is introduced through the inlet pipe 24, and the furnace internal pressure is reduced to 0.5 The pressure is maintained at about 10 Torr.

その後、陰極(治具)34と架柱状の陽極36との間に
電源38を介して数百■の電圧を印加すると、被処理物
18の表面にグロー放電が発生し、イオン化されたN2
ガスは被処理物18の表面上に高いエネルギをもって衝
突(ボンバード)し、被処理物18は昇温されて窒化が
開始される。この時点で図外の制御手段により自動的に
油圧シリンダ52a乃至52dが駆動されて断熱壁42
の外壁46a乃至46dが内壁44a乃至44dおよび
外壁46a乃至46dの通孔48および50が連通する
方向にスライドし、断熱壁42の開口面積が増大されて
放熱が開始される。この開閉度合は被処理物18の積載
量によって変化させることにより、最も温度分布が均熱
化され且つ省エネルギに有効な範囲で設定される。
After that, when a voltage of several hundred μ is applied between the cathode (jig) 34 and the columnar anode 36 via the power supply 38, a glow discharge is generated on the surface of the workpiece 18, and ionized N2
The gas bombards the surface of the workpiece 18 with high energy, and the workpiece 18 is heated to begin nitriding. At this point, the hydraulic cylinders 52a to 52d are automatically driven by a control means (not shown), and the heat insulating wall 42 is
The outer walls 46a to 46d slide in the direction in which the inner walls 44a to 44d and the through holes 48 and 50 of the outer walls 46a to 46d communicate with each other, the opening area of the heat insulating wall 42 is increased, and heat radiation begins. By changing the degree of opening and closing according to the loading amount of the objects 18 to be processed, it is set within a range that is most effective for uniform temperature distribution and energy saving.

なお、低圧中における熱伝導は0.5Torr以上あれ
ば大きな変化はなく充分に本発明の温度調節効果は発揮
されるが、10−2乃至10− Torrの領域におい
ては高真空断熱領域に入るため前記効果は低下する。然
しなから、本発明の真空炉16は0.5乃至20 T 
orr レベルで稼働されるため問題はない。
Note that if the heat conduction at low pressure is 0.5 Torr or more, there will be no major change and the temperature control effect of the present invention will be fully exhibited, but in the range of 10-2 to 10-Torr, it will enter the high vacuum insulation region. The effect is reduced. However, the vacuum furnace 16 of the present invention has a temperature of 0.5 to 20 T.
There is no problem because it is operated at orr level.

一方、前記真空炉16を用いてイオン浸炭を行う場合は
、断熱壁42の外壁46a乃至46daを所定方向にス
ライドし、常時内壁44a乃至44dおよび外壁46a
乃至46dの通孔48゛および50が連通しない状態に
葆持し、その間ヒー、夕40により加熱すれば、被処理
物18の雰囲気温度を、例えば、900℃まで速やかに
昇温でき、イオン浸炭が効果的に行ない得る。勿論、真
空炉16には導入管24よりCH3やc3 H3の炭化
水素ガスのみが導入される。
On the other hand, when performing ion carburization using the vacuum furnace 16, the outer walls 46a to 46da of the heat insulating wall 42 are slid in a predetermined direction, and the inner walls 44a to 44d and the outer wall 46a are constantly moved.
If the through holes 48' and 50 of 46d to 46d are kept in a state where they do not communicate with each other, and during this time heated by the heater 40, the ambient temperature of the workpiece 18 can be quickly raised to, for example, 900°C, and ion carburization can be carried out. can be carried out effectively. Of course, only hydrocarbon gas such as CH3 or c3H3 is introduced into the vacuum furnace 16 through the introduction pipe 24.

また、前記断熱壁42の開閉による効果としては高温処
理での浸炭後焼入温度まで降温させるにあたり、短時間
で放熱降温させることも可能であり1サイクルのトータ
ル時間を短縮できる利点をもつことができる。
Furthermore, as an effect of opening and closing the heat insulating wall 42, when lowering the temperature to the quenching temperature after carburizing in high-temperature treatment, it is possible to radiate heat and lower the temperature in a short time, which has the advantage of shortening the total time of one cycle. can.

次に、第3図に本発明の他の実施例を示す。Next, FIG. 3 shows another embodiment of the present invention.

この場合、断熱壁42の開口面積を増減する手段として
、断熱壁42を一重に構成すると共に第3図中の左右壁
面である二つの壁体56aおよび56bをその下端部で
底板53によりヒンジ部材を介して回動自在に枢支し、
さらに油圧シリンダ52e、52fのシリンダロッド5
5e、55fの夫々の先端部を前記壁体56a、56b
の上部に係着したものである。すなわち、油圧シリンダ
52eおよび52fを介して開戸状に開閉するように構
成した例である。
In this case, as a means for increasing or decreasing the opening area of the heat insulating wall 42, the heat insulating wall 42 is constructed in a single layer, and the two walls 56a and 56b, which are the left and right wall surfaces in FIG. Rotatably supported via
Furthermore, the cylinder rods 5 of the hydraulic cylinders 52e and 52f
The tips of 5e and 55f are connected to the walls 56a and 56b, respectively.
It is attached to the top of the. That is, this is an example configured to open and close like a door via hydraulic cylinders 52e and 52f.

従って、断熱壁42が閉塞状態においてはガス 。Therefore, gas when the heat insulating wall 42 is in a closed state.

は導路55aおよび55bを通り壁内、外に通流し、温
度調節は前記シリンダ52e、52fの付勢下に壁部5
6a、56bを傾動して行う。結局、第2図に示した真
空炉16と同様な温度調節効果が得られる。
flows into and out of the wall through conduits 55a and 55b, and the temperature is controlled by the wall 5 under the pressure of the cylinders 52e and 52f.
6a and 56b are tilted. As a result, the same temperature control effect as the vacuum furnace 16 shown in FIG. 2 can be obtained.

以上説明したように、本発明によれば真空炉において被
処理物を囲繞する断熱壁の開口部を処理目的に応じて適
宜開閉制御して熱処理を行うようにしたので、同一炉で
効果的にイオン窒化等の低温処理とイオン浸炭等の高温
処理とを行うことができ、設備投資の削減と生産ライン
のスペースの有効な活用がはかられるという効果が得ら
れる。・ 以上、本発明について好適な実施例を挙げて説明したが
、本発明は前記実施例に限定されるものではなく、本発
明の要旨を逸脱しない範囲で種々の改良並びに設計の変
更が可能なことば勿論である。
As explained above, according to the present invention, heat treatment is performed by controlling the opening and closing of the heat insulating wall surrounding the workpiece in a vacuum furnace as appropriate depending on the processing purpose, so that heat treatment can be performed effectively in the same furnace. Low-temperature treatments such as ion nitriding and high-temperature treatments such as ion carburization can be performed, resulting in the reduction of equipment investment and effective use of production line space. - Although the present invention has been described above with reference to preferred embodiments, the present invention is not limited to the above embodiments, and various improvements and changes in design are possible without departing from the gist of the present invention. Of course words.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る熱処理システムの全体構成図、第
2図は第1図のシステムの要部構成断面図、第3図は本
発明に係る熱処理システムの他の実施例の要部構成断面
図である。 10・・熱処理装置本体 12・・試料移動台 12A・・ローラコンベア 14・・油冷却室 14A・・リフト装置16・・加熱
室(真空炉)16A・・炉壁18・・被処理物 20・
・ガス冷却ファン22・・炉室 24・・ガス導入管 26・・バルブ 、30・・バキュームポンプ 32・・排気管 34・・陰極(治具)34A・・後端
部 36・・陽極 36A・・後端部 38・・高電圧用電源 40・・ヒータ42・・断熱壁
 44a乃至44d・・内壁46a乃至46d・・外壁
 48乃至51・・通孔5.2 a乃至52f・・油圧
シリンダ54a乃至54d・・ステイ 55a、 55b −−通孔 56a 、56b ・−
壁体特許出願人 本田技研工業株式会社
FIG. 1 is an overall configuration diagram of a heat treatment system according to the present invention, FIG. 2 is a cross-sectional view of the main part configuration of the system in FIG. 1, and FIG. 3 is a main part configuration of another embodiment of the heat treatment system according to the present invention. FIG. 10...Heat treatment apparatus body 12...Sample moving table 12A...Roller conveyor 14...Oil cooling chamber 14A...Lift device 16...Heating chamber (vacuum furnace) 16A...Furnace wall 18...Workpiece 20.
・Gas cooling fan 22・・Furnace chamber 24・・Gas introduction pipe 26・・Valve, 30・・Vacuum pump 32・・Exhaust pipe 34・・Cathode (jig) 34A・・Rear end part 36・・Anode 36A・- Rear end 38... High voltage power supply 40... Heater 42... Insulating wall 44a to 44d... Inner wall 46a to 46d... Outer wall 48 to 51... Through hole 5.2 a to 52f... Hydraulic cylinder 54a to 54d... stays 55a, 55b -- through holes 56a, 56b .-
Wall patent applicant Honda Motor Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)真空炉内に陽極と陰極とを対極させてこれらの電
極間でグロー放電を行い被処理物に熱処理を施すイオン
処理システムにおいて、前記被処理物を囲繞する断熱壁
を被処理物に対応させて開閉制御し、断熱壁内の雰囲気
温度を調整することにより熱処理することを特徴とする
イオン応用多目的熱処理方法。
(1) In an ion processing system in which an anode and a cathode are opposed to each other in a vacuum furnace and a glow discharge is generated between these electrodes to heat-treat the object, a heat insulating wall surrounding the object is attached to the object. A multipurpose heat treatment method using ions, characterized in that heat treatment is performed by controlling opening and closing in a corresponding manner and adjusting the atmospheric temperature within the heat insulating wall.
(2) 真空炉内に陽極と陰極とを対極させてこれらの
電極間でグロー放電を行い被処理物に熱処理を施すイオ
ン処理装置において、前記真空炉の内部に前記被処理物
を囲繞する断熱壁を設けると共にこの断熱壁を駆動装置
に係合させ、前記駆動装置の付勢下に断熱壁を変位させ
るよう構成することを特徴゛とするイオン応用多目的熱
処理装置。
(2) In an ion processing apparatus in which an anode and a cathode are opposed to each other in a vacuum furnace and a glow discharge is generated between these electrodes to heat-treat the object to be processed, a heat insulator surrounding the object to be processed is provided inside the vacuum furnace. 1. A multi-purpose heat treatment apparatus using ions, comprising: a wall; the heat insulating wall is engaged with a drive device; and the heat insulating wall is displaced under the bias of the drive device.
(3) 特許請求の範囲第2項記載の装置において、前
記断熱壁は夫々に通孔を有した内、外壁の二重壁から構
成すると共に、そのうちのいずれか一方の壁体をスライ
ドさせることにより開口部を形成してなるイオン応用多
目的熱処理装置。
(3) In the device according to claim 2, the heat insulating wall is composed of a double wall including an inner wall and an outer wall each having a through hole, and one of the walls is slidable. A multi-purpose heat treatment device using ions with an opening formed by.
(4)特許請求の範囲第2項記載の装置において、断熱
壁は傾動することにより開口部を画成してなるイオン応
用多目的熱処理装置。
(4) An ion application multi-purpose heat treatment apparatus according to claim 2, wherein the heat insulating wall defines an opening by tilting.
JP9779484A 1984-05-16 1984-05-16 Ionic application multipurpose heat treatment and apparatus Pending JPS60243261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9779484A JPS60243261A (en) 1984-05-16 1984-05-16 Ionic application multipurpose heat treatment and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9779484A JPS60243261A (en) 1984-05-16 1984-05-16 Ionic application multipurpose heat treatment and apparatus

Publications (1)

Publication Number Publication Date
JPS60243261A true JPS60243261A (en) 1985-12-03

Family

ID=14201709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9779484A Pending JPS60243261A (en) 1984-05-16 1984-05-16 Ionic application multipurpose heat treatment and apparatus

Country Status (1)

Country Link
JP (1) JPS60243261A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159365A (en) * 1987-12-15 1989-06-22 Daido Steel Co Ltd Ion carbonitriding furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159365A (en) * 1987-12-15 1989-06-22 Daido Steel Co Ltd Ion carbonitriding furnace

Similar Documents

Publication Publication Date Title
CN102154614B (en) Vacuum carburization processing method and vacuum carburization processing apparatus
US3109877A (en) Apparatus for modifying the composition of strip metal
CA1087548A (en) Apparatus for ion-nitriding
JP3839615B2 (en) Vacuum carburizing method
JP2006266615A (en) Heat treatment furnace
JPS60243261A (en) Ionic application multipurpose heat treatment and apparatus
JPS55125267A (en) Surface treating method of improving abrasion resistance and corrosion resistance of iron and steel
JP2000017305A (en) Degreasing sintering furnace
JP5225634B2 (en) Heat treatment method and heat treatment equipment
US2124573A (en) Enveloping atmosphere control
JP2009091638A (en) Heat-treatment method and heat-treatment apparatus
WO2017081760A1 (en) Gas quenching method
KR101414253B1 (en) pressure nitriding heat treatment process
JPS60190511A (en) Heat treating installation for metal
CN215404455U (en) High-performance carburizing device
JP2003183724A (en) Heat treatment furnace
JP2003171717A (en) Two-chamber type heat treatment furnace
JP7387969B2 (en) heat treatment equipment
JP2000171171A (en) Heat treating furnace
JPH05239558A (en) Traveling furnace hearth type continuous heat treatment apparatus
JP3412218B2 (en) Atmosphere heat treatment method
Bernard et al. Multiple Chamber Vacuum Furnaces vs. Single-Chamber Vacuum Furnaces—A Review
CN216972615U (en) Workpiece heat treatment device
JP2001263957A (en) Vacuum furnace
US6811621B1 (en) Member of air motor