JPS60241640A - Cell - Google Patents

Cell

Info

Publication number
JPS60241640A
JPS60241640A JP60100781A JP10078185A JPS60241640A JP S60241640 A JPS60241640 A JP S60241640A JP 60100781 A JP60100781 A JP 60100781A JP 10078185 A JP10078185 A JP 10078185A JP S60241640 A JPS60241640 A JP S60241640A
Authority
JP
Japan
Prior art keywords
battery
anode
transformation point
cathode
packing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60100781A
Other languages
Japanese (ja)
Inventor
Chiaki Oguchi
小口 千昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP60100781A priority Critical patent/JPS60241640A/en
Publication of JPS60241640A publication Critical patent/JPS60241640A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PURPOSE:To improve liquidtightness by forming the positive electrode can of a button-type cell or the like with a shape memory alloy, doing works upon it in a finished shape at a temperature above its transformation point, assembling it at a temperature below its transformation point and thereafter bringing it back to the finished shape. CONSTITUTION:A button-type silver oxide cell or the like is formed by forming its positive electrode can with a shape memory alloy and combining it with positive electrode black mix 1, a separator 3, negative electrode black mix 2, a negative electrode can 5 and packing 6. At this time, a Ti-Ni alloy or the like forming the positive electrode can 4 is worked in a finished shape having a bent part in a mother state above the martensite transformation point and then after the bent part is straightened in the stable martensite phase below -20 deg.C, each part is inserted and thereafter it is brought back to the room temperature, accordingly into the mother phase state and sealed by tightening the packing 6. Therefore, it is possible to obtain appropriate packing pressure without spring back and thereby to improve its liquidtightness.

Description

【発明の詳細な説明】 本発明は電池のケースである電池缶、陰極蓋の材料に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a material for a battery can, which is a battery case, and a cathode lid.

近年電池を使用した電子機器が急増し回路のIC化及び
高効率によるローパワー化によりその電池寿命は著しく
伸びる傾向にある。特Vr−腕時計・電卓に於ては顕著
であシ、アナログ(指針式〕ウォッチでは普及タイプの
ものは5年寿命が普通となっている。デジタル腕時計に
於ても3年〜5年、リチウム電池を使うと7年寿命とい
うものまである。さらに太陽エネルギーを電気に変換し
、永久電源を目指す太陽電池ウォッチは7〜10年以上
持つとさえ言われる。電池寿命はユーザーのメリットに
もなることであり、年々伸びる傾向にある。
BACKGROUND ART In recent years, the number of electronic devices using batteries has increased rapidly, and the use of IC circuits and low power due to high efficiency has resulted in a significant increase in battery life. This is especially noticeable in Vr-watches and calculators, and popular types of analog (pointer type) watches typically have a lifespan of 5 years.Digital watches also have a lifespan of 3 to 5 years, and lithium Some batteries can last up to 7 years.Furthermore, solar-powered watches that convert solar energy into electricity and aim to provide a permanent power source are said to last for 7 to 10 years or more.Battery life also benefits the user. , and it tends to increase every year.

しかしここで問題となるのが電池自身の耐用年数、すな
わち漏液である。一般にリチウム電池は耐漏液性が良い
と言われているか10数(mA)の大電流が取り出しに
くい、サイズ〔径〕が大きい等のデメリットを有してお
り、かといって水銀電池、銀電池は耐漏液性が悪く、5
〜6年の耐漏液性しか持っていない。
However, the problem here is the service life of the battery itself, that is, leakage. In general, lithium batteries are said to have good leakage resistance, but they have disadvantages such as being difficult to draw a large current of 10 mA and being large in size.On the other hand, mercury batteries and silver batteries are Poor leakage resistance, 5
It only has a leak resistance of ~6 years.

本発明の目的は上記電池の耐漏液性を向上することにあ
り、耐漏液性を向上することKより長寿命で信頼性の萬
いユーザーの利益となる腕時計、あるいは電子機器を提
供することにある。
The purpose of the present invention is to improve the leakage resistance of the above-mentioned battery, and to provide a wristwatch or an electronic device that has a long life and reliability and is beneficial to many users. be.

第1図は電池を代表してボタン型酸化銀電池の一般的な
断面を示すものである。陽極1は減極剤の酸化銀(A’
to )と導電剤のカーボン粉末とを混合し加圧成形し
たペレットであり、陰極2はアマルガム化(Htl 0
%前後りした亜鉛粉末とゲル化した電解液である。セノ
くし一タ層3は上側より順に保持膜、セパレーター、保
護膜の3層より構成され、保持膜は綿やナイロンからな
シミ解散を保持する。セパレーターはセルロース系の数
層のセパレーターよシな9陽極1と陰極2との間を電解
液のイオンを自由にとおし、しかも物理的に隔てる役目
を持ち、保護膜は前記セパレーターが直接酸fヒ銀に接
触すると酸化し破損しやすくなるためセパレーターの保
護をしている。ケースは電池缶4、陰極蓋5、パツキン
6よりなり、これらは各々漏液防止、両極における集電
作用および接点との安定した接触を得るためのものであ
る。陽極1と陰極2の化学反応により電力がl)出せる
FIG. 1 shows a typical cross section of a button-type silver oxide battery as a representative battery. The anode 1 is made of silver oxide (A'), which is a depolarizer.
The cathode 2 is a pellet made by mixing and press-molding carbon powder as a conductive agent with carbon powder as a conductive agent, and the cathode 2 is amalgamated (Htl 0
It consists of zinc powder of around 50% and gelled electrolyte. The comb layer 3 is composed of three layers: a retention film, a separator, and a protective film in order from the top, and the retention film keeps stains from cotton and nylon from being dissolved. The separator is similar to a cellulose-based several-layer separator.9 It allows ions of the electrolyte to freely pass between the anode 1 and the cathode 2, and also has the role of physically separating the separator. When it comes into contact with silver, it oxidizes and becomes easily damaged, so the separator is protected. The case consists of a battery can 4, a cathode lid 5, and a packing 6, each of which serves to prevent liquid leakage, to collect current at both electrodes, and to obtain stable contact with the contacts. Electric power can be generated by the chemical reaction between the anode 1 and the cathode 2.

このような電池の製造方法は電池缶4を第2図に示すよ
うに円筒状に形成しこの中に第3図に示すj ’) [
陽41 、セパレーターろ、パツキン6、陰極2、陰極
蓋5を順に入れ、陰極蓋5を上側より絶縁部材で適当な
圧力により押さえ、電池缶4の上部外周を内側にプレス
成形し、第1図のように曲げて完成となる。従来のこの
ような方法では電池缶の内部に陽極、セパレーター、@
極、/(ツキンを入れた後、最後にプレス成形し完成と
するため、電池缶上部外周の十分な曲げ加工ができない
The manufacturing method of such a battery is to form a battery can 4 into a cylindrical shape as shown in FIG.
The positive 41, the separator filter, the gasket 6, the cathode 2, and the cathode lid 5 are placed in this order, and the cathode lid 5 is pressed from above with an insulating member, and the upper outer periphery of the battery can 4 is press-molded inward. It is completed by bending it like this. In this conventional method, an anode, a separator, and @
Pole, / (After inserting the cover, the final step is press forming to complete the product, so it is not possible to bend the outer periphery of the upper part of the battery can sufficiently.

十分な曲げ加工を行なえば内部の各部材が破損し不良品
となる。また破損ぎりぎりまで曲げ加工しても、電池缶
材料のスプリングパンクによりかなり戻る。したがって
十分な曲げ加工ができない為およびスプリングバックに
よりパツキンと電池缶およびパツキンと陰極蓋の接触圧
力が十分とれずアルカリ電解液のはい上りによる漏液お
よび化学変化に伴なう水素ガスの発生による電池内圧力
上昇による漏液等の問題があった。漏液すると接点部を
腐食破損させ接点不良を起こしたり、関係部品を破損し
たり、また漏液から生成した炭酸塩が脱離し時計の止ま
りの原因となったりしていた。
If sufficient bending is performed, each internal member will be damaged and the product will be defective. Also, even if the battery can is bent to the point of breakage, the material of the battery can will spring puncture and will return to its original shape. Therefore, due to insufficient bending and springback, insufficient contact pressure between the packing and the battery can, and the packing and the cathode cover cannot be maintained, resulting in leakage due to alkaline electrolyte creeping up and generation of hydrogen gas due to chemical changes. There were problems such as leakage due to increased internal pressure. When liquid leaks, it corrodes and damages the contacts, causing contact failure, damaging related parts, and carbonates generated from leaking liquid that are released and cause the clock to stop.

耐漏液性を向上させるにはパツキンの体積を十分大きく
し、電池缶上部をプレス成形し、密封する時十分締め、
接触圧力が太きくとれるように構成するか、または電池
缶と〕(ツキン、)くツキンと陰極蓋との接触長さを十
分長くすること罠より、かなり良くすることが可能であ
るが、これを実施すると陽極、歯極、セパレータ一部材
の占める体積が小さくfL、b、したがって大きな容量
低下となり電池寿命が短かくなってユーザーに不便を強
いることになり好ましくない。
To improve leakage resistance, make the volume of the gasket sufficiently large, press-form the top of the battery can, and tighten it thoroughly when sealing.
It is possible to make it much better than a trap by configuring it so that the contact pressure is large, or by making the contact length between the battery can and the cathode lid sufficiently long. If this is carried out, the volume occupied by the anode, tooth electrode, and separator members will be small, fL, b, and therefore the capacity will be greatly reduced, the battery life will be shortened, and the user will be inconvenienced, which is undesirable.

本発明にかかる欠点を除去するものであし、以下詳述す
る。
This invention is intended to eliminate the drawbacks of the present invention and will be described in detail below.

まず形状記憶合金の特性にふれよう。First, let's talk about the characteristics of shape memory alloys.

金属や合金は、原子が規則正しく配列した結晶からなっ
ている。これが固体状態のままで相変態を起こすと結晶
構造が変化する。この相変態の一種にマルテンサイト変
態とよばれるものがある。
Metals and alloys are made up of crystals in which atoms are regularly arranged. When this phase transformation occurs while it remains in a solid state, the crystal structure changes. One type of this phase transformation is called martensitic transformation.

そしてこの種の変態では、変態点とよばれる温度を境に
して、これより高温側にあって安定な構造をとったとき
の相を母相といい低温側で安定した構造になったときを
マルテンサイト相という。
In this type of transformation, the phase that has a stable structure at a higher temperature than the temperature called the transformation point is called the parent phase, and the phase that has a stable structure at a lower temperature is called the parent phase. This is called the martensitic phase.

高温側から次第に冷していくと、母相からマルテンサイ
ト相への変態が起こり(マルテンサイト変態という)、
逆に加熱していくとマルテンサイト相から母相に変態す
る(逆変態という。)。
When the temperature is gradually cooled from the high temperature side, transformation from the parent phase to the martensitic phase occurs (referred to as martensitic transformation).
Conversely, when heated, the martensitic phase transforms into the parent phase (referred to as reverse transformation).

マルテンサイト変態とは第4図の下側に示したA部のよ
うに、正方形の原子配列をした母相がある面にそって一
様なひずみを受け、B部のような平行四辺形の原子配列
になったとすれば、これがマルテンサイト変態である。
Martensitic transformation is a process in which the matrix undergoes uniform strain along a plane with a square atomic arrangement, as shown in part A at the bottom of Figure 4, and is transformed into a parallelogram, as shown in part B. If the atoms become aligned, this is martensitic transformation.

各原子はバラバラに動いているのではなく、相互に連携
を保ちながら変化しており、元の原子位置と一定の関係
にある。
Each atom does not move independently, but changes while maintaining mutual cooperation, and is in a fixed relationship with the original atomic position.

またマルテンサイト変態そのものが一種の変形機構にな
っているのである。
Furthermore, martensitic transformation itself is a type of deformation mechanism.

このようなマルテンサイトのでき方Vi、1通りでなく
、たとえば第4図の0部のように逆向きに原子が変位す
ることによってもできる。B、O各部のいずれも結晶構
造は同じだか、結晶の方位が異なっている。だからこれ
をマルテンサイトの兄第晶とよんでいる。実際の金属結
晶では最高で24通りもの兄第晶が知られている。
Such martensite can be formed not only in one way, but also by displacing atoms in the opposite direction, as shown in part 0 in FIG. 4, for example. Both B and O parts have the same crystal structure, or have different crystal orientations. Therefore, this is called martensite's older brother, crystal. In actual metal crystals, up to 24 types of older crystals are known.

さて母相状態にある合金を変態点以下に冷却するとマル
テンサイト変1mが起こるが、ひずみエネルギーをでき
るだけ小さくするためいくつかの兄第晶が組になって第
6図のように全体としては第5図とほとんど形状が変わ
らないような変態をする。(ここでは説明しやすいよう
に2組の兄第晶だけで図示した。) このマルテンサイト状態にある試料を変態点以上1c7
111熱すれば当然逆変態か起こるが、その際いずれの
兄第晶も構造だけでなく方位も含めて元の結晶状態に戻
ろうとするため、第5図の元の状態に戻るのである。
Now, when the alloy in the matrix state is cooled below the transformation point, a martensitic transformation of 1m occurs, but in order to minimize the strain energy, several older crystals are grouped together and as a whole, as shown in Figure 6, the martensite transformation occurs. It undergoes a metamorphosis whose shape is almost the same as in Figure 5. (Here, for ease of explanation, only the two sets of older crystals are illustrated.) The sample in the martensitic state is 1c7 above the transformation point.
Naturally, reverse transformation occurs when heated to 111°C, but at that time, both older crystals try to return to their original crystalline state, including not only their structure but also their orientation, so they return to the original state shown in Figure 5.

マルテンサイト状態第6図の状態にある試料に応力を加
え変形させると兄第晶間の境界面が移動して一方が他方
の兄第晶を食って成長し第7図のようになる。こうして
おいて変態点以上に加熱すると各兄第晶が第5図のよう
な元の母相の状態に戻る。これが形状記憶効果の本質で
ある。この形状記憶効果には2つの大切な特mかある。
When stress is applied to the sample in the martensitic state shown in FIG. 6 and the sample is deformed, the interface between the older crystals moves and one of them eats the other older crystal and grows, resulting in the state shown in FIG. 7. When heated above the transformation point, each older crystal returns to its original matrix state as shown in FIG. This is the essence of the shape memory effect. This shape memory effect has two important characteristics.

第1は、記憶されるのは母相の形状だけであって、マル
テンサイト相の形状は、普通の場合記憶されない。第2
は高い外部応力がかかった状態でもこの現象が起こるこ
とだ。形状記憶合金とよばれるものには現在、銅・アル
ミニウム・ニッケル(アルミ青銅)、チタン・ニッケル
、銅・亜鉛、銅・亜鉛・アルミニウム、銀・カドミウム
、銅・スズなど多くの合金がある。
First, only the shape of the matrix phase is stored, and the shape of the martensitic phase is not normally stored. Second
This phenomenon occurs even under high external stress. There are currently many shape memory alloys, including copper-aluminum-nickel (aluminum-bronze), titanium-nickel, copper-zinc, copper-zinc-aluminum, silver-cadmium, and copper-tin.

ここではマルテンサイト変態点が−15〜−20℃の場
合を例にとシ説明する。マルテンサイト変態点以上の母
相の状態でTi−IJi合金を第8図に示すような断面
形状に加工し電池缶7をつくる。
Here, the case where the martensitic transformation point is -15 to -20°C will be explained as an example. A Ti--IJi alloy is processed into a cross-sectional shape as shown in FIG. 8 in a state where the matrix is at a temperature higher than the martensitic transformation point to form a battery can 7.

電池缶7の上部は内側に曲げ加工されているが、この曲
げは、第1図に示す電池として組み立て上がり完成した
時と同形状、あるいはそれ以上に内側に曲げ込まれパツ
キンとの接触が良好な形状に加工されている。
The upper part of the battery can 7 is bent inward, and this bending is the same shape as when the battery is assembled and completed as shown in Figure 1, or even more so that it makes good contact with the gasket. It is processed into a shape.

次に一20℃以下の安定したマルテンサイト相で第2図
で説明した形状と同様なストレートの同筒珍状に加工す
る。その状態で第5図と同様に′電池缶7に陽極1、セ
パレータ5、パツキン6、陽極2、陰極蓋5を入れ、醜
極蓋5を上側から絶縁部材で適当な圧力で押さえ常飄に
喉り出す。すると母相に71p電池缶7が元の形状に戻
り纂1図に示す状態となる。第8図の状態で十分な呻は
加工を行なっているため、電池缶とパツキン、パツキン
と陰極蓋の接触圧力、及び接触長さが十分とれ耐漏液性
か向上する。ま′・た電池缶の曲げが十分性なえること
によりパツキンの体積を小さくすることかでき、陽極、
陽極の体積を増すことにより同一1イズの電池でより高
容量を得ることができ、さらに腕時計の長寿命化がはか
れる。陽、lt1他材料を低温下で組み込むため化学反
応が少なくてすむ。第9図は陰極蓋に形状記憶合金を用
いた例であり、陰極蓋8の外周部は母相で第1図の電池
が完成し組み込まれた状態より折シ返し部を外側に開い
た形状に構成され、−20℃以下のマルテンサイト相で
第10図に示すようVC81図の完成した時と同形状に
加工する。これを−20℃以下の低温で第3図の如く組
み込み、電池缶をプレス加工し常温に放置すること罠よ
シ隆極蓋8が広が勺パツキンに圧力を加え、接触圧が十
分とれる。第11図はこの陰極蓋8の他の一実施例を示
す因であり、母相で外周部が外側に開いていると同時に
最外周のツバ部9も外側に開いた形状となっている。−
20℃以下のマルテンサイト相で第10図の形状に加工
し組み込むと同様の効果が得られる。
Next, it is processed into a straight cylindrical shape similar to the shape explained in FIG. 2 in a stable martensitic phase at -20°C or lower. In this state, put the anode 1, separator 5, gasket 6, anode 2, and cathode cover 5 into the battery can 7 in the same manner as shown in Fig. 5, and press the ugly electrode cover 5 from above with an insulating material with appropriate pressure and keep it in place. I gag. Then, the 71p battery can 7 in the matrix returns to its original shape, resulting in the state shown in Figure 1. In the state shown in FIG. 8, sufficient processing has been performed to ensure sufficient contact pressure and contact length between the battery can and the packing, and between the packing and the cathode cover, improving leakage resistance. Additionally, the volume of the gasket can be reduced by reducing the bending of the battery can, and the anode,
By increasing the volume of the anode, a higher capacity can be obtained with the same size battery, and the life of the wristwatch can be extended. Because positive, lt1, and other materials are incorporated at low temperatures, fewer chemical reactions are required. Fig. 9 shows an example in which a shape memory alloy is used for the cathode cover, and the outer periphery of the cathode cover 8 is a matrix with a folded part opened outward compared to the state in which the battery in Fig. 1 is completed and assembled. It is formed into a martensitic phase at −20° C. or lower, and is processed into the same shape as the completed VC81 shown in FIG. 10, as shown in FIG. Assemble this at a low temperature of -20 DEG C. or lower as shown in FIG. 3, press the battery can, and leave it at room temperature.Then, the electrode cover 8 will spread to apply pressure to the gasket, and sufficient contact pressure will be obtained. FIG. 11 shows another embodiment of this cathode lid 8, in which the outer peripheral portion of the matrix is open outward, and at the same time, the outermost collar portion 9 is also open outward. −
A similar effect can be obtained by processing and incorporating the martensitic phase into the shape shown in FIG. 10 at 20° C. or lower.

また電池缶、陰極蓋の両方を形状記憶合金でつくること
によシさらに安定した高接触圧力を得ることができ耐漏
液性の良い電池ができる。
Furthermore, by making both the battery can and the cathode lid from a shape memory alloy, a more stable and high contact pressure can be obtained and a battery with good leakage resistance can be obtained.

本発明によれば筒状陽極電池缶の上端曲げ部を陰極蓋の
外周折シ返し部との間でパツキンを挾持し、気密を保つ
ボタン型電池において、陽極電池缶あるいは陰極蓋の一
方もしくは両方を形状記憶合金で形成し、変態点以上の
gA度で組立て状態以上の傾きを曲げ部にもたせ、また
折り返し部を広げておき、変態点以下のmviLでそれ
らの傾きゃ広げをもとの状態に戻し、再び変態点以上の
温度にすることにより形状記憶合金の性質を利用して、
陽極電池缶の曲げ部を傾け、あるいは陽極蓋折り返し部
を広げることにより、パツキンを押圧し気密封止を保つ
ものなので次のような効果を有する。
According to the present invention, in a button type battery which maintains airtightness by sandwiching a gasket between the bent portion of the upper end of the cylindrical anode battery can and the outer circumferential folded portion of the cathode lid, one or both of the anode battery can and the cathode lid are provided. is made of a shape memory alloy, the bending part is made to have an inclination greater than the assembled state at gA degrees above the transformation point, and the folded part is widened, and the inclination is returned to the original state at mviL below the transformation point. Taking advantage of the properties of shape memory alloys, by returning the temperature to above the transformation point again,
By tilting the bent part of the anode battery can or by widening the folded part of the anode lid, the gasket is pressed and an airtight seal is maintained, so it has the following effects.

a)従来ボタン型電池の気密封止は、陽極電池缶の上側
開口端をプレスで曲げ加工することによってパツキンを
押圧していた。しかしプレス加工による曲げ加工は必ず
スプリングバックを伴うものなので、確実に気密封止し
ようとして曲げ童を大きくすると過大な710圧力か電
極剤やセパレータ1−に加わり破損することがあった。
a) Conventionally, button-type batteries were hermetically sealed by pressing the gasket by bending the upper open end of the anode battery can with a press. However, since bending by press working always involves springback, if the bending head is made larger in order to ensure airtight sealing, an excessive 710 pressure will be applied to the electrode material and the separator 1-, which may cause damage.

また破損を惧れて曲げ量を少なくすると確実な気密封止
が保つことかできないという問題をもっていた。またこ
の問題を解決するためにノ(ツキンの接触長さを増加さ
せる構成もあったが、内容量を犠牲にしなければならず
、小型なボタン電池への適用は困難であった。
Furthermore, if the amount of bending is reduced for fear of breakage, there is a problem in that a reliable airtight seal cannot be maintained. In order to solve this problem, there was also a configuration in which the contact length of the battery was increased, but this required sacrificing the internal capacity, making it difficult to apply to small button batteries.

一方本願は形状記憶合金の性質を利用し、スプリングバ
ック無しに適正なパツキン加圧力が得られるものであり
、電池充填物の破損が全くなく確実な気密封止を達成す
ることができ、しかもパツキン接触長さを大きくする必
要がないので、小型大容量のボタン電池を達成できるも
のである。
On the other hand, the present invention makes use of the properties of shape memory alloys to obtain an appropriate pressure force on the packing without springback, and it is possible to achieve reliable airtight sealing without any damage to the battery filling, and the packing Since there is no need to increase the contact length, a compact, large-capacity button battery can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はボタン型酸化銀電池の一般的な断面である。 第2図は電池缶の加工途中の断面図である。 第3図は電池の組み立て途中の断面図である。 第4図は形状記憶合金の原子配列を示す図である。 第5図は形状記憶合金の母相の状態を示す図である。 第6図は形状記憶合金のマルテンサイト相の状態を示す
図である。 第7図は第6図の試料を変形させた状態を示す図である
。 第8図は本発明による電池缶のカロエ途中の断面図であ
る。 薬9図は本発明による陰極蓋の加工途中の断面図である
。 第10図は第9図の陰極蓋を追加した断面図である。 第11図は本発明による陰極蓋の他の一実施例を示す加
工途中の断面図である。 1・・・陽極 2・・・陰極 5・・・セパレータ層 4.7・・・電池缶 5.8・・・歯極蓋 6・・・パツキン ?、0.ソバ部 以 上 出願人 株式会社諏訪精工舎 代理人 升埋士最 上 務 グtfl哲 〃′11園 法・l川
FIG. 1 is a typical cross section of a button-type silver oxide battery. FIG. 2 is a cross-sectional view of the battery can during processing. FIG. 3 is a sectional view of the battery during assembly. FIG. 4 is a diagram showing the atomic arrangement of a shape memory alloy. FIG. 5 is a diagram showing the state of the matrix of the shape memory alloy. FIG. 6 is a diagram showing the state of the martensitic phase of the shape memory alloy. FIG. 7 is a diagram showing the sample in FIG. 6 in a deformed state. FIG. 8 is a sectional view of the battery can in the middle of the battery can according to the present invention. Figure 9 is a cross-sectional view of the cathode lid during processing according to the present invention. FIG. 10 is a sectional view with the cathode cover of FIG. 9 added. FIG. 11 is a cross-sectional view showing another embodiment of the cathode cover according to the present invention during processing. 1...Anode 2...Cathode 5...Separator layer 4.7...Battery can 5.8...Tooth electrode cover 6...Packing? , 0. Soba Department and above Applicant Suwa Seikosha Co., Ltd. Agent Masuji Mogami Tsutomu TFL Tetsu '11 Garden Law / River

Claims (1)

【特許請求の範囲】 +11 筒状の陽極電池缶の底から陽極剤、セパレータ
層、パツキン、陰極蓋が順次積層され、セパ−レート層
と陰極蓋の間に陰極剤が配置されているとともに、前記
陽極電池缶は上端開口部が内側に傾いた曲げ部を有し、
前記陰極蓋は外周に電池缶と平行に伸びる折り返し部を
有し、且つ前記曲げ部を前記折り返し部で前記パツキン
を押圧し気密を保つよう構成されており、前記陽極電池
缶は形状記憶合金より形成されるとともに、変態点以上
の温度で組み立て上がり形状以上の傾きを持たせて曲げ
部を形成し、変態点以下の温度で前記傾きを戻し、組込
み後変態点以上のI匿にすることにより前記曲げ部で前
記パツキンを押圧してなることを特徴とする電池。 (2) 筒状の陽極電池缶の底から陽極剤、セパレータ
層、パツキン、陰極蓋が順次積層され、セパ−レート層
と陽極蓋の間に陰極剤が配置されているとともに、前記
陽極電池缶は上端開口部が内側に傾いた曲げ部を有し、
前記陰極蓋は外周に電池缶と平行に伸びる折り返し部を
1有し、且つ前記曲げ部を前記折り返し部で前記パツキ
ンを押圧し気密を保つよう構成されており、前記陰極蓋
は形状記憶合金より形成されるとともに、変態点以上の
温度で前記折り返し部を外側に広げた形状に形成し、変
態点以下の温度で前記広がりを戻し、組込み後変態点以
上の温度にすることにより前記折り返し部で前記パツキ
ンを押圧してなることを特徴とする電池。 (3)筒状の陽極缶の底から陽極剤、セパ鴎−タl−、
パツキン、陰極蓋が順次積層され、セパ−レート層と陰
極蓋の間に陰極剤が配置されているとともに、前記陽極
電池缶は上端開口部か内側に傾いた曲げ部を有し、前記
陰極蓋は外周に電池缶と平行に伸びる折り返し部を有し
、且つ前記曲げ部を前記折り返し部で前記パツキンを押
圧し気密を保つよう構成されており、前記陽極電池缶及
び前記陰極蓋は形状合金より形成されるとともに、変態
点以上の温度で前記陽極電池缶は前記曲げ部が組立て上
がシ形状以上の傾きを持って形成され、前記陰極蓋は前
記折り返し部が外側に広げられた形状に形成され、変態
点以下のm度で前記曲げ部の傾き及び前記折り返し部の
広がシを戻し、組込み後変態点以上のmtVcすること
により、前記曲げ部と前記折り返し部で前記パツキンを
押圧してなることを%微とする電池。
[Claims] +11 An anode agent, a separator layer, a packing, and a cathode lid are sequentially laminated from the bottom of a cylindrical anode battery can, and the cathode agent is disposed between the separate layer and the cathode lid, and The anode battery can has a bent portion in which the upper end opening is inclined inward;
The cathode lid has a folded part extending parallel to the battery can on its outer periphery, and the bent part is configured to press the packing with the folded part to maintain airtightness, and the anode battery can is made of shape memory alloy. At the same time, it is assembled at a temperature above the transformation point to form a bent part with an inclination greater than the shape, and the said inclination is returned at a temperature below the transformation point, and after assembly, the bending part is made to have an angle above the transformation point. A battery characterized in that the packing is pressed by the bent portion. (2) An anode agent, a separator layer, packing, and a cathode lid are sequentially laminated from the bottom of a cylindrical anode battery can, and the cathode agent is disposed between the separate layer and the anode lid, and the anode battery can has a bent part where the upper end opening is inclined inward,
The cathode lid has a folded part extending parallel to the battery can on the outer periphery, and the bent part is configured to press the packing with the folded part to maintain airtightness, and the cathode lid is made of a shape memory alloy. At the same time, the folded portion is formed into a shape that expands outward at a temperature higher than the transformation point, the expansion is returned to the outside at a temperature lower than the transformation point, and the temperature is raised to the transformation point or higher after assembly. A battery characterized by being formed by pressing the gasket. (3) From the bottom of the cylindrical anode can, remove the anode agent,
A gasket and a cathode lid are sequentially laminated, and a cathode agent is disposed between the separate layer and the cathode lid, and the anode battery can has an upper opening or an inwardly bent part, and the cathode lid has a folded part extending parallel to the battery can on the outer periphery, and is configured such that the bent part presses the packing with the folded part to maintain airtightness, and the anode battery can and the cathode lid are made of shaped alloy. At a temperature equal to or higher than the transformation point, the anode battery can is formed such that the bent portion has an inclination of more than a square shape when assembled, and the cathode lid is formed such that the folded portion is expanded outward. The inclination of the bent part and the spread of the folded part are returned to m degrees below the transformation point, and the packing is pressed by the bent part and the folded part by mtVc above the transformation point after assembly. A battery that has a very small capacity.
JP60100781A 1985-05-13 1985-05-13 Cell Pending JPS60241640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60100781A JPS60241640A (en) 1985-05-13 1985-05-13 Cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60100781A JPS60241640A (en) 1985-05-13 1985-05-13 Cell

Publications (1)

Publication Number Publication Date
JPS60241640A true JPS60241640A (en) 1985-11-30

Family

ID=14283003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60100781A Pending JPS60241640A (en) 1985-05-13 1985-05-13 Cell

Country Status (1)

Country Link
JP (1) JPS60241640A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1928050A1 (en) * 2006-11-30 2008-06-04 Nissan Motor Co., Ltd. Bipolar Battery and Battery Assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1928050A1 (en) * 2006-11-30 2008-06-04 Nissan Motor Co., Ltd. Bipolar Battery and Battery Assembly
US8148010B2 (en) 2006-11-30 2012-04-03 Nissan Motor Co., Ltd. Bipolar battery and battery assembly

Similar Documents

Publication Publication Date Title
EP1079454A2 (en) Flat non-aqueous electrolyte secondary cell
JP2991776B2 (en) Method of manufacturing button type battery and gasket for insulating and sealing button type battery
JP2019036422A (en) All-solid battery
US5843594A (en) Group of winding electrodes
JPS60241640A (en) Cell
JP3199060B2 (en) Flat organic electrolyte battery and method of manufacturing the same
CN105789499B (en) A kind of alkaline battery sealing ring
JPH11102728A (en) Organic electrolyte secondary battery
JPH01320769A (en) Manufacture of organic electrolyte battery
JPH02267872A (en) Manufacture of metal-hydrogen alkaline storage battery
JPS58158856A (en) Nonaqueous electrolytic battery
JPS58131668A (en) Rechargeable silver oxide cell
JP2000048780A (en) Coin type organic electrolyte cell, and its manufacture
JPS63131472A (en) Metal-hydrogen alkaline storage battery
JP2966500B2 (en) Chemical formation method of hydrogen storage alloy
JP4783980B2 (en) Cylindrical secondary battery
Furukawa et al. Alkaline battery
JPH01175168A (en) Structure for button type cell
JP2002203591A (en) Cylindrical secondary battery
JPS58169780A (en) Manufacturing method of flat type battery
JP2995431B2 (en) Organic electrolyte battery
JPS61161661A (en) Solid hydrogen battery
JP2000348689A (en) Manufacture of cylindrical battery
JPS60198068A (en) Solid electrolyte secondary battery
JPS61133581A (en) Solid state hydrogen cell