JPH07113110A - Device for recovering heat in converter and control method thereof - Google Patents

Device for recovering heat in converter and control method thereof

Info

Publication number
JPH07113110A
JPH07113110A JP5259820A JP25982093A JPH07113110A JP H07113110 A JPH07113110 A JP H07113110A JP 5259820 A JP5259820 A JP 5259820A JP 25982093 A JP25982093 A JP 25982093A JP H07113110 A JPH07113110 A JP H07113110A
Authority
JP
Japan
Prior art keywords
skirt
flow rate
deaerator
cooling water
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5259820A
Other languages
Japanese (ja)
Inventor
Yukinori Shigeyama
幸則 重山
Mikio Oki
幹夫 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5259820A priority Critical patent/JPH07113110A/en
Publication of JPH07113110A publication Critical patent/JPH07113110A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To provide a heat recovery device of a converter and a control method thereof, by which the equipment cost and the operation cost can be reduced and the heat can be recovered stably and efficiently. CONSTITUTION:In the heat recovery device provided with a skirt cooling device 31 having a cooling water circulating pipe line 22 for cooling the skirt 2 covering the furnace opening part of the converter 1, a hood 3 and a radiation cooler 4 providing the cooling water pipes, a boiler drum 7 connected with the hood 3 and the radiation cooler 4, a deaerator 16 connected with the boiler drum 7, a water supplying tank connected with the skirt cooling device 31 and the deaerator 16 are provided, further, a heat exchanger 31 in which a high temp. side flowing passage is inserted into the cooling water circulating piping 22 and a low temp. side flowing passage into a pipe line 14 for connecting the water supplying device 12 and the deaerator 16, respectively, a cooling water expansion tank 24 arranged in the cooling water circulating pipe line 22 at the inlet side of the heat exchanger 31 and a flow rate adjusting device 36 arranged in a skirt temp. adjusting pipe line 35 for connecting the water supplying tank 12 with the outlet of the lower temp. side of the heat exchanger, are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は転炉の熱回収装置および
その制御方法、特に炉口直上のスカート部から熱回収す
る装置およびその制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat recovery device for a converter and a control method therefor, and more particularly to a device for recovering heat from a skirt directly above a furnace opening and a control method therefor.

【0002】[0002]

【従来の技術】転炉で発生した排ガスは、約1450℃
の高温であり、CO濃度も高い。したがって、転炉の炉
口にフードあるいはダクトを配置し、排ガスを捕集して
いる。また、転炉直上に昇降可能なスカートを配置し、
精練時にスカートを下降させ、転炉炉口との間隔を小さ
くして炉口での空気吸引によるCOガスの燃焼を抑えて
いる。また、フードあるいはダクトに設けたフード冷却
器およびフード冷却器に続いて設けた輻射冷却器で排ガ
ス顕熱により蒸気を発生させ、排熱を回収している。さ
らに、スカートにも冷却器を設け、排熱の一部を回収す
るようにしている。なお、排ガス回収に伴うスカートの
昇降操作あるいは転炉の傾動時に、転炉の炉口に付着し
た地金がスカートに接触してスカートの水管を損傷し、
高圧蒸気が噴出する虞がある。このため、スカートの部
分での熱回収は、蒸気回収型冷却器ではなく、温水冷却
器によってスカートの冷却を行う。
2. Description of the Related Art Exhaust gas generated in a converter is about 1450 ° C
The temperature is high and the CO concentration is high. Therefore, a hood or a duct is arranged at the furnace opening of the converter to collect the exhaust gas. In addition, a skirt that can be raised and lowered is placed directly above the converter,
During scouring, the skirt is lowered to reduce the distance from the converter furnace opening to suppress combustion of CO gas due to air suction at the furnace opening. Further, a hood cooler provided in the hood or a duct and a radiant cooler provided subsequent to the hood cooler generate steam by sensible heat of exhaust gas to recover exhaust heat. In addition, the skirt is also equipped with a cooler to recover a part of the exhaust heat. When the skirt is raised or lowered or the converter is tilted due to exhaust gas recovery, the metal attached to the furnace mouth of the converter contacts the skirt and damages the skirt's water pipe.
High-pressure steam may be ejected. Therefore, for heat recovery at the skirt portion, the skirt is cooled by the hot water cooler instead of the steam recovery type cooler.

【0003】スカートでの温水排熱回収装置として、た
とえば特開平3−115517号公報で開示された転炉
排ガスの冷却装置がある。この冷却装置は、スカートを
冷却した排温水を一部大気へ蒸発させ、温排水の自己蒸
発時の潜熱により冷却水温度を低下させるための大気開
放タンクを備えている。また、大気開放タンク内の冷却
水温度を100℃近傍の温度に制御するための温水温度
制御手段、および大気開放タンクからボイラ給水用脱気
器へ直接供給される温水の流量制御手段を備えている。
As a hot water exhaust heat recovery device for a skirt, there is, for example, a converter exhaust gas cooling device disclosed in Japanese Patent Laid-Open No. 3-115517. This cooling device is equipped with an atmosphere open tank for partially evaporating the warm waste water that has cooled the skirt to the atmosphere and lowering the temperature of the cooling water by the latent heat of the self-evaporation of the warm waste water. Further, it is provided with a hot water temperature control means for controlling the temperature of the cooling water in the atmosphere open tank to a temperature near 100 ° C., and a flow rate control means for the hot water directly supplied from the atmosphere open tank to the boiler feed water deaerator. There is.

【0004】しかし、上記従来の冷却装置では、温水の
自己蒸発による冷却を確保するための大気開放タンク等
の大容量の装置や温水の温度制御用の蒸気吹込み制御装
置等が必要であり、設備費が高くなる。また、大気開放
タンクからの冷却水の蒸発分を補うために、スカート循
環水への定常的な補給水の供給と補給水の水質管理のた
めの水質処理用の薬品使用量が多くなるなど運転コスト
も高くなるという問題もある。
However, the above conventional cooling device requires a large-capacity device such as an atmosphere open tank for ensuring the cooling of the hot water by self-evaporation and a steam injection control device for controlling the temperature of the hot water. Equipment costs are high. In addition, in order to compensate for the evaporation of cooling water from the atmosphere open tank, the supply of regular makeup water to the skirt circulation water and the increase in the amount of chemicals used for water quality management to control the quality of makeup water are used. There is also the problem of high costs.

【0005】[0005]

【発明が解決しようとする課題】本発明は、設備費およ
び運転コストを低減することができ、安定的にかつ効率
的に熱を回収することができる転炉の熱回収装置および
その制御方法を提供するものである。
DISCLOSURE OF THE INVENTION The present invention provides a heat recovery device for a converter and a control method therefor capable of reducing the facility cost and the operating cost, and recovering heat stably and efficiently. It is provided.

【0006】[0006]

【課題を解決するための手段】この発明の転炉の熱回収
装置は、転炉の炉口を覆うスカートを冷却する冷却水循
環管路をもったスカート冷却装置、冷却水管を備えたフ
ードおよび輻射冷却器、フードおよび輻射冷却器の冷却
水管に接続されたボイラドラム、ボイラドラムに接続さ
れた脱気器、ならびにスカート冷却装置および脱気器に
接続された給水タンクを備えた転炉の熱回収装置におい
て、高温側流路が前記冷却水循環管路に、また低温側流
路が前記給水タンクと脱気器とを連絡する管路にそれぞ
れ挿入された熱交換器、熱交換器の入側で前記冷却水循
環管路に設けられた冷却水膨脹タンク、および前記給水
タンクと熱交換器低温側の出口とを連絡するスカート温
度調節管路に設けられた流量調節装置を備えている。
A heat recovery device for a converter according to the present invention is a skirt cooling device having a cooling water circulation pipe for cooling a skirt covering a furnace opening of the converter, a hood provided with a cooling water pipe, and radiation. Heat recovery of a converter equipped with a cooler, a hood and a boiler drum connected to the cooling water pipes of the radiant cooler, a deaerator connected to the boiler drum, and a water supply tank connected to the skirt cooling device and the deaerator In the device, a high temperature side flow passage is in the cooling water circulation pipe, and a low temperature side flow passage is inserted in the pipe connecting the water supply tank and the deaerator, respectively, at the inlet side of the heat exchanger. A cooling water expansion tank provided in the cooling water circulation pipe, and a flow rate adjusting device provided in a skirt temperature adjusting pipe that connects the water supply tank and the outlet on the low temperature side of the heat exchanger are provided.

【0007】この発明の転炉の熱回収制御方法は、上記
熱回収装置において脱気器給水量に基づいて前記スカー
ト温度調節管路の流量を調節し、前記熱交換器の低温側
流量を所要のスカート温度となる流量に保持する。
According to the heat recovery control method of the converter of the present invention, the flow rate of the skirt temperature adjusting pipe is adjusted based on the deaerator feed water amount in the heat recovery apparatus to obtain the low temperature side flow rate of the heat exchanger. Hold the flow rate at the skirt temperature.

【0008】この発明の転炉の熱回収制御方法は、前記
熱回収装置においてQb(脱気器給水流量)<Qhe
(所要のスカート温度となる、前記熱交換器の低温側流
量)のときは、熱交換器低温側流量をQb(脱気器給水
流量)+Qes(スカート温度調節管路流量)とし、Q
b>Qheとなった時点以降は、Qes=零とする。
In the converter heat recovery control method of the present invention, in the heat recovery device, Qb (deaerator feed water flow rate) <Qhe
When the flow rate on the low temperature side of the heat exchanger is the required skirt temperature, the flow rate on the low temperature side of the heat exchanger is Qb (deaerator feed water flow rate) + Qes (skirt temperature control pipe flow rate), and Q
After the time of b> Qhe, Qes = 0.

【0009】この発明のさらに他の転炉の熱回収制御方
法は、前記熱回収装置において、スカート温度調節管路
を所定の開度に絞り、絞られたスカート温度調節管路の
流量をQesoとしたときに、脱気器給水流量Qbにか
かわらず熱交換器低温側流量をQeso+Qbとして制
御する。
In still another heat recovery control method for a converter according to the present invention, in the heat recovery device, the skirt temperature adjusting conduit is narrowed to a predetermined opening, and the flow rate of the narrowed skirt temperature adjusting conduit is set to Qeso. At this time, the heat exchanger low temperature side flow rate is controlled as Qeso + Qb regardless of the deaerator feed water flow rate Qb.

【0010】[0010]

【作用】スカートの冷却水は、熱交換器の高温側を通っ
て冷却水循環管路を循環する。スカートで加熱された冷
却水の膨脹は、冷却水膨脹タンクで吸収される。また、
冷却水は熱交換器で、これの低温側を流れる純水によっ
て冷却される。逆に、スカートの冷却水は熱交換器低温
側を通って脱気器に送られる純水を加熱し、排熱の一部
が回収される。
The cooling water in the skirt circulates in the cooling water circulation line through the hot side of the heat exchanger. The expansion of the cooling water heated by the skirt is absorbed by the cooling water expansion tank. Also,
The cooling water is a heat exchanger and is cooled by pure water flowing on the low temperature side thereof. On the contrary, the cooling water of the skirt heats the pure water sent to the deaerator through the low temperature side of the heat exchanger, and a part of the exhaust heat is recovered.

【0011】熱交換器低温側を流れる純水の流量は、冷
却水が所要の温度、たとえば飽和温度を超えない温度と
なるように設定されている。脱気器に送られる純水量
(脱気器給水量)が変化した場合、脱気器給水量に応じ
てスカート温度調節管路の流量を調節し、熱交換器低温
側の流量を所要の流量に保持する。たとえば、脱気器給
水量が増加した場合、スカート温度調節管路の流量を小
さくする。
The flow rate of the pure water flowing through the low temperature side of the heat exchanger is set so that the cooling water has a required temperature, for example, a temperature not exceeding the saturation temperature. When the amount of pure water sent to the deaerator (deaerator water supply amount) changes, adjust the flow rate of the skirt temperature adjustment pipe line according to the deaerator water supply amount, and set the heat exchanger low-temperature side flow rate to the required flow rate. Hold on. For example, when the water supply amount of the deaerator is increased, the flow rate of the skirt temperature adjusting pipeline is reduced.

【0012】[0012]

【実施例】図1はこの発明の転炉の熱回収装置の一例を
示しており、装置全体の模式図である。転炉1の炉口の
直上に昇降可能なスカート2が配置されている。スカー
ト2から上方にフード3および輻射冷却器4が延びてい
る。フード3および輻射冷却器4内には冷却水管群(図
示しない)が形成されている。冷却水管群は、循環管6
を介してボイラドラム7に接続されている。また、冷却
水管群の入側とボイラドラム7との間にボイラ循環ポン
プ8が取り付けられている。冷却水管群にはボイラドラ
ム7から冷却水が供給され、冷却水はフード3および輻
射冷却器4を通過する排ガスによって加熱される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of a heat recovery device for a converter according to the present invention and is a schematic view of the entire device. A skirt 2 that can move up and down is arranged directly above the furnace opening of the converter 1. A hood 3 and a radiation cooler 4 extend upward from the skirt 2. A cooling water pipe group (not shown) is formed in the hood 3 and the radiation cooler 4. The cooling water pipe group is the circulation pipe 6
It is connected to the boiler drum 7 via. Further, a boiler circulation pump 8 is attached between the inlet side of the cooling water pipe group and the boiler drum 7. Cooling water is supplied from the boiler drum 7 to the cooling water pipe group, and the cooling water is heated by the exhaust gas passing through the hood 3 and the radiation cooler 4.

【0013】給水タンク12に接続された給水本管14
に脱気器給水ポンプ13が接続されており、給水本管1
4から膨脹タンク給水管路15が分岐している。給水タ
ンク12からの純水は給水本管14を経て脱気器16に
供給される。脱気器16で脱気された純水は、ボイラ給
水ポンプ18によりボイラドラム7に供給される。
A water supply main 14 connected to a water supply tank 12.
The deaerator water supply pump 13 is connected to the water supply mains 1
An expansion tank water supply pipe line 15 branches from 4. Pure water from the water supply tank 12 is supplied to the deaerator 16 via the water supply main pipe 14. The pure water deaerated by the deaerator 16 is supplied to the boiler drum 7 by the boiler feed water pump 18.

【0014】スカート2には、スカート冷却装置21が
設けられている。スカート冷却装置21は、冷却水循環
管路22を備えており、冷却水循環管路22のスカート
入側にスカート循環ポンプ23が、また出側に冷却水膨
脹タンク24が設けられている。冷却水流量計25およ
び冷却水温度計26は、冷却水循環管路22を流れる冷
却水の流量および温度を監視する。冷却水温度計26が
異常温度を検出すると、転炉吹錬非常停止信号が発せら
れる。スカート2の補修等に伴い冷却水循環管路22の
循環冷却水が外部に排出された場合、冷却水膨張タンク
24の水位計27からの信号により膨脹タンク補給水弁
29が開いて冷却水膨張タンク24に冷却水を補給す
る。
The skirt 2 is provided with a skirt cooling device 21. The skirt cooling device 21 is provided with a cooling water circulation pipe line 22, a skirt circulation pump 23 is provided on the skirt entrance side of the cooling water circulation pipe line 22, and a cooling water expansion tank 24 is provided on the exit side. The cooling water flow meter 25 and the cooling water thermometer 26 monitor the flow rate and temperature of the cooling water flowing through the cooling water circulation conduit 22. If the cooling water thermometer 26 detects an abnormal temperature, a converter blowing emergency stop signal is issued. When the circulating cooling water in the cooling water circulation conduit 22 is discharged to the outside due to the repair of the skirt 2 or the like, the expansion tank make-up water valve 29 is opened by the signal from the water level gauge 27 of the cooling water expansion tank 24 to open the cooling water expansion tank. Add cooling water to 24.

【0015】スカート冷却装置21は、さらに熱交換器
31を備えている。熱交換器31の高温側流路32は、
冷却水膨脹タンク24とスカート循環ポンプ23との間
で、冷却水循環管路22に挿入されている。また、熱交
換器31の低温側流路33は、脱気器16の入側で上記
給水本管14に挿入されている。
The skirt cooling device 21 further includes a heat exchanger 31. The high temperature side passage 32 of the heat exchanger 31 is
It is inserted in the cooling water circulation line 22 between the cooling water expansion tank 24 and the skirt circulation pump 23. The low temperature side flow passage 33 of the heat exchanger 31 is inserted into the water supply main pipe 14 at the inlet side of the deaerator 16.

【0016】給水タンク12と熱交換器31の出側と
は、スカート温度調節管路35で連絡しており、スカー
ト温度調節管路35にはスカート温度調節弁36が取り
付けられている。給水本管14の流量計37およびスカ
ート温度調節管路35の流量計38の信号はスカート温
度コントローラ39に入力され、スカート温度調節弁3
6はコントローラ39からの操作信号によって開閉す
る。
The water supply tank 12 and the outlet side of the heat exchanger 31 are connected by a skirt temperature adjusting pipe 35, and a skirt temperature adjusting valve 36 is attached to the skirt temperature adjusting pipe 35. The signals from the flowmeter 37 of the water supply main 14 and the flowmeter 38 of the skirt temperature adjusting conduit 35 are input to the skirt temperature controller 39, and the skirt temperature adjusting valve 3
6 is opened and closed by an operation signal from the controller 39.

【0017】上記のように構成された熱回収装置におい
て、フード3および輻射冷却器4で発生した蒸気は、循
環管6を通ってボイラドラム7に供給される。ボイラド
ラム7の蒸気は、ボイラドラム圧力調節弁9を経て所要
の蒸気消費設備に供給される。ボイラドラム水位計41
および蒸気流量計42からの信号はボイラ水位コントロ
ーラ44に入力される。また、ボイラ給水ポンプ18の
出側の給水流量計43からの信号もボイラ水位コントロ
ーラ44に入力される。ボイラ水位コントローラ44か
らの操作信号に基づいてボイラ給水流量調節弁45が開
閉され、ボイラ給水ポンプ18により脱気器16から純
水がボイラドラム7に送られる。
In the heat recovery device constructed as described above, the steam generated in the hood 3 and the radiation cooler 4 is supplied to the boiler drum 7 through the circulation pipe 6. The steam of the boiler drum 7 is supplied to a required steam consuming facility via the boiler drum pressure control valve 9. Boiler drum water gauge 41
And the signal from the steam flow meter 42 is input to the boiler water level controller 44. A signal from the feed water flow meter 43 on the outlet side of the boiler feed pump 18 is also input to the boiler water level controller 44. The boiler feed water flow rate control valve 45 is opened and closed based on an operation signal from the boiler water level controller 44, and pure water is sent from the deaerator 16 to the boiler drum 7 by the boiler feed water pump 18.

【0018】脱気器16への給水は、脱気器水位計46
からの信号に基づいて、脱気器水位調節弁47を開閉し
て給水タンク12から純水を脱気器16に供給する。こ
のとき、給水タンク12からの純水は熱交換器31を通
過する際に、スカート循環水により加熱され、昇温され
て脱気器16に給水される。
The water supplied to the deaerator 16 is controlled by the deaerator water level gauge 46.
The deaerator water level control valve 47 is opened / closed based on the signal from to supply pure water from the water supply tank 12 to the deaerator 16. At this time, when the pure water from the water supply tank 12 passes through the heat exchanger 31, it is heated by the skirt circulation water, heated, and supplied to the deaerator 16.

【0019】スカート冷却装置21のスカート循環冷却
水は、冷却水膨張タンク26を経由して熱交換器31で
脱気器16に供給される純水により冷却されたのち、ス
カート循環ポンプ24によりスカート2へ再循環され
る。スカート循環冷却水はスカート2での加熱による温
度上昇に伴う容積膨張が、冷却水膨張タンク26で吸収
される。また、スカート出口の冷却水温度が飽和温度以
上となることを防止する。すなわち、スカート温度調節
弁36は、スカート循環冷却水温度を規定温度以下(飽
和温度未満)に冷却するために熱交換器31の低温側流
路33を通過する脱気器給水流量Qを制御する。
The skirt circulation cooling water of the skirt cooling device 21 is cooled by the pure water supplied to the deaerator 16 in the heat exchanger 31 via the cooling water expansion tank 26, and then the skirt circulation pump 24 skirts it. Recycled to 2. The volume expansion of the skirt circulation cooling water due to the temperature rise due to heating in the skirt 2 is absorbed by the cooling water expansion tank 26. It also prevents the temperature of the cooling water at the skirt outlet from exceeding the saturation temperature. That is, the skirt temperature control valve 36 controls the deaerator feed water flow rate Q passing through the low temperature side flow passage 33 of the heat exchanger 31 in order to cool the skirt circulation cooling water temperature to a specified temperature or lower (less than the saturation temperature). .

【0020】図2は、この発明の他の実施例を示してい
る。この実施例では、熱交換器31の低温側のスカート
温度調節管路35において、流量調節弁の代わりに流量
調節手段として、オリフィス51を使用している。脱気
器給水量の変化に応じて熱交換器31出側の圧力が変化
し、したがってオリフィス51前後の差圧も変化する。
この結果、スカート温度調節管路35の流量が変化し、
熱交換器低温側流路33の流量はほぼ所要の流量、つま
りスカート冷却水を所要の温度に保持する流量に保持さ
れる。
FIG. 2 shows another embodiment of the present invention. In this embodiment, in the skirt temperature adjusting conduit 35 on the low temperature side of the heat exchanger 31, the orifice 51 is used as a flow rate adjusting means instead of the flow rate adjusting valve. The pressure on the outlet side of the heat exchanger 31 changes according to the change in the water supply amount of the deaerator, and thus the differential pressure across the orifice 51 also changes.
As a result, the flow rate of the skirt temperature adjustment conduit 35 changes,
The flow rate of the heat exchanger low temperature side flow path 33 is maintained at a substantially required flow rate, that is, a flow rate that maintains the skirt cooling water at a required temperature.

【0021】ここで、図3を参照して熱回収制御方法に
ついて,さらに具体的に説明する。図3において、各符
号は次の状態および量をそれぞれ表している。 (A) 転炉定常状態 吹錬開始前のボイラドラム圧力
が、ドラム制御圧力の60%程度以上 (B) 非定常状態 吹錬開始前のボイラドラム圧力
が、ドラム制御圧力の30%程度以下 (C) 非定常状態 吹錬開始前のボイラドラム圧力
が、ドラム制御圧力の30%程度以下 (1) ボイラドラム圧力 (2) ボイラドラムからの蒸気発生流量 (3) ボイラ給水流量(実線)、脱気器給水流
量(点線) (4) スカート冷却水の冷却系統流量 (5) 熱交換器の合計通過流量 (6) スカート循環水のスカート出側温度
Here, the heat recovery control method will be described more specifically with reference to FIG. In FIG. 3, each symbol represents the next state and quantity. (A) Steady state of converter Boiler drum pressure before start of blowing is about 60% or more of drum control pressure (B) Unsteady state Boiler drum pressure before start of blowing is about 30% or less of drum control pressure ( C) Unsteady state Boiler drum pressure before the start of blowing is about 30% or less of the drum control pressure (1) Boiler drum pressure (2) Steam generation flow rate from boiler drum (3) Boiler feed water flow rate (solid line), degassing Air supply water flow rate (dotted line) (4) Cooling system flow rate of skirt cooling water (5) Total flow rate of heat exchanger (6) Skirt outlet temperature of skirt circulating water

【0022】図3(A)に転炉1が、定常運転状態のス
カート循環水の熱交換器31の出口温度と脱気器16へ
の給水流量との関係を示す。転炉1が連続操業している
場合、ボイラドラム7の圧力(図3の(1))は転炉1
の吹錬開始(a)後、時間遅れも少なくほとんど同時に
蒸気が発生し、規定圧力(Pset)に達する。図3の
(2)に示すように蒸気の発生によって、ボイラドラム
の水位が下がる。ボイラドラム水位計41からのボイラ
給水指令に基づき、ボイラドラム給水流量調節弁45が
開き、ボイラ給水ポンプ18により図3の(3)の実線
で示すようにボイラドラム7に送水が行われる。これと
ほぼ同時に、脱気器水位計46からの給水指令により脱
気器16への給水も、図3の(3)の点線で示すように
行われる。したがって、スカート循環冷却水も時間遅れ
がなく熱交換器31を介して冷却され、スカート循環冷
却水温度が図3の(6)に示すようにTestopの飽
和温度以上となることはなく、安定した運転が継続され
る。
FIG. 3 (A) shows the relationship between the outlet temperature of the skirt circulating water heat exchanger 31 in the steady state of the converter 1 and the flow rate of water supplied to the deaerator 16. When the converter 1 is continuously operating, the pressure of the boiler drum 7 ((1) in FIG. 3) is
After the start of blowing (a), steam is generated almost at the same time with little time delay and reaches the specified pressure (Pset). As shown in (2) of FIG. 3, the generation of steam lowers the water level of the boiler drum. Based on the boiler water supply command from the boiler drum water level gauge 41, the boiler drum water supply flow rate control valve 45 is opened, and the boiler water supply pump 18 supplies water to the boiler drum 7 as indicated by the solid line in (3) of FIG. 3. Almost at the same time, the water supply command from the deaerator water level gauge 46 also supplies water to the deaerator 16 as indicated by the dotted line (3) in FIG. 3. Therefore, the skirt circulation cooling water is also cooled through the heat exchanger 31 with no time delay, and the skirt circulation cooling water temperature does not exceed the saturation temperature of Testop as shown in (6) of FIG. 3 and is stable. Operation is continued.

【0023】しかし図3(B)に示すように、転炉1の
定修または長期間の休止後の操業の時は、フード3およ
び放射冷却器4が冷却されている。したがって、ボイラ
ドラム7の内部圧力(図3の(1)に示す)が低下し、
吹錬開始(a)後からボイラドラム7が蒸気発生の規定
圧力(Pset)に達するまで数分間を要する。この期
間は図3の(B)の(2)に示すように蒸気の発生がな
いため、図3の(B)の(3)に示す実線と点線のよう
にボイラドラム7および脱気器16への給水がなく、熱
交換器31の低温側流路33には純水が通水されないた
め、スカート循環冷却水は冷却されない。つまりボイラ
ドラム7へ給水が開始された後、更に脱気器16の水位
が下がり、脱気器水位計46による給水開始指令で、脱
気器給水流量制御弁47が開となるまでの数分間(約1
0分間程度)は、図3の(B)の(3)と(5)に記号
Txとして示すように熱交換器低温側流路33には純水
が通水されない。
However, as shown in FIG. 3 (B), the hood 3 and the radiation cooler 4 are cooled during the regular repair of the converter 1 or the operation after a long break. Therefore, the internal pressure of the boiler drum 7 (shown in (1) of FIG. 3) decreases,
It takes several minutes after the start of blowing (a) until the boiler drum 7 reaches the specified pressure (Pset) for steam generation. During this period, since steam is not generated as shown in (2) of FIG. 3 (B), the boiler drum 7 and the deaerator 16 are shown as shown by a solid line and a dotted line in (3) of FIG. 3 (B). Since no pure water is supplied to the low temperature side flow path 33 of the heat exchanger 31, the skirt circulation cooling water is not cooled. That is, after the water supply to the boiler drum 7 is started, the water level of the deaerator 16 further decreases, and a few minutes until the deaerator water supply flow rate control valve 47 is opened by the water supply start command from the deaerator water level gauge 46. (About 1
For about 0 minutes), pure water is not passed through the heat exchanger low temperature side passage 33 as indicated by the symbol Tx in (3) and (5) of FIG. 3B.

【0024】一方、この間もスカート2へは転炉1の吹
錬による入熱により、スカート循環冷却水温度は図3の
(B)の(6)に示すようにTestopの飽和温度以
上まで上昇し、スカート2の水管の熱損傷に至ることに
なるため、転炉1の吹錬非常停止が必要になることにな
る。
On the other hand, during this period, heat input to the skirt 2 by blowing of the converter 1 causes the temperature of the skirt circulation cooling water to rise above the saturation temperature of Testop as shown in (6) of FIG. 3 (B). Since the water pipe of the skirt 2 will be damaged by heat, the blower emergency stop of the converter 1 is required.

【0025】そこで、上記の問題を解決するために、ス
カート出側で循環冷却水温度が、飽和温度以上になるの
を防止する方法として、図3(C)の(4)と(5)に
示すように、熱交換器31の低温側流路33の流量をQ
tとして脱気器16への給水流量(Qb)とスカート温
度調節管路35の流量(Qes)をスカート温度コント
ローラ39によりQt=Qb+Qesとして制御し、 熱交換器31の低温側流路33の設計流量Qhe(ス
カート循環冷却水温度が所要の温度以下となる流量)と
したとき、Qt(=Qb)<Qheの場合はスカート温
度調節弁36を開き、図3の(C)の(4)に示すよう
に熱交換器31の低温側流路33の合計通過冷却流量
(Qt=Qb+Qes)を設計流量Qheとする。この
結果、熱交換器31の高温側流路32を流れるスカート
循環冷却水は低温側流路33を流れる純水により冷却さ
れ、スカート出側の循環冷却水温度は所要の温度以下に
保持される。熱交換器31を通過する給水流量Qtは、
転炉吹錬の経過と共に、ボイラドラム7からの蒸気発生
(図3の(B)の(2)に示す)により、ボイラドラム
水位計41の指令により、ボイラ給水ポンプ18で脱気
器16からボイラへ給水が図3の(B)の(3)の実線
と点線に示すように開始される。したがって、流量Qb
の比率が徐々に増加していくので、図3の(C)に示す
ように流量Qtを一定として制御すると、スカート温度
調節流路の流量Qesは、規定流量(Qhe)に達した
後は、上記の理由からQb>Qheとなるため、スカー
ト温度調節弁36を徐々に閉じて、スカート循環冷却水
を冷却する。この結果、安定してスカート出口の循環冷
却水温度を飽和温度以下に制御するとともにスカート2
の水管の損傷を防止することができるとともに、転炉非
常停止の事態の発生を回避することが可能となる。
Therefore, in order to solve the above problem, as a method of preventing the circulating cooling water temperature from becoming higher than the saturation temperature on the skirt outlet side, the methods shown in (4) and (5) of FIG. As shown, the flow rate of the low temperature side flow path 33 of the heat exchanger 31 is set to Q
As t, the flow rate (Qb) of water supplied to the deaerator 16 and the flow rate (Qes) of the skirt temperature adjusting conduit 35 are controlled by the skirt temperature controller 39 as Qt = Qb + Qes, and the low temperature side flow path 33 of the heat exchanger 31 is designed. If the flow rate is Qhe (flow rate at which the skirt circulation cooling water temperature becomes equal to or lower than the required temperature), and Qt (= Qb) <Qhe, the skirt temperature control valve 36 is opened, and (4) in FIG. As shown, the total passage cooling flow rate (Qt = Qb + Qes) of the low temperature side flow path 33 of the heat exchanger 31 is set as the design flow rate Qhe. As a result, the skirt circulation cooling water flowing in the high temperature side passage 32 of the heat exchanger 31 is cooled by the pure water flowing in the low temperature side passage 33, and the circulating cooling water temperature on the skirt outlet side is maintained at a required temperature or lower. . The feed water flow rate Qt passing through the heat exchanger 31 is
With the progress of the blowing of the converter, steam is generated from the boiler drum 7 (shown in (2) of (B) of FIG. 3), and the boiler feed water pump 18 outputs the deaerator 16 from the deaerator 16 according to a command from the boiler drum level gauge 41. Water supply to the boiler is started as shown by a solid line and a dotted line in (3) of FIG. Therefore, the flow rate Qb
Since the ratio of the flow rate Qs gradually increases, if the flow rate Qt is controlled to be constant as shown in FIG. 3C, the flow rate Qes of the skirt temperature control passage will reach the specified flow rate (Qhe). Since Qb> Qhe for the above reason, the skirt temperature control valve 36 is gradually closed to cool the skirt circulation cooling water. As a result, the temperature of the circulating cooling water at the skirt outlet is stably controlled to be equal to or lower than the saturation temperature, and the skirt 2
It is possible to prevent the water pipe from being damaged and prevent the occurrence of an emergency shutdown of the converter.

【0026】上記の制御において、Qt(=Qb+Q
es)=Qheとし、熱交換器低温側流路33の流量を
常時一定値とする連続した制御方法と、スカート温度調
節管路の流量Qesを一定値とし、Qb>Qheが成立
した時に、流量Qesを零とするON/OFF制御方法
がある。しかし、スカート出側の循環冷却水からの熱回
収効率は、給水タンク12に温水として回収されること
からほとんど差がないため、いずれの方法で制御しても
よい。
In the above control, Qt (= Qb + Q
es) = Qhe, a continuous control method in which the flow rate of the heat exchanger low temperature side flow path 33 is always a constant value, and the flow rate Qes of the skirt temperature adjustment conduit is a constant value, and when Qb> Qhe is satisfied, the flow rate is There is an ON / OFF control method that makes Qes zero. However, the efficiency of heat recovery from the circulating cooling water on the skirt exit side is almost the same as it is recovered as hot water in the water supply tank 12, and therefore may be controlled by any method.

【0027】また、上記のスカート温度調節弁36を
固定のオリフィス51として常時規定流量の冷却水を通
水し、スカート循環冷却水温度の上昇を防止する方法を
採用することも可能である。この場合、脱気器ポンプ1
3は通常連続運転されており、冷却水はオリフィス51
から給水タンク12へ常時ほぼ一定流量で戻る。
It is also possible to employ a method in which the skirt temperature control valve 36 is used as a fixed orifice 51 to constantly pass a specified amount of cooling water to prevent the skirt circulation cooling water temperature from rising. In this case, the deaerator pump 1
3 is normally operated continuously, and cooling water is supplied to the orifice 51.
To the water supply tank 12 at a constant flow rate.

【0028】表1に具体例を示す。Table 1 shows specific examples.

【表1】 [Table 1]

【0029】[0029]

【発明の効果】スカート冷却温度制御調節弁系統を持つ
ことで、安定してスカート排水温度を飽和温度以下に制
御すると共に、スカート排温水から排熱回収を行うため
に、水−水熱交換器によりボイラ給水予熱を行うことに
より、ボイラ給水(脱気器補給水)予熱用の蒸気使用量
を低減して、排ガスの顕熱を効果的に回収することがで
きると共に次のような効果がある。
By having the skirt cooling temperature control valve system, the skirt drainage temperature can be stably controlled to be equal to or lower than the saturation temperature, and the waste heat can be recovered from the skirt drain hot water. By preheating the boiler feed water by using the above, the amount of steam used for preheating the boiler feed water (deaerator makeup water) can be reduced, and the sensible heat of the exhaust gas can be effectively recovered and has the following effects. .

【0030】ボイラの状態に関係なく、安定してスカ
ート出口温度を飽和温度以下に制御できる。 スカート出口温度を、飽和温度以下に制御するため
に、循環水の大気蒸発が抑制され補給水を低減できる。 スカート循環系保有水の温度上昇だけを考えた膨張タ
ンク(1〜1.5m3 )容量でよいためタンク容量も小
型化できるため設備費が極めて安価である。
The skirt outlet temperature can be stably controlled to be equal to or lower than the saturation temperature regardless of the state of the boiler. Since the skirt outlet temperature is controlled to be equal to or lower than the saturation temperature, the atmospheric evaporation of the circulating water is suppressed and the makeup water can be reduced. The capacity of the expansion tank (1 to 1.5 m 3 ) that only considers the temperature rise of the skirt circulation system-owned water is sufficient, so the tank capacity can be reduced, and the facility cost is extremely low.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の熱回収装置の一例を示す装置構成図
である。
FIG. 1 is a device configuration diagram showing an example of a heat recovery device of the present invention.

【図2】この発明の熱回収装置のたの例を示す装置構成
図である。
FIG. 2 is a device configuration diagram showing another example of the heat recovery device of the present invention.

【図3】図1に示す熱回収装置による運転状態を示す線
図である。
FIG. 3 is a diagram showing an operating state of the heat recovery device shown in FIG.

【符号の説明】[Explanation of symbols]

1 転炉 2 スカート 3 フード 4 輻射冷却器 7 ボイラドラム 8 ボイラ循環ポンプ 12 給水タンク 13 脱気器給水ポンプ 14 給水本管 16 脱気器 18 ボイラ給水ポンプ 21 スカート冷却装置 22 スカート冷却水循環管路 23 スカート循環ポンプ 24 冷却水膨脹タンク 25 循環冷却水流量計 26 循環冷却水温度計 27 冷却水膨脹タンク水位計 31 熱交換器 35 スカート温度調節管路 36 スカート温度調節弁 39 スカート温度コントローラ 41 ボイラドラム水位計 42 蒸気流量計 43 給水流量計 44 ボイラドラム水位コントローラ 45 ボイラ給水流量調節弁 46 脱気器水位計 47 脱気器給水流量調節弁 51 オリフィス Pset ボイラドラムの制御圧力設定値 Qes スカート冷却水の冷却系統の流量 Qhe 熱交換器の合計通過流量 Testop スカート排水温度高時の転炉吹錬非常停
止温度設定値 a 転炉吹錬開始信号 b 転炉吹錬終了信号 Tx スカート循環水の非冷却時間帯
1 Converter 2 Skirt 3 Hood 4 Radiant Cooler 7 Boiler Drum 8 Boiler Circulation Pump 12 Water Supply Tank 13 Deaerator Water Supply Pump 14 Water Supply Main 16 Deaerator 18 Boiler Water Supply Pump 21 Skirt Cooling Device 22 Skirt Cooling Water Circulation Pipeline 23 Skirt circulation pump 24 Cooling water expansion tank 25 Circulating cooling water flow meter 26 Circulating cooling water thermometer 27 Cooling water expansion tank water level gauge 31 Heat exchanger 35 Skirt temperature control pipe 36 Skirt temperature control valve 39 Skirt temperature controller 41 Boiler drum water level 42 Steam flow meter 43 Feed water flow meter 44 Boiler drum water level controller 45 Boiler feed water flow rate control valve 46 Deaerator water level gauge 47 Deaerator feed water flow rate control valve 51 Orifice Pset Boiler drum control pressure set value Qes Skirt cooling of cooling water Flow rate of system Qhe Total flow rate through Testop skirt drainage temperature high during converter blowing emergency stop temperature setpoint a converter blowing start signal b converter blowing end signal Tx skirt uncooled time zone of the circulating water in the exchanger

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年12月17日[Submission date] December 17, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】スカート冷却装置21のスカート循環冷却
水は、冷却水膨張タンク24を経由して熱交換器31で
脱気器16に供給される純水により冷却されたのち、ス
カート循環ポンプ23によりスカート2へ再循環され
る。スカート循環冷却水はスカート2での加熱による温
度上昇に伴う容積膨張が、冷却水膨張タンク24で吸収
される。また、スカート出口の冷却水温度が飽和温度以
上となることを防止する。すなわち、スカート温度調節
弁36は、スカート循環冷却水温度を規定温度以下(飽
和温度未満)に冷却するために熱交換器31の低温側流
路33を通過する脱気器給水流量Qを制御する。
The skirt circulation cooling water of the skirt cooling device 21 is cooled by the pure water supplied to the deaerator 16 in the heat exchanger 31 via the cooling water expansion tank 24, and then the skirt circulation pump 23 skirts it. Recycled to 2. The volume expansion of the skirt circulation cooling water due to the temperature rise due to heating in the skirt 2 is absorbed by the cooling water expansion tank 24 . It also prevents the temperature of the cooling water at the skirt outlet from exceeding the saturation temperature. That is, the skirt temperature control valve 36 controls the deaerator feed water flow rate Q passing through the low temperature side flow passage 33 of the heat exchanger 31 in order to cool the skirt circulation cooling water temperature to a specified temperature or lower (less than the saturation temperature). .

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Name of item to be corrected] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0022】図3(A)に転炉1が、定常運転状態のス
カート循環水の熱交換器31の出口温度と脱気器16へ
の給水流量との関係を示す。転炉1が連続操業している
場合、ボイラドラム7の圧力(図3の(A)の(1))
は転炉1の吹錬開始(a)後、時間遅れも少なくほとん
ど同時に蒸気が発生し、規定圧力(Pset)に達す
る。図3の(A)の(2)に示すように蒸気の発生によ
って、ボイラドラムの水位が下がる。ボイラドラム水位
計41からのボイラ給水指令に基づき、ボイラドラム給
水流量調節弁45が開き、ボイラ給水ポンプ18により
図3の(A)の(3)の実線で示すようにボイラドラム
7に送水が行われる。これとほぼ同時に、脱気器水位計
46からの給水指令により脱気器16への給水も、図3
の(A)の(3)の点線で示すように行われる。したが
って、スカート循環冷却水も時間遅れがなく熱交換器3
1を介して冷却され、スカート循環冷却水温度が図3の
(A)の(6)に示すようにTestopの飽和温度以
上となることはなく、安定した運転が継続される。
FIG. 3 (A) shows the relationship between the outlet temperature of the skirt circulating water heat exchanger 31 in the steady state of the converter 1 and the flow rate of water supplied to the deaerator 16. When the converter 1 is operating continuously, the pressure of the boiler drum 7 ((1 ) in (A) of FIG. 3 )
After the start of blowing (a) of the converter 1, the steam is generated almost at the same time with little time delay and reaches the specified pressure (Pset). As shown in (2) of (A) of FIG. 3, the generation of steam lowers the water level of the boiler drum. Based on the boiler water supply command from the boiler drum water level gauge 41, the boiler drum water supply flow rate control valve 45 is opened, and the boiler water supply pump 18 is used.
Water is supplied to the boiler drum 7 as indicated by the solid line in (3) of FIG. At about the same time, the water supply to the deaerator 16 by the water supply command from the deaerator water level gauge 46 is also shown in FIG.
(A) (3) as indicated by the dotted line. Therefore, the skirt circulation cooling water also has no time delay and the heat exchanger 3
1, the skirt circulation cooling water temperature is as shown in FIG.
As shown in (6) of (A), the temperature does not exceed the saturation temperature of Testop, and stable operation is continued.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Name of item to be corrected] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0023】しかし図3(B)に示すように、転炉1の
定修または長期間の休止後の操業の時は、フード3およ
び放射冷却器4が冷却されている。したがって、ボイラ
ドラム7の内部圧力(図3の(B)の(1)に示す)が
低下し、吹錬開始(a)後からボイラドラム7が蒸気発
生の規定圧力(Pset)に達するまで数分間を要す
る。この期間は図3の(B)の(2)に示すように蒸気
の発生がないため、図3の(B)の(3)に示す実線と
点線のようにボイラドラム7および脱気器16への給水
がなく、熱交換器31の低温側流路33には純水が通水
されないため、スカート循環冷却水は冷却されない。つ
まりボイラドラム7へ給水が開始された後、更に脱気器
16の水位が下がり、脱気器水位計46による給水開始
指令で、脱気器給水流量制御弁47が開となるまでの数
分間(約10分間程度)は、図3の(B)の(3)と
(5)に記号Txとして示すように熱交換器低温側流路
33には純水が通水されない。
However, as shown in FIG. 3 (B), the hood 3 and the radiation cooler 4 are cooled during the regular repair of the converter 1 or the operation after a long break. Therefore, the internal pressure of the boiler drum 7 ( shown in (1) of FIG. 3 (B) ) decreases, and after the start of blowing (a), the boiler drum 7 reaches a specified pressure (Pset) for steam generation. It takes a minute. During this period, since steam is not generated as shown in (2) of FIG. 3 (B), the boiler drum 7 and the deaerator 16 are shown as shown by a solid line and a dotted line in (3) of FIG. 3 (B). Since no pure water is supplied to the low temperature side flow path 33 of the heat exchanger 31, the skirt circulation cooling water is not cooled. That is, after the water supply to the boiler drum 7 is started, the water level of the deaerator 16 further decreases, and a few minutes until the deaerator water supply flow rate control valve 47 is opened by the water supply start command from the deaerator water level gauge 46. For (for about 10 minutes), pure water is not passed through the heat exchanger low temperature side passage 33 as indicated by the symbol Tx in (3) and (5) of FIG. 3B.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 転炉の炉口を覆うスカートを冷却する冷
却水循環管路をもったスカート冷却装置、冷却水管を備
えたフードおよび輻射冷却器、フードおよび輻射冷却器
の冷却水管に接続されたボイラドラム、ボイラドラムに
接続された脱気器、ならびに脱気器に接続された給水タ
ンクを備えた転炉の熱回収装置において、高温側流路が
前記冷却水循環管路に、また低温側流路が前記給水タン
クと脱気器とを連絡する管路にそれぞれ挿入された熱交
換器、熱交換器の入側で前記冷却水循環管路に設けられ
た冷却水膨脹タンク、および前記給水タンクと熱交換器
低温側の出口とを連絡するスカート温度調節管路に設け
られた流量調節装置を備えたことを特徴とする転炉の熱
回収装置。
1. A skirt cooling device having a cooling water circulation pipe for cooling a skirt covering a furnace opening of a converter, a hood and a radiant cooler provided with a cooling water pipe, and a cooling water pipe of the hood and the radiant cooler. In a heat recovery device of a converter equipped with a boiler drum, a deaerator connected to the boiler drum, and a water supply tank connected to the deaerator, a high temperature side flow path is provided in the cooling water circulation pipeline, and a low temperature side flow Heat exchangers each having a passage inserted into a pipe connecting the water supply tank and the deaerator, a cooling water expansion tank provided in the cooling water circulation pipe at the inlet side of the heat exchanger, and the water supply tank. A heat recovery device for a converter, comprising a flow rate adjusting device provided in a skirt temperature adjusting pipe line which communicates with an outlet on a low temperature side of the heat exchanger.
【請求項2】 請求項1記載の熱回収装置で、脱気器給
水量に基づいて前記スカート温度調節管路の流量を調節
し、前記熱交換器の低温側流量を所要のスカート温度と
なる流量に保持することを特徴とする転炉の熱回収制御
方法。
2. The heat recovery device according to claim 1, wherein the flow rate of the skirt temperature adjusting pipe is adjusted based on the water supply amount of the deaerator, and the low temperature side flow rate of the heat exchanger reaches a required skirt temperature. A heat recovery control method for a converter characterized by maintaining the flow rate.
【請求項3】 請求項1記載の熱回収装置で、Qb(脱
気器給水流量)<Qhe(所要のスカート温度となる、
前記熱交換器の低温側流量)のときは、熱交換器低温側
流量をQb(脱気器給水流量)+Qes(スカート温度
調節管路流量)とし、Qb>Qheとなった時点以降
は、Qes=零とすることを特徴とする転炉の熱回収制
御方法。
3. The heat recovery device according to claim 1, wherein Qb (deaerator feed water flow rate) <Qhe (required skirt temperature,
When the flow rate on the low temperature side of the heat exchanger is Qb, the flow rate on the low temperature side of the heat exchanger is Qb (deaerator feed water flow rate) + Qes (skirt temperature control pipe flow rate), and after Qb> Qhe, Qes = 0, a method for controlling heat recovery in a converter.
【請求項4】 請求項1記載の熱回収装置で、スカート
温度調節管路を所定の開度に絞り、絞られたスカート温
度調節管路の流量をQesoとしたときに、脱気器給水
流量Qbにかかわらず熱交換器低温側流量をQeso+
Qbとして制御することを特徴とする転炉の熱回収制御
方法。
4. The heat recovery apparatus according to claim 1, wherein when the skirt temperature adjusting pipeline is narrowed to a predetermined opening and the flow rate of the narrowed skirt temperature adjusting pipeline is Qeso, the deaerator feed water flow rate. Regardless of Qb, heat exchanger low temperature side flow rate is Qeso +
A heat recovery control method for a converter characterized by controlling as Qb.
JP5259820A 1993-10-18 1993-10-18 Device for recovering heat in converter and control method thereof Withdrawn JPH07113110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5259820A JPH07113110A (en) 1993-10-18 1993-10-18 Device for recovering heat in converter and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5259820A JPH07113110A (en) 1993-10-18 1993-10-18 Device for recovering heat in converter and control method thereof

Publications (1)

Publication Number Publication Date
JPH07113110A true JPH07113110A (en) 1995-05-02

Family

ID=17339452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5259820A Withdrawn JPH07113110A (en) 1993-10-18 1993-10-18 Device for recovering heat in converter and control method thereof

Country Status (1)

Country Link
JP (1) JPH07113110A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048528A (en) * 2008-08-25 2010-03-04 Sumitomo Metal Ind Ltd Control method of melting furnace
KR100966122B1 (en) * 2008-05-28 2010-06-25 주식회사 엘지화학 Method for recovering heat quantity of Naphtha Cracking Center
CN103032918A (en) * 2012-11-06 2013-04-10 李保明 Heat exchange unit of heat supply system
CN106705013A (en) * 2017-02-08 2017-05-24 中冶华天工程技术有限公司 Electric furnace flue gas waste heat utilization system based on multi-pressure mode
CN106839790A (en) * 2017-02-08 2017-06-13 中冶华天工程技术有限公司 A kind of electric converter gas afterheat generating system
CN106839791A (en) * 2017-02-08 2017-06-13 中冶华天工程技术有限公司 Electric furnace flue gas waste heat Optimum utilization system based on many die pressing types
CN106855363A (en) * 2017-02-08 2017-06-16 中冶华天工程技术有限公司 Electric converter gas afterheat utilizing system based on many die pressing types
CN108344304A (en) * 2018-03-27 2018-07-31 中国恩菲工程技术有限公司 Metallurgy skirt shade assembly and the smelting system with it
KR20190044931A (en) * 2017-10-23 2019-05-02 주식회사 포스코 skirt device for converter
WO2024000751A1 (en) * 2022-07-01 2024-01-04 中冶南方工程技术有限公司 System and method for preventing converter from dry burning during evaporative cooling and blowdown

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100966122B1 (en) * 2008-05-28 2010-06-25 주식회사 엘지화학 Method for recovering heat quantity of Naphtha Cracking Center
JP2010048528A (en) * 2008-08-25 2010-03-04 Sumitomo Metal Ind Ltd Control method of melting furnace
CN103032918A (en) * 2012-11-06 2013-04-10 李保明 Heat exchange unit of heat supply system
CN106855363A (en) * 2017-02-08 2017-06-16 中冶华天工程技术有限公司 Electric converter gas afterheat utilizing system based on many die pressing types
CN106839790A (en) * 2017-02-08 2017-06-13 中冶华天工程技术有限公司 A kind of electric converter gas afterheat generating system
CN106839791A (en) * 2017-02-08 2017-06-13 中冶华天工程技术有限公司 Electric furnace flue gas waste heat Optimum utilization system based on many die pressing types
CN106705013A (en) * 2017-02-08 2017-05-24 中冶华天工程技术有限公司 Electric furnace flue gas waste heat utilization system based on multi-pressure mode
CN106855363B (en) * 2017-02-08 2019-02-19 中冶华天工程技术有限公司 Electric converter gas afterheat utilizing system based on multiple pressure mode
CN106839790B (en) * 2017-02-08 2020-01-10 中冶华天工程技术有限公司 Electricity converter flue gas waste heat power generation system
KR20190044931A (en) * 2017-10-23 2019-05-02 주식회사 포스코 skirt device for converter
CN108344304A (en) * 2018-03-27 2018-07-31 中国恩菲工程技术有限公司 Metallurgy skirt shade assembly and the smelting system with it
CN108344304B (en) * 2018-03-27 2023-08-25 中国恩菲工程技术有限公司 Skirt cover component for metallurgy and smelting system with skirt cover component
WO2024000751A1 (en) * 2022-07-01 2024-01-04 中冶南方工程技术有限公司 System and method for preventing converter from dry burning during evaporative cooling and blowdown

Similar Documents

Publication Publication Date Title
US4099019A (en) Electric furnace waste heat recovery method and apparatus
JPH07113110A (en) Device for recovering heat in converter and control method thereof
JPH11173161A (en) Gas turbine-intake cooling system
JPH09250730A (en) Cooler for screw conveyor
EP2993398B1 (en) Flue-gas treatment apparatus and its method of operation
JP2506277B2 (en) Feedwater preheating system for converter boiler
JP2002005401A (en) Waste heat recovery system for refuse disposal plant
JP2000028102A (en) Auxiliary steam control method in boiler for thermal electric power generation
JP2016005830A (en) Flue gas treatment apparatus, and operational method of flue gas treatment apparatus
JP3782609B2 (en) High-pressure steam condensate system for heat recovery equipment attached to waste treatment equipment
KR200278294Y1 (en) Waste heat air supply device for hot stove
JPH07167401A (en) Double pressure type waste heat recovery boiler water supplying apparatus
JP7408369B2 (en) Heat utilization system and its operation stop method
JPH05105927A (en) Device for circulating cooling water in molten iron pre-treating device
JP3422735B2 (en) Cooling water supply device
JPH04332302A (en) Control method for heat collecting device
JP3028897B2 (en) Exhaust gas treatment equipment
JPS61235685A (en) Temperature control device in waste heat retrieving device for thermal plant
JPS60248945A (en) Hot water supplying device
JP3042058B2 (en) Water heater
JPH04327701A (en) Steam generator
JP2022182249A (en) Boiler forced cooling method
JPH0783403A (en) Exhaust gas boiler
JP2001021273A (en) Method for leveling load in high pressure steam condensor of waste processing facility and device for leveling load
JP3067053B2 (en) Condenser

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001226