JPS6024168B2 - Aluminum alloy for casting with high iron content - Google Patents

Aluminum alloy for casting with high iron content

Info

Publication number
JPS6024168B2
JPS6024168B2 JP2619879A JP2619879A JPS6024168B2 JP S6024168 B2 JPS6024168 B2 JP S6024168B2 JP 2619879 A JP2619879 A JP 2619879A JP 2619879 A JP2619879 A JP 2619879A JP S6024168 B2 JPS6024168 B2 JP S6024168B2
Authority
JP
Japan
Prior art keywords
alloy
iron content
iron
alloys
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2619879A
Other languages
Japanese (ja)
Other versions
JPS55119147A (en
Inventor
忠男 井藤
昭男 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Research Laboratory Ltd
Original Assignee
Nippon Light Metal Research Laboratory Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Research Laboratory Ltd filed Critical Nippon Light Metal Research Laboratory Ltd
Priority to JP2619879A priority Critical patent/JPS6024168B2/en
Publication of JPS55119147A publication Critical patent/JPS55119147A/en
Publication of JPS6024168B2 publication Critical patent/JPS6024168B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は返り村又は返り材を主体として配合された二次
合金地金の如き鉄含有量の多い鋳造用Aそ−Si−Cu
系合金またはA夕−Si−Cu−Mg系合金において強
鞠性が改善され且つ耐熱衝撃性の如きにおいても良好な
合金を経済的に提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for casting A-Si-Cu with a high iron content, such as a secondary alloy ingot mainly composed of returned material or returned material.
The purpose of the present invention is to economically provide alloys with improved toughness and good thermal shock resistance in A-based alloys or A-Si-Cu-Mg based alloys.

JIS規格AC2A、AC波、ACので代表されるAそ
‐Si−Cu系合金、AC狐,AC班で代表されるA〆
−Si−Cu−Mg系合金は鋳造性よく熱処理を施すこ
とによって優れた強度および靭性が得られるところから
自動車、船舶等のエンジン廻り部品、保安部品その他の
機械部品鋳物用の合金として幅広く用いられている。
JIS standard AC2A, AC wave, A-Si-Cu alloy represented by AC, A〆-Si-Cu-Mg alloy represented by AC fox, AC group have excellent castability by heat treatment. Because of its high strength and toughness, it is widely used as an alloy for casting engine parts, safety parts, and other machine parts for automobiles, ships, etc.

しかし乍ら、この系の合金において鉄含有量が多くなる
と急激に鋳物の強度および籾性が低下し、上記したよう
な目的に使用することができない。
However, when the iron content increases in this type of alloy, the strength and rice grain properties of the cast material decrease rapidly, making it impossible to use it for the above-mentioned purposes.

即ち第1図はAそ−7%Si−2.5%Cu(ACが相
当)合金鋳物における鉄含有量と機械的性質との関係を
例示したものであって、鉄含有量が0.2%以下では引
張強度35k9/桝以上、伸び5%以上あったものが鉄
含有量0.5%附近となると急激に強度、伸びが減少し
殊に0.7%附近になると引張強度30kg/嫌以下、
伸び2%以下と著しく強靭性が低下するものであり、本
発明者らの研究によれば、この関係は上記組成の合金に
とゞまらず、あらゆる組成のAそ−Si−Cu系合金、
A夕−Sj−Cu−Mg系合金に共通した頚向を認め得
るものであることが確認されている。ところで、一般に
鋳物工場においては、資源および経費節約の見地から、
返り材または返り材を主体として配合された二次合金地
金が大量に使用されるが、この場合返り材または二次合
金地金中には多量の鉄が混入しているのが常であり、こ
のため上記したような事情から鋳物工場においてはこの
系の合金を前述したような目的、殊に厳格に強度および
鯛性を要求される自動車、船舶等のエンジン廻り部品に
用いる場合に不純物としての鉄含有量を0.4%以下の
可及的僅少量に調整する必要があり、このための合金配
合操作は極めてわずらわしい問題であった。
That is, Figure 1 illustrates the relationship between iron content and mechanical properties in A-7%Si-2.5%Cu (corresponding to AC) alloy castings, where the iron content is 0.2%. %, the tensile strength is 35k9/m or more and the elongation is 5% or more, but when the iron content approaches 0.5%, the strength and elongation decrease rapidly, and especially when the iron content approaches 0.7%, the tensile strength decreases to 30kg/m2. below,
The elongation is 2% or less, which significantly reduces the toughness.According to the research of the present inventors, this relationship is not limited to alloys with the above composition, but also applies to A-Si-Cu alloys of all compositions. ,
It has been confirmed that the neck orientation common to A-Sj-Cu-Mg alloys can be recognized. By the way, generally in foundries, from the viewpoint of resource and cost saving,
A large amount of returned material or secondary alloy ingots containing mainly returned material is used, but in this case, a large amount of iron is usually mixed in the returned material or secondary alloy ingots. Therefore, due to the above-mentioned circumstances, when this type of alloy is used for the above-mentioned purposes, especially in engine parts for automobiles, ships, etc., which require strict strength and toughness, foundries are using it as impurities. It is necessary to adjust the iron content to the lowest possible amount of 0.4% or less, and the alloy blending operation for this purpose has been an extremely troublesome problem.

本発明はこのような実情に鑑み検討を重ねて創案された
もであって、本発明者らはAそ−Si−Cu系またはA
そ−Si−Cu−Mg系合金における鉄量増大による強
靭性低下の原因について研究の結果、これらの系の合金
においては鉄含有量が0.5%附近となると鉄が合金成
分中のアルミニウム、珪素等と反応して生ずる針状のA
そ−Fe−Si化合物が急速に増加すると共に粗大化し
、このAそ−Fe−Si化合物は極めて脆硬であるため
にこれが合金の強度、伸びを著しく低下することが判明
した。
The present invention was devised after repeated studies in view of the above circumstances, and the present inventors have developed an A-Si-Cu system or an A-Si-Cu system
As a result of research into the cause of the decrease in toughness due to an increase in the amount of iron in Si-Cu-Mg alloys, it was found that when the iron content in these alloys approaches 0.5%, the iron becomes more concentrated than the aluminum in the alloy component. Acicular A produced by reaction with silicon etc.
It has been found that the A-Fe-Si compound rapidly increases and becomes coarse, and since this A-Fe-Si compound is extremely brittle, this significantly reduces the strength and elongation of the alloy.

そこで本発明者らはさらに研究を重ねた結果、約0.6
%以上鉄を含有する合金において適量のマンガン、アン
チモンを複合添加するときは母相中に晶出したA〆−F
e−Si化合物の形態は大きく変化し、球状乃至粒状の
形態をもった微細化合物として分散化すること、またこ
れと共に合金の強度、伸びは著しく改善されることを見
出した。
As a result of further research, the inventors found that approximately 0.6
When adding an appropriate amount of manganese and antimony to an alloy containing more than % iron, A〆-F crystallizes in the matrix.
It has been found that the morphology of the e-Si compound changes greatly and is dispersed as a fine compound having a spherical to granular morphology, and that the strength and elongation of the alloy are significantly improved.

蓋し第2図aおよびbは本発明者らの行なった上記した
ような実験結果を示すものであってaは不純物として鉄
1.1%を含むA夕−8%Si−2.5%Cu(ACの
相当)合金について、またbは同上合金にマンガン0.
7%とアンチモン0.8%を添加した本発明範囲内合金
についてそれぞれの顕微鏡組織を示すものである。即ち
これらの顕微鏡組織より明らかなように、第2図aにお
いては多量の針状A〆−Fe−Si化合物が晶出してい
るのに対し、bにおいては殆んど針状化合物は無くこれ
らの化合物が微細球状化していることが判る。本発明合
金の上記した効果はFe含有量の比較的高いものにおい
てマンガンおよびアンチモンの複合添加によって始めて
得られるものであって、アンチモンまたはマンガンをそ
れぞれ単独に添加してもこのような効果は得られない。
本発明は上記したような発見に基いてなされたもであっ
て、重量で4.0%を超え13.0%までの珪素、2.
5%を超え4.5%までの銅、0.6%を超え1.5%
までのマンガンおよび0.2%を超え1.0%までのア
ンチモンを含み、0.30%までのチタンを含みまたは
含まず、且つ不純物または有意含有元素として1.5%
までのマグネシウムおよび0.6%を超え1.2%まで
の鉄を含み、残部アルミニウムおよび上記元素以外の下
可避的不純物よりなる鋳造用アルミニウム合金を提案す
るものである。
Figures 2a and 2b show the results of the above-mentioned experiments conducted by the present inventors; For the Cu (equivalent to AC) alloy, b is the same as above alloy with 0.0% manganese.
7% and 0.8% of antimony within the range of the present invention are shown respectively. That is, as is clear from these microscopic structures, in Fig. 2a, a large amount of acicular A-Fe-Si compounds are crystallized, whereas in b, there are almost no acicular compounds, and these compounds are It can be seen that the compound is formed into fine spherules. The above-mentioned effects of the alloy of the present invention can only be obtained by the combined addition of manganese and antimony in alloys with a relatively high Fe content, and such effects cannot be obtained by adding antimony or manganese alone. do not have.
The present invention was made based on the above-mentioned discovery, and includes silicon containing more than 4.0% and up to 13.0% by weight; 2.
More than 5% up to 4.5% copper, more than 0.6% up to 1.5%
up to manganese and more than 0.2% up to 1.0% antimony, with or without up to 0.30% titanium, and 1.5% as impurities or significant elements
The present invention proposes an aluminum alloy for casting comprising up to 0.6% up to 1.2% of magnesium and over 0.6% up to 1.2% iron, with the remainder consisting of aluminum and unavoidable impurities other than the above-mentioned elements.

本発明によるときは、合金中の鉄含有量が著しく多いに
拘らず合金の強靭性が著しく改善されるので鋳物工場に
おいて鉄含有量の特に多い返り材、二次合金地金を用い
る場合において合金配合を行うに際して何等鉄分調整に
意を払う必要がないし、また上述したような合金中への
鉄の含有は該合金の耐熱特性、殊に耐熱衝撃性を改善す
る効果を有し、従って鉄を意識的に配合することも可能
である。
According to the present invention, the toughness of the alloy is significantly improved even though the iron content in the alloy is extremely high. There is no need to pay any attention to iron content adjustment when blending, and the inclusion of iron in the alloy as described above has the effect of improving the heat resistance properties, especially the thermal shock resistance, of the alloy. It is also possible to intentionally mix them.

次に本発明合金における各合金成分組成の限定理由につ
いて説明すると以下の通りである。
Next, the reason for limiting the composition of each alloy component in the alloy of the present invention will be explained as follows.

4.0%を超え13.0%までの珪素、2.5%を超え
4.5%までの銅、1.5%までのマグネシウムを含有
するA〆−Si−Cu系合金、A〆−Si−Cu−Mg
系合金において珪素は合金基質を強化し、湯流れ、引け
性、鋳造割れ防止等の改善効果を示すものであり、4.
0%以下ではその効果少なく、13.0%以上では靭性
や耐熱衝撃性を著しく低下させる。
A〆-Si-Cu alloy containing more than 4.0% and up to 13.0% silicon, more than 2.5% and up to 4.5% copper, and up to 1.5% magnesium, A〆- Si-Cu-Mg
In series alloys, silicon strengthens the alloy matrix and has the effect of improving flow, shrinkage, prevention of casting cracks, etc.; 4.
If it is less than 0%, the effect will be small, and if it is more than 13.0%, the toughness and thermal shock resistance will be significantly reduced.

また銅は熱処理を施こした場合に時効硬化によって著し
く合金強度を附与するものであるが、2.5%以下では
その効果が少なく、また4.5%以上では籾性を低下さ
せる。マグネシウムは熱処理によってM&Siを析出し
て合金基質を強化するもので通常A夕−Si−Cu−M
g系合金においてはその効果を発揮させるために0.4
%以上添加させるものであるが1.6%以上の添加は鋤
性を著しく低下させるので好ましくない。
Further, when heat-treated, copper significantly imparts alloy strength through age hardening, but if it is less than 2.5%, this effect is small, and if it is more than 4.5%, it reduces graininess. Magnesium is used to precipitate M&Si through heat treatment to strengthen the alloy matrix.
For g-based alloys, 0.4
% or more, but addition of 1.6% or more is not preferable because it significantly reduces plowability.

本発明においては上託した組成範囲のAそ−Si−Cu
系、またはA夕−S;−Cu−Mg系合金において不純
物または有意添加元素として鉄を0.6%を超え1.2
%まで含有する合金を対象とするものである。
In the present invention, A-Si-Cu within the specified composition range is used.
iron as an impurity or a significant additive element in Cu-Mg alloys exceeding 0.6% 1.2
This applies to alloys containing up to %.

鉄含有量が0.6%以下の合金においては合金の強鞠性
は恒常的に低いとは言えず、それ故に改善の必要性を認
め得ず、また鉄含有量が1.5%を超えると本発明によ
る強靭性改善の効果が十分発揮されないからこれを上限
とする。本発明においては上記した如く鉄含有量の多い
A〆−Si−Cu系合金またはAそ−Si−Cu−Mg
系合金に0.6%を超え1.5%までのマンガンおよび
0.20%を超え1.0%まで、好ましくは0.25%
を超え0.8%までのアンチモンを複合添加するもので
あるが、アンチモンはマンガンと共存することにより合
金母相中に晶出する針状の粗大A夕−Fe−Si化合物
を著しく微細化すると共に粒状乃至球状化合物として分
散させる効果を有する。それぞれの下限値以下ではその
効果が少なく、またそれぞれの上限値以上の添加は合金
の瓢性を却って低下するので好ましくない。本発明合金
は鋳造に際して、従来行われているよう0.3%までの
チタンまたはこれにさらに0.05%までの棚素を添加
し合金の微細化処理を施こすことは何等差支えない。
In alloys with an iron content of 0.6% or less, the strength of the alloy cannot be said to be permanently low, and therefore there is no need for improvement, and in cases where the iron content exceeds 1.5% This is set as the upper limit because the effect of improving toughness according to the present invention cannot be sufficiently exhibited. In the present invention, as mentioned above, A-Si-Cu alloy with high iron content or A-Si-Cu-Mg
>0.6% up to 1.5% manganese and >0.20% up to 1.0%, preferably 0.25%
This is a composite addition of antimony up to 0.8%, but when antimony coexists with manganese, it significantly refines the needle-shaped coarse A-Fe-Si compounds that crystallize in the alloy matrix. It also has the effect of dispersing it as a granular or spherical compound. Additions below the respective lower limits will have little effect, and additions above the respective upper limits will actually reduce the strength of the alloy, which is not preferable. When the alloy of the present invention is cast, there is no problem in adding up to 0.3% of titanium or further adding up to 0.05% of shelving elements to refine the alloy, as has been conventionally done.

殊に合金中へ積極的に0.30%までのチタンを含有さ
せることは上記微細化効果のほか鋳物の引け性の改善、
銭割れ防止などの効果を有する。
In particular, proactively incorporating up to 0.30% titanium into the alloy has the effect of improving the shrinkage of castings in addition to the above-mentioned refinement effect.
It has the effect of preventing money from breaking.

また本発明合金においてマグネシウムを含む場合には0
.05%までのベリリウム添加による酸化防止を適宜は
かることも可能である。次に本発明の実施例について述
べると以下の通りである。
In addition, when the alloy of the present invention contains magnesium, 0
.. It is also possible to appropriately prevent oxidation by adding up to 0.5% beryllium. Next, embodiments of the present invention will be described as follows.

本発明による合金とその比較例とを併せて示すと、次の
第1表の通りである。
The alloy according to the present invention and its comparative examples are shown in Table 1 below.

第1表 キ不純物く返り材として含有するものを含む)としての
値即ち第1表‘11〜【4此不純物として多量の鉄を含
むJISAC2A、AC斑、AC碑、AC山DおよびA
C的の各合金に相当する化学組成を有する合金a、およ
びこれらに本発明の範囲内のマンガンおよびアンチモン
を複合添加した合金bであり、これらの各合金a,bに
ついて、おのおのをJIS4号舟型試験庁に鋳込み、溶
体化処理後水または温水競入し、ついで人工時効処理を
施こし、これらについて機械的性質を測定した結果は併
せて第1表の右側に示す通りである。
Table 1 K Impurities (including those contained as repeating materials) Table 1 '11~[4 JISAC2A, AC Spot, AC Monument, AC Mountain D and A containing a large amount of iron as impurities
Alloy a has a chemical composition corresponding to each alloy of C, and alloy b has a composite addition of manganese and antimony within the scope of the present invention. The molds were cast in a mold testing station, subjected to solution treatment, then exposed to water or hot water, and then subjected to artificial aging treatment.The mechanical properties of these were measured.The results are also shown on the right side of Table 1.

なお各試料の熱処理条件は次の如くである。The heat treatment conditions for each sample are as follows.

.勤敵U 溶体化処理 暁入 人工時効処理修(1
)510℃× 8鷲帝絹 水暁入 16仇C幻0票帯
電(2)50股 5敵罰60胸像側び5噺母(3)50
0℃×10漠帯電 水暁入 160℃X7呉式罰(4
) 510C× 4甲羅電 水暁入 220℃X5峠
帯母第1表の結果より実施例地.{1}〜■のすべてに
百って合金bは合金aに較べて引張強さおよび伸びの各
測定値は高く、すなわち{1}〜【4}のすべての合金
がFeを0.6〜1.2%と相当に高く含有したものに
おいてマンガン、アンチモンの複合添加により強度靭性
を向上していることが判る。
.. Kinki U Solution treatment Akirairi Artificial aging treatment repair (1
)510°C
0°C x 10 vaguely charged water dawn 160°C x 7 Wu style punishment (4
) 510C x 4 Koraden Mizuaki entry 220℃ x 5 mountain pass belt Based on the results in Table 1, the example location. In all of {1} to ■, Alloy B has higher measured values of tensile strength and elongation than Alloy A, that is, all alloys {1} to [4} have Fe content of 0.6 to It can be seen that strength and toughness are improved by the combined addition of manganese and antimony when the content is as high as 1.2%.

以上述べたように、本発明は鉄を多量に含み著しく強籾
性の低下したAそ−Sj−Cu系合金またはA夕一Si
一Cu−Mg系合金についてそのAそ−Fe−Si化合
物に関する技術的実態を解明し、大幅にその強靭性を向
上させることができるので鋳物工場の如きで鉄含有量の
調整に苦慮する必要がなくなり、又その鉄含有量によっ
て耐熱特性その他の特性を改善し得ることとなり、勿論
返り材又は返り材を主体とした合金地金を用い且つ比較
的簡易に成分調整し得るので経済的に上託したような特
性を有し各種エンジン廻り部品等に通した鋳造用アルミ
ニウム合金を提供することができ、工業的に極めて有効
であるといえる。
As described above, the present invention uses A-Sj-Cu alloys or A-Sj-Si alloys that contain a large amount of iron and have significantly reduced rice toughness.
The technical facts regarding the A-Fe-Si compounds of Cu-Mg alloys have been elucidated, and the toughness can be greatly improved, so there is no need to worry about adjusting the iron content in places like foundries. In addition, heat resistance and other properties can be improved depending on the iron content, and of course, it is economical to use recycled materials or alloy ingots mainly made of recycled materials and the composition can be adjusted relatively easily. It is possible to provide an aluminum alloy for casting having such characteristics and passing it through various engine parts, etc., and it can be said that it is extremely effective industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の技術的内容を示すものであつて、第1図
はAそ−Si−Cu系合金鋳物における鉄含有量と機械
的性質との関係を示した図表、第2図はFel.1%を
含有したA夕−Si−Cu合金についてのマンガン及び
アンチモンを添加したものと添加しないものについての
組織を比較して示す倍率20ぴ音の顕微鏡写真であって
aはマンガン及びアンチモンを含有しないもの、bはそ
れらを共に含有させたものを示すものである。 第ノ図 第2図
The drawings show the technical contents of the present invention, and FIG. 1 is a chart showing the relationship between iron content and mechanical properties in A-Si-Cu alloy castings, and FIG. A photomicrograph at a magnification of 20 pm showing a comparison of the structure of an A-Si-Cu alloy containing 1% manganese and antimony with and without the addition of manganese and antimony; a contains manganese and antimony; "b" indicates those containing both of them. Figure 2 Figure 2

Claims (1)

【特許請求の範囲】 1 重量で4.0%を超え13.0%までの珪素、2.
5%を超え4.5%までの銅、0.6%を超え1.5%
までのマンガンおよび0.20%を超え1.0%までの
アンチモンを含み、且つ不純物または有意添加元素とし
て1.5%までのマグネシウムおよび0.6%を超え1
.2%までの鉄を含有し、残部がアルミニウムおよび上
記元素以外の不可避的不純物よりなる鉄含有量の多い鋳
造用アルミニウム合金。 2 重量で4.0%を超え13.0%までの珪素、2.
5%を超え4.5%までの銅、0.20%を超え1.5
%までのマンガン、0.20%を超え1.0%までのア
ンチモンおよび0.02%を超え0.30%までのチタ
ンを含み、且つ不純物または有意添加元素として1.5
%までのマグネシウムおよび0.6%を超え1.2%ま
での鉄を含有し、残部がアルミニウムおよび上記元素以
外の下可避的不純物よりなる鉄含有量の多い鋳造用アル
ミニウム合金。
[Scope of Claims] 1. More than 4.0% and up to 13.0% silicon by weight; 2.
More than 5% up to 4.5% copper, more than 0.6% up to 1.5%
Manganese up to 0.20% and up to 1.0% antimony, and up to 1.5% magnesium and over 0.6% 1 as impurities or significant additive elements.
.. An aluminum alloy for casting with a high iron content, containing up to 2% iron, with the remainder consisting of aluminum and unavoidable impurities other than the above-mentioned elements. 2 more than 4.0% and up to 13.0% silicon by weight; 2.
More than 5% up to 4.5% copper, more than 0.20% 1.5
% manganese, more than 0.20% up to 1.0% antimony, and more than 0.02% up to 0.30% titanium, and as impurities or significant added elements 1.5
% magnesium and more than 0.6% up to 1.2% iron, with the remainder consisting of aluminum and unavoidable impurities other than the above-mentioned elements.
JP2619879A 1979-03-08 1979-03-08 Aluminum alloy for casting with high iron content Expired JPS6024168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2619879A JPS6024168B2 (en) 1979-03-08 1979-03-08 Aluminum alloy for casting with high iron content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2619879A JPS6024168B2 (en) 1979-03-08 1979-03-08 Aluminum alloy for casting with high iron content

Publications (2)

Publication Number Publication Date
JPS55119147A JPS55119147A (en) 1980-09-12
JPS6024168B2 true JPS6024168B2 (en) 1985-06-11

Family

ID=12186776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2619879A Expired JPS6024168B2 (en) 1979-03-08 1979-03-08 Aluminum alloy for casting with high iron content

Country Status (1)

Country Link
JP (1) JPS6024168B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224739A (en) * 1984-04-24 1985-11-09 Maeda Keikinzoku Kogyo Kk Al-7% si-0.3% mg type cast aluminum alloy
JPS63162832A (en) * 1986-12-25 1988-07-06 Hitachi Metals Ltd Aluminum alloy for casting combining high strength with high toughness
DE3717002A1 (en) * 1987-05-21 1988-12-08 Kolbenschmidt Ag SKELETON CONSTRUCTION FOR MOTOR VEHICLE STEERING WHEELS

Also Published As

Publication number Publication date
JPS55119147A (en) 1980-09-12

Similar Documents

Publication Publication Date Title
US20130240095A1 (en) Heat treatable l12 aluminum alloys
US4636357A (en) Aluminum alloys
CN111500906B (en) High-strength corrosion-resistant aluminum alloy and preparation method thereof
WO2024021367A1 (en) Cast al-si alloy and preparation method thereof
US7875133B2 (en) Heat treatable L12 aluminum alloys
US3930894A (en) Method of preparing copper base alloys
JPS6024168B2 (en) Aluminum alloy for casting with high iron content
JPH08144003A (en) High strength aluminum alloy excellent in heat resistance
JPH04311545A (en) Al-mg-si alloy having superior strength and ductility
US4067733A (en) High strength aluminum alloy
KR100909699B1 (en) Aluminum alloy with improved impact energy and extrusion made from the same
JPS5831055A (en) Aluminum alloy for structure with superior strength, weldability and machinability
JP3328356B2 (en) Aluminum alloy material for casting
JPH07216487A (en) Aluminum alloy, excellent in wear resistance and heat resistance, and its production
US3297435A (en) Production of heat-treatable aluminum casting alloy
JPH06145918A (en) Production of al-li alloy extruded material excellent in toughness
JPS6154853B2 (en)
JPH0860281A (en) Ductile aluminum alloy having high rigidity and high heat resistance
KR100199408B1 (en) Method of manufacturing non-heat treatment aluminum alloy and the same product
WO2023167174A1 (en) Aluminum alloy for casting and aluminum alloy casting
JPH1017975A (en) Aluminum alloy for casting
JPH0379738A (en) High strength al alloy material
JPH03247739A (en) High strength aluminum extruded material excellent in formability
JPH09209068A (en) High strength aluminum alloy excellent in hardenability
JPS6157380B2 (en)