JPS6024309A - Method for supplying continuously hot air to metallurgical furnace - Google Patents

Method for supplying continuously hot air to metallurgical furnace

Info

Publication number
JPS6024309A
JPS6024309A JP13023883A JP13023883A JPS6024309A JP S6024309 A JPS6024309 A JP S6024309A JP 13023883 A JP13023883 A JP 13023883A JP 13023883 A JP13023883 A JP 13023883A JP S6024309 A JPS6024309 A JP S6024309A
Authority
JP
Japan
Prior art keywords
hot air
pipe
recuperator
air
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13023883A
Other languages
Japanese (ja)
Inventor
Kazuo Kimura
木村 一男
Teruaki Morimoto
森本 照明
Masaaki Yoshimoto
正明 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13023883A priority Critical patent/JPS6024309A/en
Publication of JPS6024309A publication Critical patent/JPS6024309A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B9/00Stoves for heating the blast in blast furnaces
    • C21B9/14Preheating the combustion air

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Air Supply (AREA)

Abstract

PURPOSE:To provide a titled device which permits smooth and easy startup, stationary and preheating operations by providing bleeder pipes for venting gas to a hot air pipe before and behind a hot air valve and providing a by-pass pipe for waste combustion gas to a recuperator. CONSTITUTION:A continuous hot air feeder subjects cold air to a heat exchange with waste combustion gas in a recuperator 30 and supplied to hot air to a metallurgical furnace 1. Bleeder pipes 52, 53 for venting gas are provided before and behing a hot air valve 33 to a hot air feeder 3 of such device. A by-pass pipe 56 provideg with an atm. air suction pipe 59 and a blower 58 is provided between waste combustion gas pipe 35 and 36 on inlet and outlet sides in which the waste combustion gas generated in a combustion gas 34 is passed to said recuperator 30. The discharge of the hot air from the pipe 3 and the temp. control of the waste combustion gas on the inlet and outlet sides of the recuperator are thus made easy and the smooth and easy start-up, stationary and preheating operations of the hot air feeder are made possible.

Description

【発明の詳細な説明】 本発明は、高炉などの冶金炉に高温熱風を連続して供給
する熱風供給装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hot air supply device that continuously supplies high temperature hot air to a metallurgical furnace such as a blast furnace.

一般に、冶金炉、主として高炉へ熱風ご供給する方式と
しては、第1図に示すような熱風炉方式が用いられてい
る。第1図は熱風炉が8基設けられて、1基燃焼−2基
送風と、2基燃焼−1基送風の作動モードが交互に繰返
されるよう構成されている例を示す。
Generally, as a method for supplying hot air to a metallurgical furnace, mainly a blast furnace, a hot blast furnace method as shown in FIG. 1 is used. FIG. 1 shows an example in which eight hot air stoves are provided, and the operating modes of one-burning-two-air blowing and two-burning-one-air blowing are alternately repeated.

図中1は高炉、2a、2bおよび2Cは熱風炉で、後述
するように、これらの熱風炉のいづれか1個または2個
から熱風が熱風供給管8により環状管4を経て吹き込ま
れるよう接続されており、熱風炉の入側には送風作動モ
ードのため送風機5から冷空気を冷風管6を経て供給す
るよう接続されて、冷風管6にはスチーム供給管7およ
び酸素ガス供給管8がそれぞれ流量調節弁9および10
ご経て接続され、また、燃焼作動モードのため空気供給
管11および燃料ガス供給管12が熱交換器18および
14を経て空気および燃料ガスを供給するようそれぞれ
接続され、空気供給管11に空気ファン15が接続され
、また、熱風炉の出側には燃焼排ガスご排出Tるための
煙道16が熱交換器17を経て煙突18に接続されてい
る。
In the figure, 1 is a blast furnace, and 2a, 2b, and 2C are hot blast furnaces, and as described later, hot air is blown from any one or two of these hot blast furnaces through a hot air supply pipe 8 through an annular pipe 4. On the inlet side of the hot air stove, a blower 5 is connected to supply cold air through a cold air pipe 6 for the air blowing operation mode, and a steam supply pipe 7 and an oxygen gas supply pipe 8 are connected to the cold air pipe 6, respectively. Flow control valves 9 and 10
Also, for the combustion mode of operation, an air supply pipe 11 and a fuel gas supply pipe 12 are connected to supply air and fuel gas via heat exchangers 18 and 14, respectively, and an air fan is connected to the air supply pipe 11. Further, a flue 16 for discharging combustion exhaust gas is connected to a chimney 18 via a heat exchanger 17 on the outlet side of the hot air stove.

上述の構成になる熱風炉方式による従来の熱風供給装置
では、例えば、熱風炉2aが送風中で、熱風炉2b、2
cが燃焼中であるとすると、送風中の熱風炉2aにおい
ては、冷風弁19a、熱風弁20aは開、空気弁21a
、ガス弁22a、煙道弁28a、g4aは閉の状態で、
送風機より送j虱される冷空気は、冷風管により熱風炉
2aに入り、その内部で加熱され、熱風となって熱風供
給管8により高炉1に送風される。また、送風中の熱風
炉2a内の蓄熱量が時間とともに変化Tることから、送
風温度も変化Tるため熱風供給管8と冷風管6間に接続
したバイパス管25に設けられた混冷弁26の調整によ
り熱風に冷空気ご混入することによって高炉lに供給さ
nる熱風の温度が一定になるよう制御している。他方、
燃焼中の熱風炉2 b 、 、z cにおいては、冷風
弁19 b 、190゜熱風弁20b、200は閉、煙
道弁28b、230 。
In the conventional hot air supply device using the hot air stove system configured as described above, for example, while the hot air stove 2a is blowing air, the hot air stoves 2b, 2
If c is in combustion, in the hot air stove 2a that is blowing air, the cold air valve 19a and the hot air valve 20a are open, and the air valve 21a is open.
, the gas valve 22a, the flue valves 28a, and g4a are in the closed state,
Cold air blown by the blower enters the hot blast furnace 2a through a cold air pipe, is heated inside the hot blast furnace 2a, becomes hot air, and is blown to the blast furnace 1 through a hot air supply pipe 8. In addition, since the amount of heat stored in the hot air stove 2a during air blowing changes T with time, the air blowing temperature also changes T. By adjusting 26, the temperature of the hot air supplied to the blast furnace 1 is controlled to be constant by mixing cold air into the hot air. On the other hand,
In the hot air stoves 2b, 2c during combustion, the cold air valves 19b, 190° hot air valves 20b, 200 are closed, and the flue valves 28b, 230 are closed.

z4b、24cは開、空気弁21b、21c、ガス弁2
2b 、22Cは開の状態で、燃焼用空気およびガスを
熱風炉バーナで燃焼させ、熱風炉内レンガを加熱し、燃
焼排ガスを煙道16および煙突18を経て大気中に排出
している。
z4b, 24c are open, air valves 21b, 21c, gas valve 2
2b and 22C are in the open state, combustion air and gas are combusted in the hot air stove burner, the bricks in the hot air stove are heated, and the combustion exhaust gas is discharged into the atmosphere through the flue 16 and the chimney 18.

上述したように、熱風炉方式による従来の熱風供給装置
は送風および燃焼加熱を繰返丁炉が復数基必要で、その
切替えのための各種弁類および切換え制御装置などの複
雑な設備が必要であるばかりでなく、切替え時には送風
温度や送風圧力などの変動が必然的に生じ、高炉操業上
問題があった0これがため、上述した問題を解決Tるこ
とを目的として、熱風を連続して供給し得るよう構成し
た熱風供給装置が特開昭54−153705公報により
最近提案されている。この装置は、第2図に示すように
、熱交換器としてセラミックレキュペレータ30を使用
し、このレキュペレータ30に冷空気2冷及、管6によ
り制御弁31および開1イj弁32を介して通し、熱風
を熱風弁88を介して熱風供給管8により取り出すよう
接続され、冷風管6を経て通流する冷空気と熱交換すべ
き燃焼排ガス分燃焼冨84から入口側燃焼排ガス管85
を経てレキュペレータ80に供給し、熱交換後の排ガス
を出口側燃焼排ガス管δ6を経て空気ファン87および
燃料ガスファン88の駆動軸89の駆動用排気タービン
40に動力源として供給するよう構成されている。41
は駆動軸89に連結した補助モータを示す。そして、か
かる構成とTることにより、レキュペレータ80内にお
いて、加熱側ガス圧力が被加熱側ガス圧力と同じ圧力に
なるように燃焼用空気および燃料ガスをそれぞれ昇圧用
空気7アン37および燃料ガスファン88によって“昇
圧してレキュペレータ8o内で双方の圧力差が零になる
ようにガス圧力を制御し、また、レキュペレータ80か
ら出た燃焼排ガスの保有するIE 力および熱エネルギ
ーにより排ガスタービン40ご駆動して1u述の昇圧用
ファン8’l、8Bの駆動源としてAu用するものであ
る。なお、42セよび48は圧力検出器、44は圧力調
整器、45は排気タービン40の燃焼排ガス管46に設
けた制御弁である。
As mentioned above, conventional hot air supply systems using hot air stoves require multiple furnaces to repeatedly blow air and heat by combustion, and require complex equipment such as various valves and switching control devices to switch between them. Not only that, but also changes in the blowing temperature and blowing pressure inevitably occur, which poses problems in blast furnace operation.Therefore, in order to solve the above-mentioned problems, it was necessary to continuously supply hot air. A hot air supply device configured to supply hot air has recently been proposed in Japanese Unexamined Patent Publication No. 54-153705. As shown in FIG. 2, this device uses a ceramic recuperator 30 as a heat exchanger, and cold air is supplied to the recuperator 30 through a control valve 31 and an open valve 32 through a pipe 6. The combustion exhaust gas pipe 85 is connected to the inlet side combustion exhaust gas pipe 85 from the combustion exhaust gas portion 84 to exchange heat with the cold air flowing through the cold air pipe 6.
The exhaust gas after heat exchange is supplied to the recuperator 80 through the outlet side combustion exhaust gas pipe δ6 to the exhaust turbine 40 for driving the drive shaft 89 of the air fan 87 and the fuel gas fan 88 as a power source. There is. 41
indicates an auxiliary motor connected to the drive shaft 89. With this configuration, combustion air and fuel gas are supplied to the pressurizing air 7 and fuel gas fans, respectively, so that the heating side gas pressure becomes the same pressure as the heated side gas pressure in the recuperator 80. 88 to control the gas pressure so that the pressure difference between the two becomes zero in the recuperator 8o, and also drive the exhaust gas turbine 40 by the IE force and thermal energy possessed by the combustion exhaust gas discharged from the recuperator 80. Au is used as a driving source for the boosting fans 8'l and 8B described in 1u above. Reference numerals 42 and 48 are pressure detectors, 44 is a pressure regulator, and 45 is a combustion exhaust gas pipe 46 of the exhaust turbine 40. This is a control valve installed in the

しかし、上述の構成になるレキュペレータ利用の熱風供
給装置では、燃焼用空気および燃料ガスを高圧に維持す
るための圧力制御を必要とするために設備費が高くなる
とともに高炉などの冶金炉を休止したり、休止後、定常
操業に立上げたりする際の制御が複雑かつ困難で種々の
問題があるため、レキュペレータを用いて熱風を高炉に
連続して供給Tる装置は未だ実用に供せられていないの
が実情でおる。
However, the hot air supply system using a recuperator configured as described above requires pressure control to maintain combustion air and fuel gas at high pressure, which increases equipment costs and requires shutting down of metallurgical furnaces such as blast furnaces. Because of the complex and difficult control that occurs when restarting a blast furnace or restarting steady operation after a shutdown, a device that uses a recuperator to continuously supply hot air to a blast furnace has not yet been put into practical use. The reality is that there is not.

本発明は、上述の問題を解消し、レキュペレータを用い
て高炉などの冶金炉の円滑な操業を行なうに好適な熱風
連続供給装置を提供Tること?目的とする。
The present invention solves the above-mentioned problems and provides a continuous hot air supply device suitable for smooth operation of a metallurgical furnace such as a blast furnace using a recuperator. purpose.

以下、本発明を図面につき説明する。The invention will now be explained with reference to the drawings.

第3回は本発明による熱風連続供給装置の第1例を示し
、図中前述した従来装置と同様部分には前述したと同じ
符号をつけて示す。
Part 3 shows a first example of a continuous hot air supply device according to the present invention, and in the drawings, parts similar to those of the conventional device described above are denoted by the same reference numerals as described above.

図示のように、金属またはセラミックレキュペレータ8
0の一方の出口側および入口側に高炉などの冶金炉lに
熱風を供給する熱風供給装置8と送風機5から流量調節
弁50を介して冷空気分供給する冷風管6とをそれぞれ
接続し、他方の入口側および出口側に燃焼室84からの
燃焼排ガスを通流する入口側および出口側燃焼排ガス管
85.88をそれぞれ接続し、レキュペレータ30内で
燃焼排ガスと冷空気と2熱交換し、冶金炉lに高温熱風
を連続的に供給するよう構成している。
Metal or ceramic recuperator 8 as shown
A hot air supply device 8 for supplying hot air to a metallurgical furnace l such as a blast furnace and a cold air pipe 6 for supplying cold air from a blower 5 via a flow rate control valve 50 are connected to one of the outlet and inlet sides of the 0, respectively. Inlet side and outlet side combustion exhaust gas pipes 85, 88 through which combustion exhaust gas from the combustion chamber 84 flows are connected to the other inlet side and outlet side, respectively, and two heat exchanges are performed between the combustion exhaust gas and cold air within the recuperator 30, It is configured to continuously supply high temperature hot air to the metallurgical furnace l.

熱風供給管3には冶金炉1の円階な休止や休止後の立上
げ操業を可能にTるため、熱風供給管3に熱風弁38の
前後で冷風管6および熱風供給管s内の送風用空気ご放
散させるブリーダ管52と環状管4周りの残留熱風を放
散させるブリーダ管58とを設け、これらのブリーダ管
52,53にでれそれブリーダ弁54.55i取付ける
The hot air supply pipe 3 is equipped with a cold air pipe 6 and a hot air supply pipe s before and after the hot air valve 38 in order to enable gradual shutdown of the metallurgical furnace 1 or start-up operation after the shutdown. A bleeder pipe 52 for dissipating air and a bleeder pipe 58 for dissipating residual hot air around the annular pipe 4 are provided, and bleeder valves 54 and 55i are attached to these bleeder pipes 52 and 53.

また、入口側および出口側燃焼排ガス管35686間に
温度調整用バイパス管56を開閉弁57を介して接続し
、バイパス管56にプロワ−58および大気吸引管59
を設け、レキュペレータ入口側で燃焼排ガス管δ5に温
度検出器6oを設け、この温度検出器60により検出さ
れる温度信号によって弁開閉操作器61を介して作動さ
れる調整弁62および大気導入調整弁63によって流M
を調整してレキュペレータを出た燃焼排ガスや大気ごレ
キュペレータ入口側燃焼排ガス管85に送り込んで温度
を調整し得るよう構成している。
In addition, a temperature adjustment bypass pipe 56 is connected between the inlet side and outlet side combustion exhaust gas pipes 35686 via an on-off valve 57, and a blower 58 and an atmospheric suction pipe 59 are connected to the bypass pipe 56.
A temperature detector 6o is provided in the combustion exhaust gas pipe δ5 on the inlet side of the recuperator, and a regulating valve 62 and an atmospheric air introduction regulating valve are operated via a valve opening/closing operator 61 in response to a temperature signal detected by the temperature detector 60. Flow M by 63
The combustion exhaust gas and the atmosphere exiting the recuperator are fed into the combustion exhaust gas pipe 85 on the inlet side of the recuperator to adjust the temperature.

さらにまた、冶金炉1への送風温度は熱風供給管3に設
けた温度検出器64にもとづき弁開閉操作器65を介し
て燃焼用空気流量調整弁66および燃料ガス流量調整弁
67を制御して燃料型84への燃焼用空気および燃料ガ
スの流量を調整することによって行な゛うよう構成して
いる。
Furthermore, the temperature of the air blown to the metallurgical furnace 1 is determined by controlling the combustion air flow rate adjustment valve 66 and the fuel gas flow rate adjustment valve 67 via the valve opening/closing operator 65 based on the temperature detector 64 provided in the hot air supply pipe 3. This is done by adjusting the flow rates of combustion air and fuel gas to the fuel mold 84.

次に、第3図に示す第1実施例につき、全体の運転を説
uATる〇 まづ、冶金炉1の操業立上げから定常操業までに関して
送風機5の起動後、プリーダ弁54号閉にTると同時に
熱風弁83を開にし、冷空先番環状管4を介し冶金炉1
へ送風する。また、流量調節弁9,10.50は湿分量
、0□量、送風量が所定の値になるように開度調整され
る。
Next, regarding the first embodiment shown in FIG. 3, we will explain the overall operation of the metallurgical furnace 1 from start-up to steady operation. At the same time, the hot air valve 83 is opened, and the cold air is supplied to the metallurgical furnace 1 through the first annular pipe 4.
Blow air to. Further, the opening degree of the flow control valves 9, 10, and 50 is adjusted so that the moisture content, the 0□ amount, and the air flow amount become predetermined values.

一方、冷空気がレキュペレータ80に通流後、燃焼用空
気ファン15を起動し、燃焼用空気な管11により燃焼
室δ4に導入するとともに燃料ガスを管12により燃焼
至δ傷に導入し、燃焼層34内で燃焼させた後、燃焼排
ガス管85を経てレキュペレータ30に流す。〜同時に
、弁62 、57を開き、プロワ−58を起動させる。
On the other hand, after the cold air has passed through the recuperator 80, the combustion air fan 15 is started, and the combustion air is introduced into the combustion chamber δ4 through the pipe 11, and the fuel gas is introduced into the combustion chamber δ4 through the pipe 12. After being combusted in the bed 34, it flows through the flue gas pipe 85 to the recuperator 30. ~At the same time, open the valves 62 and 57 and start the blower 58.

弁66.67は所定の燃焼熱量に達するまで徐々に開い
ていく。
The valves 66, 67 gradually open until a predetermined amount of combustion heat is reached.

また、弁62はレキュペレータ80の入口側燃焼排ガス
温度が所定の値になるように開度調整されるが、弁62
が全開になっても所定の値に下降しない時は、弁68を
開いて大気吸引管59を経て大気を導入することができ
る。なお、調整弁62で風量制御しているが、プロワ−
58で直接風足制御Tることも可能である。燃焼排ガス
の不必要な分は煙突18から大気へ排出されるが、その
顕熱は熱交換器17で回収され、空気供給管11および
燃料ガス供給管12に設けられた熱交換器13および1
4で燃焼用空気および燃料ガスを予熱Tるために有効利
用される。
Further, the opening degree of the valve 62 is adjusted so that the combustion exhaust gas temperature on the inlet side of the recuperator 80 becomes a predetermined value.
When the pressure does not drop to a predetermined value even when the pressure is fully opened, the valve 68 can be opened to introduce atmospheric air through the atmospheric suction pipe 59. Note that although the air volume is controlled by the regulating valve 62, the
It is also possible to directly control the wind foot at 58. Unnecessary combustion exhaust gas is discharged into the atmosphere from the chimney 18, but its sensible heat is recovered by the heat exchanger 17 and transferred to the heat exchangers 13 and 1 provided in the air supply pipe 11 and the fuel gas supply pipe 12.
4 is effectively used to preheat the combustion air and fuel gas.

以上の操作を所定の温度および送風量が得られるまで続
けた後、定常操業に入るが、定常操業では、所定の湿分
ul−02ffi、送風量、送風温度、送−風圧力、レ
キュペレータ人ロ側燃焼排ガス温度ニなるように6弁が
制御される0 上述の送風制御は、例えば、第5図の制御フロー線図で
示T−ように行なうことができる0熱風の送風量、送風
温度等は冶金炉の生産量によって決定され、送風量の制
御は、冷風管6内の流量を検出することによって流ff
1M節弁50を調整して行なわれる。また、送風温度T
Bの制御は、レキュペレータ入口側燃焼排ガス温度TR
が一定の条件のもとで、弁67により燃料ガス量を調整
して行なわれる。そして、レキュペレータ入口側燃焼排
ガス温度を一定にする方法としては、レキュペレータ入
口側燃焼排ガス温度を温度検出器60によって検出し、
弁開閉操作器61を介して弁62または弁68を制御す
ることによってレキュペレータ入口側燃[株]b排ガス
温度を一定にしている0かようにしてレキュペレータ入
口側燃焼排ガス温度ご一定に制御しながら、送風温度が
所定の値になるように燃料ガス量は下記の式で示す要領
で調整される。
After the above operations are continued until the predetermined temperature and air flow rate are obtained, steady operation begins. The six valves are controlled so that the side combustion exhaust gas temperature is 0. The above-mentioned air blowing control can be performed, for example, as shown in the control flow diagram of FIG. is determined by the production volume of the metallurgical furnace, and the air flow rate is controlled by detecting the flow rate in the cold air pipe 6.
This is done by adjusting the 1M control valve 50. In addition, the air blowing temperature T
Control B is based on the combustion exhaust gas temperature TR on the recuperator inlet side.
This is done by adjusting the amount of fuel gas using the valve 67 under certain conditions. As a method for keeping the temperature of the combustion exhaust gas on the recuperator inlet side constant, the temperature of the combustion exhaust gas on the recuperator inlet side is detected by the temperature detector 60,
By controlling the valve 62 or 68 via the valve opening/closing device 61, the combustion exhaust gas temperature at the recuperator inlet side is kept constant. The amount of fuel gas is adjusted in accordance with the following formula so that the temperature of the blast air reaches a predetermined value.

なお、第5図において、ΔVaは燃焼用空気の増減ノ1
1、ΔVOFli’は燃焼排ガスの増減量を示T。
In addition, in Fig. 5, ΔVa is the increase or decrease of combustion air.
1. ΔVOFli' indicates the increase/decrease in combustion exhaust gas T.

ΔVg−K (’[’B −、’I’B□ )上式にお
いて ゛ Δv5:燃料ガス増減量 K : 脈数 TB:送風温度の実測値 T : 〃 の目標値 O なお、燃料ガス量を増減させた場合は、所定の空気比(
1,0〜1.20 )になるように燃焼用空気量もJj
〜減させた方が良い。以上により安定した熱風を発生さ
せることが可能となる。
ΔVg-K ('['B -, 'I'B□) In the above formula, Δv5: Fuel gas increase/decrease K: Pulse number TB: Actual measurement value of air blowing temperature T: Target value O of If the air ratio is increased or decreased, the specified air ratio (
1.0~1.20), the amount of combustion air is also Jj
~It is better to reduce it. The above makes it possible to generate stable hot air.

次に、冶金炉1を定常操業から休止させる際の運転方法
につき説明Tるに、まず、燃料ガス調整弁67を閉じた
後、空気弁66を閉じて燃焼を停止させる。次に、プロ
ワ−58を停止させ、弁6257を閉じる。次いで、弁
9.lOを閉じ、弁50を徐々に絞って減圧し、ブリー
ダ弁54を開いて冷風管6、熱風供給管8内の送風用空
気を大気中に放牧させると同時に、熱風弁51を閉じ、
ブリーダ弁55を開放して環状管4と熱風弁83との間
の熱風を大気中に放散させ、送風機5を停止し、これに
より休止状態に入る。
Next, to explain the operating method when stopping the metallurgical furnace 1 from steady operation, first, the fuel gas adjustment valve 67 is closed, and then the air valve 66 is closed to stop combustion. Next, the blower 58 is stopped and the valve 6257 is closed. Then valve 9. Close the lO, gradually throttle the valve 50 to reduce the pressure, open the bleeder valve 54 to let the blowing air in the cold air pipe 6 and the hot air supply pipe 8 graze in the atmosphere, and at the same time close the hot air valve 51.
The bleeder valve 55 is opened to dissipate the hot air between the annular pipe 4 and the hot air valve 83 into the atmosphere, and the blower 5 is stopped, thereby entering a hibernation state.

このような休止状態に入った場合、いつでも冶金炉の操
業がUH始できるようレキュペレータの予熱をしておく
必要がある。休止中のレキュペレータ30の予熱は操業
度合で左右されるが高生産量を得るような時には、操8
F立上は時間?r:短稲するために必要となる。この理
由は、休止中にレキュペレータを予熱していないと、放
熱し、蓄熱量が減るため、立上げ時の燃焼熱の大半はレ
キュペレータ本体の予熱に使われ、冷空気の温度上昇に
時14丁がかかるためである。したがって、レキュペレ
ータ?予熱するために、冶金炉を立上げる約80分前か
ら燃焼量84で燃焼を開始するのが良い。
When entering such a shutdown state, it is necessary to preheat the recuperator so that the metallurgical furnace can start operating at any time. Preheating of the recuperator 30 when it is inactive depends on the operating level, but when high production is to be achieved, the preheating of the recuperator 30 is
Is it time for F to start up? r: Necessary for short rice production. The reason for this is that if the recuperator is not preheated while it is at rest, it will radiate heat and the amount of heat storage will decrease, so most of the combustion heat at startup will be used to preheat the recuperator itself, and the temperature of the cold air will rise. This is because it takes Therefore, the recuperator? In order to preheat, it is preferable to start combustion at a combustion amount of 84 approximately 80 minutes before starting up the metallurgical furnace.

第3図に示す例では、予熱のための燃焼量および冷風量
はともに通常の操業より少ないが、通常の操業とほぼ同
じ形態で運転される。レキュペレータ30を通過後の予
熱空気をブリーダ弁54より放散しながらレキュペレー
タ30の予熱を行ない、この時、熱風弁δ8は閉止状態
にし、冶金炉1に入らないようにしておく。
In the example shown in FIG. 3, the amount of combustion for preheating and the amount of cold air are both smaller than in normal operation, but the system is operated in substantially the same manner as normal operation. The recuperator 30 is preheated while the preheated air that has passed through the recuperator 30 is dissipated through the bleeder valve 54. At this time, the hot air valve δ8 is kept closed to prevent it from entering the metallurgical furnace 1.

上述したように、第3図に示−r[成では、予熱時にレ
キュペレータで加熱された空気量プリーダ管52から放
散するため、エネルギー的に損失が大きくなる欠点があ
る。かかる予熱時におけるエネルギー損失を防止Tるた
め、予熱時に熱風供給管8に流れる熱風を適宜の方法で
各種の熱交換器に送るのが良く、かかるエネルギー損失
に対する対策を前じた例を第4図に示す。
As described above, in the configuration shown in FIG. 3, the amount of air heated by the recuperator is dissipated from the feeder tube 52 during preheating, so there is a drawback that energy loss is large. In order to prevent such energy loss during preheating, it is preferable to send the hot air flowing through the hot air supply pipe 8 to various heat exchangers by an appropriate method during preheating. As shown in the figure.

第4図に示す例では、燃焼用空気供給管11の熱交換器
18と空気流量調整弁66との間に弁68を介挿し、熱
交換器18と弁68との間で空気供給管11を冷風管6
に管69により弁70を介して接続し、また、弁66と
68との闇で空気供給管11を管71により弁72を介
して熱風管8に接続している。
In the example shown in FIG. 4, a valve 68 is inserted between the heat exchanger 18 of the combustion air supply pipe 11 and the air flow rate adjustment valve 66, and the air supply pipe 11 The cold air pipe 6
The air supply pipe 11 is connected to the hot air pipe 8 through a pipe 71 through a valve 72 between the valves 66 and 68.

かように溝成することによって、冶金炉1が休止中の状
態では、弁88.54,9,10,50゜67および6
8をそれぞれ閉止し、弁70 ’、 72を開放した状
態で、燃焼用空気ファン15を起動して燃焼用空気を管
69、冷風管6によりレキュペレータ80に流入させ、
予熱された空気を熱風供給管3、管71および燃焼用空
気供給管11を経て燃焼室84に導入する。また、燃料
ガスは空気ファン15が起動後、空気が燃焼室34に流
入した後、弁67を開放して燃焼室84に流入させる0 これにより、燃焼ガスはレキュペレータ30号予熱する
とともに燃焼用空気をも予熱し、レキュペレータ80を
予熱した燃焼ガスは出口1!II燃焼排ガス管36を経
て煙突18から排出され、この際、燃焼ガスの顕熱は熱
交換器17によって回収さへ熱交換器18,141での
燃焼用空気および燃料ガスの予熱に利用される。また、
レキュペレータ入口側燃焼排ガス温度を所定の値に制御
するため、弁62.57を開放し、ファン58を起動さ
せ、燃焼排ガスの一部を出口側燃焼排ガス管36に流す
By forming the grooves in this way, when the metallurgical furnace 1 is at rest, the valves 88, 54, 9, 10, 50° 67 and 6
8 are closed and the valves 70' and 72 are opened, the combustion air fan 15 is started to flow the combustion air into the recuperator 80 through the pipe 69 and the cold air pipe 6,
Preheated air is introduced into the combustion chamber 84 via the hot air supply pipe 3, the pipe 71, and the combustion air supply pipe 11. Further, after the air fan 15 is started, the fuel gas flows into the combustion chamber 34, and then the valve 67 is opened to flow into the combustion chamber 84. As a result, the combustion gas is preheated to the recuperator No. 30, and the combustion air is The combustion gas that has also preheated the recuperator 80 is at outlet 1! II The combustion gas is discharged from the chimney 18 via the flue gas pipe 36, and at this time, the sensible heat of the combustion gas is recovered by the heat exchanger 17 and used for preheating the combustion air and fuel gas in the heat exchangers 18 and 141. . Also,
In order to control the combustion exhaust gas temperature on the recuperator inlet side to a predetermined value, the valve 62.57 is opened, the fan 58 is activated, and a part of the combustion exhaust gas flows into the outlet side combustion exhaust gas pipe 36.

上述した予熱方法により、休止後の操業立上げを円滑に
行なうことができる。
The preheating method described above allows for smooth startup of operations after suspension.

その他の予熱方法として、燃焼空気ファンの代りに、送
風機を用いる方法がある0この方法は、第4図示の構成
におい゛て管69がない状態において、燃焼用空気を送
風機5より冷風管6、レキュペレータ80、熱風供給管
8.菅71、燃焼用空気供給g11を経て、燃焼至84
へ導入することができるo しかし、この方法は、燃焼
用空気ファンを使用した予熱方法より動力的に損である
ので好ましくない。
Another preheating method is to use a blower instead of a combustion air fan. In this method, in the configuration shown in FIG. Recuperator 80, hot air supply pipe 8. Suga 71, through combustion air supply g11, to combustion 84
However, this method is not preferred as it is more power-intensive than the preheating method using a combustion air fan.

本発明によれば、冶金炉に熱風弁を介して熱風を供給す
る熱風供給管に熱風弁の前後でガス抜き用プリーダ管を
設けるとともにレキュペレータ入口側および出口側燃す
jム排ガス管をバイパス管によりバイパス接続し、バイ
パス管にブロワ−および大気収側管を設けたことによっ
て冶金炉への熱風連続供給における立上げ運転、定常運
転、予熱運転を円滑に容易に行なうことができるという
効果が得られる。
According to the present invention, the hot air supply pipe that supplies hot air to the metallurgical furnace through the hot air valve is provided with a degassing leader pipe before and after the hot air valve, and the exhaust gas pipes on the inlet and outlet sides of the recuperator are connected by bypass pipes. By bypass connection and providing a blower and an air collection side pipe to the bypass pipe, it is possible to smoothly and easily perform start-up operation, steady operation, and preheating operation in continuous supply of hot air to the metallurgical furnace. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の熱風炉方式による熱風供給装置の概路線
図、 第21Aは従来のセラミックレキュペレータご用いる熱
交換方式による熱風供給装置の概略図、第8図は本発明
による熱風供給装置の第1例を示す概路線図、 第4図は本発明による熱風供給装置の第8例を示す概路
線図。 第5図は本発明による熱風供給装置のfft[I御フロ
ー線図である。 1・・・冶金炉 3・・・熱風供給管 4・・・環状管 5・・・送風機 6・・・冷風管 7・・・スチーム供給管8・・・酸素
ガス供給管 9.10・・・流量調整弁11・・・燃焼
用空気供給管 12・・・燃料ガス供給管18.14・
・・熱交換器 15・・・空気ファン17・・・熱交換
器 18・・・煙突 30・・・レキュペレータ 88・・・熱風弁34・・
・燃焼室 35・・・入口側燃焼排ガス管86・・・出
口側燃焼排ガス管 5o・・・流量調整弁52 、58
・・・プリーダ管 54,55・・・ブリーダ弁56・
・・温度調整用バイパス管 57・・・BFJ閉弁58
・・・ブロワ−59・・・大気収側管60・・・温度検
出器 61・・・弁開閉操作器62.63・・・調整弁
 64・・・温度検出器65・・・弁開閉操作器 66
.67・・・調整弁68・・・弁 69・・・管 70・・弁 71・・・管 72・・・弁ρ 特許出願人 川崎製鉄株式会社
Fig. 1 is a schematic diagram of a hot air supply device using a conventional hot air stove method, Fig. 21A is a schematic diagram of a hot air supply device using a conventional heat exchange method using a ceramic recuperator, and Fig. 8 is a schematic diagram of a hot air supply device according to the present invention. FIG. 4 is a schematic diagram showing a first example of the hot air supply device according to the present invention. FIG. 5 is a fft[I flow diagram of the hot air supply device according to the present invention. 1... Metallurgical furnace 3... Hot air supply pipe 4... Annular pipe 5... Blower 6... Cold air pipe 7... Steam supply pipe 8... Oxygen gas supply pipe 9.10...・Flow rate adjustment valve 11...Combustion air supply pipe 12...Fuel gas supply pipe 18.14.
... Heat exchanger 15 ... Air fan 17 ... Heat exchanger 18 ... Chimney 30 ... Recuperator 88 ... Hot air valve 34 ...
-Combustion chamber 35...Inlet side combustion exhaust gas pipe 86...Outlet side combustion exhaust gas pipe 5o...Flow rate adjustment valves 52, 58
... Pleader pipe 54, 55 ... Bleeder valve 56.
...Temperature adjustment bypass pipe 57...BFJ closing valve 58
...Blower 59...Air collection side pipe 60...Temperature detector 61...Valve opening/closing operation device 62.63...Adjusting valve 64...Temperature detector 65...Valve opening/closing operation Vessel 66
.. 67...Adjusting valve 68...Valve 69...Pipe 70...Valve 71...Pipe 72...Valve ρ Patent applicant Kawasaki Steel Corporation

Claims (1)

【特許請求の範囲】[Claims] 1 冶金炉への熱風供給配管系に冷空気を燃焼排ガスと
熱交換して高温熱風とするレキュペレータ(aO)を設
け、このレキュペレータから冶金炉(1)に熱風弁(3
3)を介して熱風を供給Tる熱風供給管(δ)に熱風弁
(33)の前後でガス抜き用プリーダ管(52゜58)
を設け、前記レキュペレータに燃焼排ガスを通流する入
口側および出口側燃焼排ガス管(85,86)をバイパ
ス管(56)によりバイパス接続し、このバイパス管に
プロワ−(58)と大気奴側管(59)とを設けてなる
こ□とを特徴とする冶金炉の連続熱風供給装置。
1 A recuperator (aO) is installed in the hot air supply piping system to the metallurgical furnace to exchange heat with combustion exhaust gas to produce high-temperature hot air, and a hot air valve (3) is installed from this recuperator to the metallurgical furnace (1).
3) A degassing leader pipe (52°58) is installed before and after the hot air valve (33) to the hot air supply pipe (δ) that supplies hot air through the hot air valve (33).
The inlet-side and outlet-side combustion exhaust gas pipes (85, 86) through which the combustion exhaust gas flows through the recuperator are bypass-connected by a bypass pipe (56), and a blower (58) and an atmospheric side pipe are connected to the bypass pipe. (59) A continuous hot air supply device for a metallurgical furnace, characterized by comprising:
JP13023883A 1983-07-19 1983-07-19 Method for supplying continuously hot air to metallurgical furnace Pending JPS6024309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13023883A JPS6024309A (en) 1983-07-19 1983-07-19 Method for supplying continuously hot air to metallurgical furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13023883A JPS6024309A (en) 1983-07-19 1983-07-19 Method for supplying continuously hot air to metallurgical furnace

Publications (1)

Publication Number Publication Date
JPS6024309A true JPS6024309A (en) 1985-02-07

Family

ID=15029417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13023883A Pending JPS6024309A (en) 1983-07-19 1983-07-19 Method for supplying continuously hot air to metallurgical furnace

Country Status (1)

Country Link
JP (1) JPS6024309A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109055641A (en) * 2018-08-31 2018-12-21 中冶南方工程技术有限公司 Recycle the heat exchanger purging soot cleaning system and method for hot-blast stove emission coal gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109055641A (en) * 2018-08-31 2018-12-21 中冶南方工程技术有限公司 Recycle the heat exchanger purging soot cleaning system and method for hot-blast stove emission coal gas
CN109055641B (en) * 2018-08-31 2020-05-08 中冶南方工程技术有限公司 Heat exchanger purging and ash removing system and method for recycling coal gas emitted by hot blast stove

Similar Documents

Publication Publication Date Title
JPH0481693B2 (en)
JP2017020689A (en) Waste treatment facility and waste treatment facility operation method
JP3587744B2 (en) Waste heat recovery method and waste heat recovery device for exhaust gas
US3689042A (en) Automatic control apparatus for soaking pit furnaces
JP2899247B2 (en) Gas turbine inlet heating and cooling system
JP2024009139A (en) Waste treatment facility
JP5508022B2 (en) Batch waste gasification process
JPS6024309A (en) Method for supplying continuously hot air to metallurgical furnace
JPH07113110A (en) Device for recovering heat in converter and control method thereof
US4492568A (en) Process and apparatus for preheating the combustion mediums used for firing blast furnace stoves
KR20020005972A (en) System for recycling waste heat
KR102260259B1 (en) Apparatus for increasing combustion efficiency of hot blast stoves
JPH023882B2 (en)
JP7156922B2 (en) Waste treatment equipment and operation method of waste treatment equipment
JPS6024308A (en) Method for supplying continuously hot air to metallurgical furnace
JPH10169925A (en) Radiant tube burner system and operation thereof
US3946801A (en) Recuperator
JPH08127811A (en) Method for controlling combustion in hot blast stove
US3815882A (en) Reverberatory furnace using waste gas for combustion
JP3510014B2 (en) Industrial furnace with heat recovery type combustion device and combustion control method therefor
US3260512A (en) Metallurgical furnace
JP2004101069A (en) Temperature controller in incinerator and temperature control method
JP3142460B2 (en) Pressure control method for burner combustion air
SU912760A1 (en) Blast furnace air heater
JPH08210780A (en) Continuous heating furnace for steel