JPS60241450A - Adsorbing material for purifying body fluids - Google Patents

Adsorbing material for purifying body fluids

Info

Publication number
JPS60241450A
JPS60241450A JP59096375A JP9637584A JPS60241450A JP S60241450 A JPS60241450 A JP S60241450A JP 59096375 A JP59096375 A JP 59096375A JP 9637584 A JP9637584 A JP 9637584A JP S60241450 A JPS60241450 A JP S60241450A
Authority
JP
Japan
Prior art keywords
adsorbent
adsorption
pore
pore size
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59096375A
Other languages
Japanese (ja)
Other versions
JPS6359342B2 (en
Inventor
徹 黒田
山脇 直邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP59096375A priority Critical patent/JPS60241450A/en
Priority to EP84113358A priority patent/EP0143369B2/en
Priority to DE8484113358T priority patent/DE3480177D1/en
Priority to US06/668,795 priority patent/US4576927A/en
Publication of JPS60241450A publication Critical patent/JPS60241450A/en
Publication of JPS6359342B2 publication Critical patent/JPS6359342B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、被吸着物質と結合可能な表面を持つ多孔質吸
着材に関する。さらに詳しくは、血漿脂質の増加に起因
する各椎疾患と密接な関係を持つと考えられている低比
重リボ蛋白質や、癌、免疫増殖性症候群、慢性関節リウ
マチ、全身性エリテマトーデス、アレルギー、臓器移植
時の拒絶反応等の生体免疫機能に関係した疾患および現
象、あるいは腎炎等の腎臓病、肝炎等の肝臓病などにお
いて、血液、血漿等の体液中に発現し、疾患の原因ある
いは進行と密接な関係をもっていると考えられる悪性物
質を、体液中よシ吸着、除去する吸着材に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a porous adsorbent having a surface capable of bonding with an adsorbed substance. More specifically, we will focus on low-density riboproteins, which are thought to be closely related to various vertebral diseases caused by increased plasma lipids, as well as cancer, immunoproliferative syndrome, rheumatoid arthritis, systemic lupus erythematosus, allergies, and organ transplantation. Diseases and phenomena related to the body's immune function such as rejection reactions, kidney diseases such as nephritis, liver diseases such as hepatitis, etc., are expressed in body fluids such as blood and plasma, and are closely related to the cause or progression of the disease. This invention relates to an adsorbent that adsorbs and removes malignant substances thought to be associated with body fluids.

(従来の技術) 従来、このような目的に使用された、あるいは研究され
てきた吸着材の主なものを挙げると、例えは肝臓病用に
人工肝臓として用いられた活性炭あるいは親水性高分子
でコートした活性炭、家族性高コレステロール血症用に
低比重リボ蛋白質吸着材として用いられたヘパリン固定
化アガロース(Lupien、 P−J 、 et、a
l、 : A new approach t。
(Prior art) The main adsorbents that have been used or studied for this purpose are, for example, activated carbon used as an artificial liver for liver diseases and hydrophilic polymers. Coated activated charcoal, heparin-immobilized agarose used as a low-density riboprotein adsorbent for familial hypercholesterolemia (Lupien, P-J, et al.
l: A new approach.

the management of familia
l hypercholesterolemia。
the management of family
l hypercholesterolemia.

Removal of plasma−cholest
erol based on theprincipl
e of affinity chromatogra
phy、 Lancet。
Removal of plasma-cholest
erol based on the principle
e of affinity chromatogra
phy, Lancet.

2二1261〜1264.1976、)や、ガラスパウ
ダー、ガラスピーズ(Carlson、 L、 A、 
:Chromatographic 5eparati
on of serumlipoproteins o
n glass powder colums+Des
cription of the method an
d some applications。
221261-1264.1976,), glass powder, glass peas (Carlson, L, A,
:Chromatographic 5eparati
on of serum lipoproteins o
n glass powder columns+Des
cription of the method
d some applications.

Cl1n、 Chim、Acta、 5 : 528〜
538 、1960.)がある。捷た、近年では、各種
自己抗体、免疫複合体の吸着材として本発明者らが見出
した、担体に被吸着物質と生物学的または/および化学
的な選択的相互作用をなす特別な物質全化学結合により
保持させてなる種々の吸着材がある。(%願昭55−−
128185,128184.56−7152゜189
23.41700 ) (発明が解決しようとする問題点) 従来の吸着材の中には、体液浄化用吸着材としてはまた
充分な吸着能力がなく、体外循環治療器とし一〇用いた
場合、吸着材を大量に用いないと充分な臨床効果が発揮
できず、吸着材を大量に用いるとプライミングボリュー
ムが増大し、患者に対し又好ましくない′#響を与える
という結果になってしまうものがあり、改良が望まれて
いた。また、よりプライミングボリュームの小さい、コ
ンノくクトで操作性のよい吸着カラムとするため罠も、
吸着材の吸着能力を上けることが望まれていた。
Cl1n, Chim, Acta, 5: 528~
538, 1960. ). In recent years, the present inventors have discovered that special substances that have selective biological and/or chemical interactions with the adsorbed substances have been developed as adsorbents for various autoantibodies and immune complexes. There are various adsorbents that are held together by chemical bonds. (% Gansho 55--
128185, 128184.56-7152°189
23.41700) (Problems to be Solved by the Invention) Some conventional adsorbents do not have sufficient adsorption capacity as adsorbents for body fluid purification, and when used as an extracorporeal circulation therapy device, the adsorption capacity is insufficient. If a large amount of adsorbent is not used, a sufficient clinical effect cannot be achieved, and if a large amount of adsorbent is used, the priming volume may increase, resulting in undesirable effects on the patient. Improvements were desired. In addition, in order to create a compact and easy-to-operate adsorption column with a smaller priming volume, we also added traps.
It has been desired to increase the adsorption capacity of adsorbents.

(間勅を解決するための手段) 本発明者らは、上記したような従来からある吸着材の問
題点を解決し、さらには、より能力の高い吸着材とする
ために吸着材の微細孔の構造を中心に鋭意検討を重ねた
結果、従来は被吸着物質の直径よりやや大きい程度の孔
径の細孔がシャープな孔径分布で存在するのが、吸着表
面積を大きくできるということで高い吸着能力が得られ
ると考えられていたのに対し、被吸着物質の直径付近か
ら、被吸着物質の直径の数十倍までの広い範囲の孔径を
持つ細孔が分布している吸着材が、篤くべきほど高い吸
着能力全発揮できることを見出し、本発明を得るに至っ
た。
(Means for Solving the Problem) The present inventors have solved the problems of conventional adsorbents as described above, and further, in order to make the adsorbent even more capable, As a result of intensive studies focusing on the structure of the adsorbent, we found that conventionally, pores with a diameter slightly larger than the diameter of the adsorbed substance exist with a sharp pore size distribution, but by increasing the adsorption surface area, high adsorption capacity can be achieved. However, it is believed that adsorbents with pores distributed over a wide range of pore sizes, from around the diameter of the adsorbed substance to several tens of times the diameter of the adsorbed substance, are highly effective. The inventors have discovered that the higher the adsorption capacity, the greater the full potential of the adsorption capacity, and have thus obtained the present invention.

すなわち、本発明は、被吸着物質と結合可能な表面を持
つ多孔質吸着材において、被吸着物質の直径をdとする
とき、上記吸着材の全細孔容量の70%以上が孔径0.
2dから50dの範囲に分布し、かつ、孔径’(5Dと
するとき、いかなる孔径においても0.8Dから1.2
Dの範囲の細孔容量が全細孔容量の80チより少ないこ
とを特徴とする体液浄化用吸着材である。
That is, in the present invention, in a porous adsorbent having a surface capable of bonding with an adsorbed substance, where d is the diameter of the adsorbed substance, 70% or more of the total pore volume of the adsorbent has a pore diameter of 0.
It is distributed in the range of 2d to 50d, and the pore diameter '(5D) is 0.8D to 1.2 at any pore diameter.
This is an adsorbent for body fluid purification characterized in that the pore volume in the range D is less than 80 cm of the total pore volume.

ここで、被吸着物質と結合可能な表面金持つ多孔質吸着
材とは、活性炭、シリカゲル、ガラス等のように材料表
面自体が吸着性を持つ多孔体であってもよく、また、そ
れ自体はあまり吸着性を示さない多孔性の担体に被吸着
物質と結合可能なりガントを固定化したものでもよく、
吸着体の内部まで続くスポンジ状の網目構造を持つ多孔
体であり、被吸着物質と生化学的、物理的、化学的に結
合できる表面を持っている吸着材が好ましい。
Here, the porous adsorbent having gold on the surface that can bind to the adsorbed substance may be a porous material such as activated carbon, silica gel, glass, etc., which has adsorption properties on its surface; Gant may be immobilized on a porous carrier that does not show much adsorptivity and is capable of binding the adsorbed substance.
It is preferable to use an adsorbent that is a porous body with a sponge-like network structure that extends into the interior of the adsorbent, and has a surface that can biochemically, physically, and chemically bond with the substance to be adsorbed.

被吸着物質の直径dとは、分子を細長−回転楕円体と考
えたときの回転軸(長軸)の長さを言い、次式fl)で
定義される。
The diameter d of the adsorbed substance refers to the length of the axis of rotation (long axis) when the molecule is considered to be an elongated spheroid, and is defined by the following formula fl).

ここで、Mは沈降速度、拡散、粘度のうちいずれか二つ
の測定からめた分子量、■は溶質の偏比容、NViアボ
ガドロ数、Pは分子を細長い回転楕円体と考えたときの
軸比〔(短軸の長さ)/(長軸の長さ)〕であり、摩擦
比から計算される(蛋白質化学2 、P 357〜56
3.水島三一部、赤堀四部編集、共立出版)。
Here, M is the molecular weight determined from the measurement of any two of sedimentation velocity, diffusion, and viscosity, ■ is the partial specific volume of the solute, NVi Avogadro's number, and P is the axial ratio when the molecule is considered to be an elongated spheroid. (Length of minor axis)/(Length of major axis)] and is calculated from the friction ratio (Protein Chemistry 2, pp. 357-56
3. Edited by Mizushima Sanbu and Akahori Shibu, Kyoritsu Publishing).

全細孔容量、孔径は、水銀圧入法(例えば、咳丁学講ト
4.触媒測定法、触媒学会編、地へ書館、69頁から7
3頁)により得られる水銀圧大曲線から計算によってめ
られる値を言う。
The total pore volume and pore diameter are calculated using the mercury intrusion method (for example, 4. Catalyst Measurement Method, edited by the Catalysis Society, Jiheshokan, pp. 69 to 7).
This refers to the value calculated from the large mercury pressure curve obtained from page 3).

ここで、全細孔容量1ltO,5cc/f(乾燥吸着材
重量)以上あるのが好ましく、1.00071以上ある
のかさらに好ましい。望ましくは2.OCC/fより大
きいことであり、s、oct7y以上あるのかさらに望
ましい。細孔容量は吸着材の材質が同一であれば、値が
大きいほど単位体積当りの吸着材内部空′間容積が大き
くなり、それだけ被吸着物質の吸着容量を大きくできる
Here, the total pore volume is preferably 1 ltO.5 cc/f (dry adsorbent weight) or more, and more preferably 1.00071 or more. Preferably 2. It is more desirable that it is greater than OCC/f, and it is more desirable that it be greater than s, oct7y. If the material of the adsorbent is the same, the larger the value of the pore capacity, the larger the internal space volume of the adsorbent per unit volume, and the adsorption capacity of the adsorbed substance can be increased accordingly.

吸着材の孔径分布は、被吸着物質の直径1rdとすると
き、0.2dから50dの範囲に全細孔容量の70%以
上が含まれていることが好筐しい。すなわち、被吸着物
質の直径dよりも大きい孔径側に幅広く分布しているこ
とが好ましい。ここで、dよりも小さい範囲、すなわち
、0.2d〜1.Odの孔径範囲を含んでいるのは、被
吸着物質の直径dが細長い回転楕円体の長軸により定義
されていることによる。
The pore size distribution of the adsorbent is preferably such that 70% or more of the total pore volume is within the range of 0.2 d to 50 d, when the diameter of the substance to be adsorbed is 1rd. That is, it is preferable that the particles are widely distributed on the pore diameter side larger than the diameter d of the adsorbed substance. Here, a range smaller than d, ie, 0.2d to 1. The inclusion of a pore size range of Od is due to the fact that the diameter d of the adsorbed substance is defined by the long axis of the elongated spheroid.

孔径の分布状轢は、孔径iDとするとき、いかなる孔径
においても(0,2dから50dの開のとの孔径をとっ
てみても)、0,8Dから162Dの範囲の細孔容量が
全細孔容量の80チより少ないことが必要である。すな
わち、特定の孔径範囲のみに細孔が集中していす、広い
孔径範囲に細孔が分布していることが好ましい。
The distribution of pore diameters indicates that, when the pore diameter is iD, the pore volume in the range of 0.8D to 162D is the total pore size at any pore diameter (even when considering pore diameters from 0.2D to 50D). It is necessary that the pore volume be less than 80 inches. That is, it is preferable that the pores be concentrated only in a specific pore size range, or that the pores be distributed over a wide pore size range.

血液、体液中から、ある特定の物II全吸着しようとす
る時、被吸着物質の吸着表面積を大きくとるためKは、
被吸着物質の直径dと同程度の孔径範囲に細孔が集中し
ていることが望ましいが、孔径分布が狭いと被吸着物質
よりも大きい直径奮持つ共存物質により、吸着材粒子表
面で目詰まり奮起してしまうことが多い。目詰まりを起
し難くするためには、孔径の大きな吸着材を使用すれば
よいのであるが、この場合には、吸着材の表面積が小き
くなり、被吸着物質の吸着容量が低くなってしまう。こ
のように孔径分布の狭い吸着材の場合、血液、体液中の
共存物質の影響分きわめて受けやすく、吸着性能を上け
ることは非常罠困難である。
When trying to completely adsorb a certain substance II from blood or body fluids, K is:
It is desirable that the pores be concentrated in a pore size range similar to the diameter d of the adsorbed substance, but if the pore size distribution is narrow, the surface of the adsorbent particles may become clogged with coexisting substances that have a diameter larger than that of the adsorbed substance. I often get excited. In order to prevent clogging, it is possible to use an adsorbent with a large pore size, but in this case, the surface area of the adsorbent becomes small and the adsorption capacity of the adsorbed substance becomes low. . In the case of an adsorbent having such a narrow pore size distribution, it is extremely susceptible to the effects of coexisting substances in blood and body fluids, and it is extremely difficult to improve its adsorption performance.

これ九対し、孔径分布の広い吸着材の場合には、被吸着
物質よりも大きい直径を持つ共存物質は孔径の大きい細
孔に捕捉されるため、目的とする物質が通過するための
細孔全潰してしまうことが少なくなり、結果として、吸
着容量の大幅な増大が可能となる本のと考えられる。
On the other hand, in the case of adsorbents with a wide pore size distribution, coexisting substances with a diameter larger than that of the adsorbed substance are captured in the pores with a large pore size. It is thought that the book is less likely to be crushed, and as a result, the adsorption capacity can be significantly increased.

より好ましい孔径の分布は、孔径をDとするとき、いか
なる孔径においても、0.8Dから1.2Dの範囲の細
孔容量が全細孔容量の75%以)であること、望ましく
は70%以下、さらに型筒しいのVi65%以下である
A more preferable pore size distribution is such that, at any pore size, the pore volume in the range of 0.8D to 1.2D is 75% or more of the total pore volume, preferably 70%. Below, the Vi of the mold is 65% or less.

孔tt分布の広い吸着材の中でも、孔径分布が0.2d
からSodの間である程度の偏り會持つ場合には、大孔
径側圧偏るよりは小孔径側に偏っている方が好ましい。
Among adsorbents with a wide pore tt distribution, the pore size distribution is 0.2d.
When there is a certain degree of bias between Sod and Sod, it is preferable that the pressure is biased toward the small hole diameter side rather than biased toward the large hole diameter side.

0.2dから5dの孔径範囲に、0.2dから50dの
間の細孔容量の50から90%を含むのが好ましく、5
5〜85チを含むのがさらに好ましく、60〜80チを
含むのが望ましい。
Preferably, the pore size range from 0.2d to 5d contains 50 to 90% of the pore volume between 0.2d and 50d;
It is more preferable to include 5 to 85 inches, and preferably 60 to 80 inches.

ここで、被吸着物質と結合可能な表面を持つ多孔質吸着
材について例示する。材料表面自体が吸着性を有するも
のの例としては、人工肝臓用に、中・低分子量の薬物、
毒物吸着用として活性炭、家族性高コレステロール血症
治療用にコレステロールの吸着除去用として多孔質ガラ
スがあげられる。また、担体にリガンドを固定化したタ
イプの例としてリガンドを例示すると、家族性高コレス
テロール血症治療用に低比重リポ蛋白質吸着用として、
ヘパリンまたは抗低比重リボ蛋白質抗体が挙げられる。
Here, a porous adsorbent having a surface capable of bonding with an adsorbed substance will be exemplified. Examples of materials whose surface itself has adsorption properties include medium- and low-molecular-weight drugs for artificial livers,
Activated carbon is used to adsorb toxic substances, and porous glass is used to adsorb and remove cholesterol in the treatment of familial hypercholesterolemia. In addition, an example of a type of ligand immobilized on a carrier is a ligand for adsorption of low-density lipoprotein for treatment of familial hypercholesterolemia.
Examples include heparin or anti-low density riboprotein antibodies.

全身性エリテマトーデス治療用としては、抗核抗体、抗
DNA抗体の吸着除去用に、アデニン、グアニン、シト
シン、ウラシル、チミン等のモノ、ジ、トリヌクレオチ
ドのホモポリマー、またはコポリマー、天然に存在する
DNA%RNA等の核酸があげられる。ま友、血中に存
在するDNA。
For the treatment of systemic lupus erythematosus, homopolymers or copolymers of mono-, di-, and trinucleotides such as adenine, guanine, cytosine, uracil, and thymine, and naturally occurring DNA are used for adsorption and removal of anti-nuclear antibodies and anti-DNA antibodies. Examples include nucleic acids such as %RNA. My friend, DNA exists in the blood.

RNA、gNAの吸着除去用に、抗一本鎖DNA抗体、
抗二本鎖DNA抗体、抗RNA抗体、抗ENA抗体等の
抗核酸抗体、メチル化アルブミンアクチノマイシンD等
の塩基性化合物があげられる。さらK、血中の免疫複合
体の吸着除去用には、C1q等の補体成分、プロティン
A等の特異タンパク質、抗ヘビーチェイン不変部第2相
抗体等の免疫複合体に対する抗体があげられる。
For adsorption and removal of RNA and gNA, anti-single-stranded DNA antibody,
Examples include anti-nucleic acid antibodies such as anti-double-stranded DNA antibodies, anti-RNA antibodies, and anti-ENA antibodies, and basic compounds such as methylated albumin actinomycin D. Furthermore, for adsorption and removal of immune complexes in blood, there may be mentioned complement components such as C1q, specific proteins such as protein A, and antibodies against immune complexes such as anti-heavy chain constant region 2 phase antibodies.

慢性関節リウマチ、悪性関節リウマチ治療用としては、
尿素、塩酸グアニジ/、メルカプトエタノール、界面活
性剤、有機溶剤等の化学的変性(凝集)方法、熱、超音
波、ガスバブリング等の物理的変性(凝集)方法により
変性さ〆た変性γ−グロブリン、変性イムノグロブリン
、凝集γ−グロブリン、凝集イムノグロブリン、イムノ
グロブリンのFc部、イムノグロブリンのへピーチェイ
ン不変部第2相およびそれらの前記変性方法による変性
体等のリウマチ因子に対する抗原様物質、および抗リウ
マチ因子抗体があげられる。また、リウマチの免疫複合
体除去用には、C1q等の補体成分、プロティンA等の
特異タンパク質、抗ヘビ−チェイン不変部第2相抗体等
の免疫複合体に対する抗体があげられる。
For the treatment of chronic rheumatoid arthritis and malignant rheumatoid arthritis,
Modified γ-globulin modified by chemical denaturation (aggregation) methods such as urea, guanidihydrochloride/mercaptoethanol, surfactants, organic solvents, etc., or physical denaturation (aggregation) methods such as heat, ultrasound, gas bubbling, etc. , antigen-like substances for rheumatoid factors such as modified immunoglobulin, aggregated γ-globulin, aggregated immunoglobulin, Fc region of immunoglobulin, hepe chain constant region 2 phase of immunoglobulin, and modified products thereof by the above-mentioned modification method; Examples include anti-rheumatoid factor antibodies. In addition, for removing immune complexes from rheumatism, there may be mentioned complement components such as C1q, specific proteins such as protein A, and antibodies against immune complexes such as anti-snake chain constant region second phase antibodies.

橋本病治療用KFi、サイログロブリン、甲状腺のミク
ロンーム分画成分があげられ、重症筋無力症治療用には
、神経筋のアセチルコリンレセプター分画成分があげら
れる。
For the treatment of Hashimoto's disease, KFi, thyroglobulin, and thyroid microluminous fraction components are listed, and for the treatment of myasthenia gravis, neuromuscular acetylcholine receptor fraction components are listed.

糸球体腎炎治療用には、糸球体基底膜成分、特発性血小
板減少性紫斑病治療用iCF′i、血小板膜成分、血小
板顆粒分画成分、クツシング症候群治療用にはトランス
コーチシン、抗コーチシン抗体があげられる。
For the treatment of glomerulonephritis, glomerular basement membrane components, iCF'i for the treatment of idiopathic thrombocytopenic purpura, platelet membrane components, platelet granule fraction components, and for the treatment of Cushing's syndrome, transcortisin and anti-cortiscin antibodies. can be given.

肝炎の予防、治療用には、A型肝炎ウィルス、B型肝炎
ウィルス等のウィルス表面抗原に対する抗体があげられ
る。
For prevention and treatment of hepatitis, antibodies against surface antigens of viruses such as hepatitis A virus and hepatitis B virus can be mentioned.

高血圧治療用には、抗アンジオテンシン■抗体があけら
れる。
Anti-angiotensin antibodies are used to treat hypertension.

リンパ球異常に基づく免疫疾患治療用には、抗Bセル抗
体、抗すプレッサーT抗体、杭ヘルパーT抗体等の抗リ
ンパ球抗体を用いることができる。
For the treatment of immune diseases based on lymphocyte abnormalities, anti-lymphocyte antibodies such as anti-B cell antibodies, anti-pressor T antibodies, and pile helper T antibodies can be used.

乳ガン等のガン治療用には、プロティンA、抗イムノグ
ロブリン抗体があげられる。
Protein A and anti-immunoglobulin antibodies are used to treat cancer such as breast cancer.

本発明に用いることができるリガンドは、以上の例示に
限定されるものではなく、コングニチニン、コンカナバ
リンA5フイトヘマアグルチニン等のレクチン、核酸、
アミノ酸、脂質、プロタミン、抗原、抗体、酵素、基質
、補酵素等の被吸着物質と結合可能な公知の物質を用い
ることができる。
Ligands that can be used in the present invention are not limited to the above examples, but include lectins such as congnitinin, concanavalin A5 phytohemaagglutinin, nucleic acids,
Known substances capable of binding to adsorbed substances such as amino acids, lipids, protamines, antigens, antibodies, enzymes, substrates, and coenzymes can be used.

担体としては、セルロース系ゲル、デキストラン系ゲル
、アガロース系ゲル、ポリアクリルアミド系ゲル、多孔
質ガラス、ビニルポリマーゲル等の有機′iたは無機の
多孔体が例示でき、通常のアフィニティークロマトグラ
フィーに用いられる担体用の材料は全て使用することが
できるが、前記した孔径および孔径分布の条件を満たす
本のである必要がある。
Examples of the carrier include organic or inorganic porous materials such as cellulose gel, dextran gel, agarose gel, polyacrylamide gel, porous glass, and vinyl polymer gel, which can be used in ordinary affinity chromatography. All of the materials for the carrier that can be used can be used, but they must meet the conditions of pore size and pore size distribution described above.

リガンドを担体)に結合する方法は、共有結合、イオン
結合、物理吸着、包埋あるいは重合体表面への沈殿不溶
化等あらゆる公知の方法が例示できるが、結合物の溶出
性よりみて、共有結合により固定、不溶化して用いるこ
とが好ましい。そのため通常固定化酵素、アフイニテイ
クロマトグラフイで用いられる公知の担体の活性化方法
およびリガンドの結合方法が例示できる。
Examples of methods for binding a ligand to a carrier include covalent bonding, ionic bonding, physical adsorption, embedding, and precipitation insolubilization on the surface of a polymer. It is preferable to use it after being fixed or insolubilized. For this purpose, examples include commonly known methods for activating immobilized enzymes, carriers used in affinity chromatography, and methods for binding ligands.

活性化方法を例示すると、ハロゲン化シアン法、エピク
ロルヒドリン法、ビスエポキシド法、ハロゲン化トリア
ジン法、ブロモアセチルプロミド法、エチルクロロホル
マート法、1.1′−カルボニルジイミダゾール法等を
あげることができる。本発明の活性化方法は、リガンド
の7ミノ基、水酸基、カルボキシル基、チオール基等の
活性水素を有する核反応基と置換および/または付加反
応できればよく、上記の例示に限定されるものではない
Examples of activation methods include a cyanogen halide method, an epichlorohydrin method, a bisepoxide method, a halogenated triazine method, a bromoacetyl bromide method, an ethyl chloroformate method, a 1,1'-carbonyldiimidazole method, etc. can. The activation method of the present invention is not limited to the above examples as long as it can perform a substitution and/or addition reaction with a nuclear reactive group having active hydrogen such as a 7-mino group, hydroxyl group, carboxyl group, or thiol group of a ligand. .

また、無機多孔体担体の場合には、r−グリシドキシプ
ロビルトリメトキシシラン、γ−アミノプロピルトリエ
トキシシラン、r−メルカプトプロピルトリメトキシシ
ラン、ビニルトリクロロシラン等のシランカップリング
剤が好ましく例示できる。
In the case of an inorganic porous carrier, preferred examples include silane coupling agents such as r-glycidoxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, r-mercaptopropyltrimethoxysilane, and vinyltrichlorosilane. can.

本発明の体液浄化用吸着材は、体液の導出入口全備えた
容器内圧充填保持して使用されるのが一般的である。
The body fluid purifying adsorbent of the present invention is generally used by filling and maintaining the internal pressure of a container equipped with all the inlet and outlet ports for body fluid.

図面において、1は本発明の体液浄化用吸着材を納めて
なる吸着装置の1例を示すものであり、円筒2の一端開
口部に5内側にフィルター5を張ったバッキング4を介
して体液導入口5を有するキャップ6をネジ嵌合し、円
筒2の他端開口部に内側にフィルター3′ヲ張ったバッ
キング4′ヲ介して体液導出ロアを有するキャップ8を
ネジ嵌合して容器を形成し、フィルター3および5′の
間隙に吸着材を充填保持させて吸着材層9全形成してな
るものである。
In the drawings, reference numeral 1 shows an example of an adsorption device containing the adsorbent for body fluid purification of the present invention, in which body fluid is introduced into an opening at one end of a cylinder 2 through a backing 4 with a filter 5 stretched inside. A cap 6 having an opening 5 is screwed into the opening at the other end of the cylinder 2, and a cap 8 having a body fluid discharge lower part is screwed into the opening at the other end of the cylinder 2 through a backing 4' having a filter 3' stretched therein, thereby forming a container. However, the gap between the filters 3 and 5' is filled with adsorbent and retained therein, thereby forming the entire adsorbent layer 9.

吸着材層9には、本発明の該吸着材を単独で充填しても
よく、他の吸着材と混合もしくは積層してもよい。これ
により吸着材の相乗効果によるより広範な臨床効果が期
待できる。吸着材層9の容積は、体外循環に用いる場合
、50〜40〇−程度が適当である。
The adsorbent layer 9 may be filled with the adsorbent of the present invention alone, or may be mixed or laminated with other adsorbents. As a result, a wider range of clinical effects can be expected due to the synergistic effect of the adsorbent. When used for extracorporeal circulation, the appropriate volume of the adsorbent layer 9 is about 50-400.

本発明の装置を体外循環で用いる場合には、大路次の二
通りの方法がある。一つには、体内から取り出した血液
を遠心分離機もしくは模型血漿分離器を使用して、血漿
成分と血球成分とに分離し友後、血漿成分を該装置に通
過きせ、浄化した後、血球成分と合わせて体内にもどす
方法であり、他の一つは体内から取り出した血液を直接
核装置に通過させ、浄化する方法である。
When the device of the present invention is used for extracorporeal circulation, there are two methods as follows: One method is to separate blood taken from the body into plasma components and blood cell components using a centrifuge or model plasma separator, and then pass the plasma components through the device to purify them and separate them into blood cells. One method is to return the blood to the body together with its components, and the other method is to pass blood taken from the body directly through a nuclear device and purify it.

ま九、血液もしくは血漿の通過速度については、該吸着
材の吸着能率が非常に高いため、吸着材の粒度を粗くす
ることができ、また充填度を低くできるので、吸着材層
の形状の如何にか\わりなく、高い通過速度を与えるこ
とができる。そのため多量の体液処理をすることができ
る。
(9) Regarding the passage rate of blood or plasma, since the adsorption efficiency of the adsorbent is very high, the particle size of the adsorbent can be made coarser, and the degree of packing can be lowered, so the shape of the adsorbent layer can be adjusted. A high passing speed can be provided regardless of the situation. Therefore, a large amount of body fluid can be treated.

体液の通液方法としては、臨床上の必要に応じ、あるい
は設備の装置状況に応じて、連続的に通液してもよいし
、また断続的に通液使用してもよい。
The method for passing body fluids may be either continuous or intermittent, depending on clinical needs or equipment conditions.

(発明の効果) 以上述べてきたように、本発明吸着材は、吸着能力が従
来のものに比べて非常圧高いため、体液浄化用吸着材と
して用いた場合、吸着カラムのプライミングボリューム
を小さくできるので、血液の体外導出に伴なう患者Kか
かる負担を非常圧軽くでき、カラムもコンパクトで操作
性もよい。
(Effects of the Invention) As described above, the adsorbent of the present invention has an extremely high adsorption capacity compared to conventional ones, so when used as an adsorbent for body fluid purification, the priming volume of the adsorption column can be reduced. Therefore, the burden placed on the patient due to the removal of blood from the body can be extremely reduced, and the column is also compact and easy to operate.

本発明の吸着材は、自己血漿、自己血液等の体液を浄化
、再生する一般的な用法に適用可能であり、家族性高脂
血症のように血清脂質の増加に起因する各種疾患、癌、
免疫増殖性症候群、慢性関節リウマチ、全身性エリテマ
トーデス等の1原病、重症筋無力症等の自己免疫疾患、
アレルギー、臓器移植時の拒絶反応等の生体免疫機能に
関係した疾患および現象、あるいは腎炎等の腎臓病、肝
炎等の肝臓病などの体外循環治療に有効に利用できる。
The adsorbent of the present invention can be applied to general uses for purifying and regenerating body fluids such as autologous plasma and blood, and can be used to treat various diseases caused by increased serum lipids such as familial hyperlipidemia, and cancer. ,
Immune proliferative syndrome, rheumatoid arthritis, systemic lupus erythematosus, etc., autoimmune diseases such as myasthenia gravis,
It can be effectively used for extracorporeal circulation treatment of diseases and phenomena related to the body's immune function such as allergies and rejection reactions during organ transplants, kidney diseases such as nephritis, and liver diseases such as hepatitis.

(実施例) 実施例1 多孔質ガラスを吸着材として用い、家族性高コレステロ
ール血症患者血漿中の低比重リボ蛋白質(直径d=25
0X)吸着性を調べた。
(Example) Example 1 Using porous glass as an adsorbent, low-density riboprotein (diameter d = 25
0X) adsorption properties were investigated.

使用した多孔質ガラスは、孔径50〜12500X (
0,2a〜50d)の孔径範囲に全細孔容量(2,28
CC/fi’ )(095%が分布し、50〜1250
0 Xの孔径範囲で孔径をDとするとき、0.8Dから
1.2Dの範囲の細孔容量で最大の値は、全細孔容量の
72チであった。
The porous glass used had a pore diameter of 50 to 12,500X (
The total pore volume (2,28
CC/fi') (095% distribution, 50-1250
When the pore size is D in the pore size range of 0.0 x, the maximum value in the pore volume range of 0.8D to 1.2D was 72cm, which is the total pore volume.

上記多孔質ガラスは、CPG 500 (エレクトロ・
ニュークレオニクス社製、平均孔径515X)10−を
0.5 N%NaOH260−中に浸漬し、20Cで1
5時間、溶解操作を行なった後、充分水洗、乾燥して得
た。細孔の分布はカル口・エルバ社(イタリア)の水銀
圧入式ポロシメータ一番用いて測定した。
The above porous glass is CPG 500 (Electro
Made by Nucleonics, average pore size 515X) 10- is immersed in 0.5 N% NaOH260-
After performing a dissolution operation for 5 hours, the solution was thoroughly washed with water and dried. The pore distribution was measured using a mercury intrusion porosimeter manufactured by Kalkuchi Erba (Italy).

上記多孔質ガラストをヘパリン加家族性高コレステロー
ル血症患者血漿12−に浸漬し、57Cで3時間、振と
うしながらインキュベートする吸着実験を行なった。こ
の後、吸着材を沈降させ、上清を分析し、使用し次患者
血漿と比較した。
An adsorption experiment was conducted in which the above porous glass was immersed in heparin-added familial hypercholesterolemia patient plasma 12- and incubated at 57C for 3 hours with shaking. After this, the adsorbent was allowed to settle and the supernatant was analyzed and used and compared with the next patient's plasma.

分析は、低比重リボ蛋白質(以下LDLと略す)を比濁
法にて測定した。
In the analysis, low-density riboprotein (hereinafter abbreviated as LDL) was measured by turbidimetry.

分析の結果、患者血漿中のLDLが730 lR97d
lであったのに対し、吸着後は150〜/dlK下がっ
た。すなわち、吸着材1d当りに69.6#+90低比
重リボ蛋白質が吸着された。
As a result of the analysis, the LDL in the patient's plasma was 730 lR97d.
1, but after adsorption it decreased by 150~/dlK. That is, 69.6#+90 low-density riboproteins were adsorbed per 1 d of adsorbent.

比較例1 吸着材としてCPG500 (エレクトロ・ニュークレ
オニクス社製、平均孔径51sX)11用い穴以外は、
実施例1と同様に実験した。
Comparative Example 1 CPG500 (manufactured by Electro Nucleonics, average pore diameter 51sX) was used as the adsorbent except for the holes.
An experiment was conducted in the same manner as in Example 1.

CPG500Fi、孔径50〜12500 X (0,
2d〜50d)の孔径範囲に全細孔容量(1,02a;
/f/)の98チが分布しているが、50〜12500
 Aの孔径範囲で孔径をDとするとき、0.8D〜1.
2Dの範囲の細孔容量で最大の値は、全細孔容量の95
%であった。すなわち、孔径分布が非常にシャープであ
った。
CPG500Fi, pore size 50~12500X (0,
The total pore volume (1,02a;
/f/), 98 chis are distributed, but 50 to 12,500
When the pore diameter is D in the pore diameter range of A, 0.8D to 1.
The maximum value of the pore volume in the 2D range is 95% of the total pore volume.
%Met. That is, the pore size distribution was very sharp.

吸着実験の結果、患者血漿中のLDLが730〜/aで
あつ几のに対し、吸着後は45041/dj罠下がった
だけであった。すなわち、吸着材ITat当りに541
n9のLDLが吸着されただけであった。
As a result of the adsorption experiment, the LDL in the patient's plasma was 730~/dj, whereas it was only 45041/dj after adsorption. That is, 541 per adsorbent ITat
Only n9 LDL was adsorbed.

実施例2 多孔質ガラスを吸着材として用い、家族性高コレステロ
ール血症患者血漿中の低比重リボ蛋白質(直径d=25
0X)吸着性を調べた。
Example 2 Using porous glass as an adsorbent, low-density riboprotein (diameter d = 25
0X) adsorption properties were investigated.

使用した多孔質ガラスは、孔径50〜12500X (
0,2a〜50d)の孔径範囲に全細孔容量(4,38
CC/7 )の80%が分布し、50〜12500 X
の孔径範囲で孔径をDとするとき、0.8Dから1.2
Dの範囲の細孔容量で最大の値は、全細孔容量の20%
であった。
The porous glass used had a pore diameter of 50 to 12,500X (
The total pore volume (4,38
80% of CC/7) is distributed, 50-12500
When the pore diameter is D in the pore diameter range of 0.8D to 1.2
The maximum value of the pore volume in the range D is 20% of the total pore volume.
Met.

上記多孔質ガラスは、CPG500 (エレクトロ・ニ
ュータレオニクス社製、平均孔径493X)+ OsI
/i 1 N、 NaOH260−中に浸漬し、30p
で15時間、溶解操作を行なった後、充分水洗、乾燥し
て得た。
The above porous glass is CPG500 (manufactured by Electro Nutaleonics, average pore diameter 493X) + OsI
/i 1 N, immersed in NaOH260-, 30p
After performing a dissolution operation for 15 hours, the solution was thoroughly washed with water and dried.

実施例1と同様に吸着実験を行なつ、tところ、患者血
漿中のLDLが730mg/dtであったのに対し、吸
着後は170〜/dlに下がった。すなわち、吸着材1
rnl当りに67.2〜の低比重リボ蛋白質が吸着され
た。
An adsorption experiment was conducted in the same manner as in Example 1, and while the LDL in the patient's plasma was 730 mg/dt, it decreased to 170~/dl after adsorption. That is, adsorbent 1
~67.2 low density riboproteins were adsorbed per rnl.

実施例3 多孔質ガラスを吸着材として用い、家族性高コレステロ
ール血症患者血漿中の低比重リボ蛋白質(直径d==2
50^)吸着性を調べた。
Example 3 Using porous glass as an adsorbent, low-density riboproteins (diameter d==2
50^) Adsorption properties were investigated.

使用した多孔質ガラスは、孔径50〜12500大(0
,2d〜50d)の孔径範囲に全細孔容量(3,07Q
C/9 )の96%が分布し、50〜12500^の孔
径範囲で孔径iDとするとき、0.8Dから1.2Dの
範囲の細孔容量で最大の値は、全細孔容量の60%であ
った。
The porous glass used had a pore diameter of 50 to 12,500 (0
, 2d to 50d) with a total pore volume (3,07Q
C/9) is distributed, and when the pore size iD is in the pore size range of 50 to 12,500^, the maximum value in the pore volume range of 0.8D to 1.2D is 60% of the total pore volume. %Met.

上記多孔質ガラスは、CPG350(エレクトロ・ニュ
ータレオニクス社製、平均孔径345λ)10 ml 
f 5 N % NaOH50−中に浸漬し、室温で2
時間、溶解操作を行なった後、充分水洗、乾燥して得た
The above porous glass is CPG350 (manufactured by Electro Nutaleonics, average pore diameter 345λ) 10 ml
Soaked in f5N% NaOH50-2 at room temperature.
After performing the dissolution operation for several hours, the product was thoroughly washed with water and dried.

実施例1と同様に吸着実験を行なったところ、患者血漿
中のLDLが750ダ/aでおったのに対し、吸着後は
130〜/aに下がった。すなわち、吸着材1−当りに
72mgの低比重リボ蛋白質が吸着された。
When an adsorption experiment was carried out in the same manner as in Example 1, the LDL in the patient's plasma was 750 Da/a, but after adsorption, it decreased to 130~/a. That is, 72 mg of low-density riboprotein was adsorbed per 1 inch of adsorbent.

比較例2 吸着材としてCPG550(エレクトロ・ニュークレオ
ニクス社製、平均孔径5as5.)を用いた以外は、実
施例1と同様に実験した。
Comparative Example 2 An experiment was conducted in the same manner as in Example 1, except that CPG550 (manufactured by Electro Nucleonics, average pore size 5 as 5.) was used as the adsorbent.

cpa35oVi、孔径50〜12500^(0,2d
〜50d)の孔径範囲に全細孔容量(1,02α/7)
の99俤が分布しているが、50〜12500 Xの孔
径範囲で孔径全りとするとき、0.8D〜1゜2Dの範
囲の細孔容量で最大の値は、全細孔容量の95チであっ
た。すなわち、孔径分布が非常にシャープであった。
cpa35oVi, pore size 50~12500^(0,2d
Total pore volume (1,02α/7) in the pore size range of ~50d)
However, when considering the entire pore size in the pore size range of 50 to 12,500 x, the maximum value in the pore volume range of 0.8D to 1゜2D is 95 of the total pore volume. It was Chi. That is, the pore size distribution was very sharp.

吸着実験の結果、患者血漿中のLDLが750η/aで
あったのに対し、吸着後は640〜/diに下がったた
けであった。すなわち、吸着材1−当りに10.81R
IiのLDLが吸着されただけであった。
As a result of the adsorption experiment, the LDL in the patient's plasma was 750 η/a, but after adsorption it was only 640/di. That is, 10.81R per adsorbent
Only LDL of Ii was adsorbed.

比較例3 吸着材としてCPG1400 (エレクトロ・ニューク
レオニクス社製、平均孔径1489 λ)金柑いた以外
は、実施例1と同様に実験した。
Comparative Example 3 An experiment was carried out in the same manner as in Example 1, except that CPG1400 (manufactured by Electro Nucleonics, average pore diameter 1489 λ) kumquat was used as the adsorbent.

CPG 1400d、孔径50〜12500 A (0
,2d〜50d)の孔径範囲に全細孔容量(1,02c
c/2)の97俤が分布しているが、50〜12500
^の孔径範囲で孔径をDとするとき、0.8D〜1.2
Dの範囲の細孔容量で最大の値は全細孔容量の94チで
あった。すなわち、孔径分布が非常にシャープであった
CPG 1400d, pore diameter 50~12500A (0
, 2d to 50d) with a total pore volume (1,02c
c/2) is distributed, but 50 to 12500
When the pore diameter is D in the pore diameter range of ^, 0.8D to 1.2
The maximum value of the pore volume in the range D was 94 cm, which is the total pore volume. That is, the pore size distribution was very sharp.

吸着実験の結果、患者血漿中のLDLが730IRQ 
/ #であったのに対し、吸着後は480η/aに下が
っただけであった。すなわち、吸着材1@/当りに30
1RG/のLDLが吸着されただけであった。
As a result of the adsorption experiment, the LDL in the patient's plasma was 730IRQ.
/#, but after adsorption it only decreased to 480η/a. That is, 30 per adsorbent
Only 1RG/LDL was adsorbed.

実施例4 シラン・カップリング剤を用いて多孔質ガラ、ス表面1
c ) IJグトファンを結合した吸着材を用い、重症
筋無力症卑者血漿中の抗アセチルコリン・レセプター抗
体(免疫グロブリンG、直径d == 300X)吸着
性を調べた。
Example 4 Porous glass surface 1 using silane coupling agent
c) Adsorption of anti-acetylcholine receptor antibody (immunoglobulin G, diameter d==300X) in plasma of myasthenia gravis subjects was investigated using an adsorbent bound with IJ gutophane.

使用した吸着材は、孔径60〜15000λ(0,2d
〜50d)の孔径範囲に全細孔容量(2,50cc/り
)の85%が分布し、6o〜tsooo Xの孔径範囲
で孔径をDとするとき、0.8Dから1.2Dの範囲の
細孔容量で最大の値は全細孔容量の63%であった。
The adsorbent used had a pore diameter of 60 to 15000λ (0.2d
85% of the total pore volume (2,50 cc/liter) is distributed in the pore size range of ~50d), and when the pore size is D in the pore size range of 6o~tsooo The maximum value of pore volume was 63% of the total pore volume.

上記吸着材は以下のようにして得た。The above adsorbent was obtained as follows.

CPG75 (エレクトロ・ニュータレオニクス社製。CPG75 (manufactured by Electro Nutaleonics).

平均孔径79λ)20d(i70.5N、NaOH52
0i中に浸漬し、20cで8時間、溶解操作を行なった
後、充分水洗し乾燥した。この多孔質ガラス5ynlを
アセトンで洗浄し友後、20v/v%、r−グリンドキ
シブロビルトリメトキシシランのア七トン溶液22−中
に浸漬し、振とうしなから50Cで40時間反応させた
。得られた活性化多孔質ガラス全アセトン、水、0.1
M炭酸ナトリウムバッファー(pH9,8)の順に洗浄
した後、81.5〜のトリプトファンを含む0.1M炭
酸ナトリウムバッファー中10mK$L、50Cで16
時間、攪拌しながら固定化反応を行なった。この後、充
分水洗して体液浄化用吸着材を得た。多孔質ガラスに固
定化されたトリプトファンの量は55μmol /−で
あった。
Average pore diameter 79λ) 20d (i70.5N, NaOH52
The sample was immersed in 0i water and dissolved at 20c for 8 hours, then thoroughly washed with water and dried. After washing 5ynl of this porous glass with acetone, it was immersed in a solution of 20% v/v, r-glyndoxybrobyltrimethoxysilane in acetone, and reacted at 50C for 40 hours without shaking. I let it happen. The resulting activated porous glass total acetone, water, 0.1
After sequential washing with M sodium carbonate buffer (pH 9,8), 10 mK$L in 0.1 M sodium carbonate buffer containing tryptophan of 81.5 to 16 at 50C.
The immobilization reaction was carried out with stirring for hours. Thereafter, it was thoroughly washed with water to obtain an adsorbent for body fluid purification. The amount of tryptophan immobilized on the porous glass was 55 μmol/−.

吸着実験は、得ら′rした吸着材1dに対し、3ゴの重
症筋無力症患者血漿音訓え、振とうしなから37Cで6
時間インキュベートする方法で行なった。インキュベー
ト後、吸着材を沈降させ、上清全分析し、使用した患者
血漿と比較した。
In the adsorption experiment, 1 d of the obtained adsorbent was soaked in 3 layers of myasthenia gravis patient plasma and heated at 37 C for 6 hours without shaking.
This was done by incubating for hours. After incubation, the adsorbent was sedimented and the entire supernatant was analyzed and compared to the patient plasma used.

分析は、抗アセチルコリン・レセプター抗体を抗ヒ)I
gG法にて測定した。
In the analysis, anti-acetylcholine receptor antibody was
It was measured by the gG method.

その結果、患者血漿中の抗アセチルコリン・レセプター
抗体が23cmot/meであったのに対し、吸着後で
Fi’ pmot/ rnlK下がった。
As a result, while the anti-acetylcholine receptor antibody in the patient's plasma was 23 cmot/me, Fi'pmot/rnlK decreased after adsorption.

比較例4 多孔質ガラスとしてCPG75 (平均孔径79X)を
NaOHで溶解処理せずに用いた以外は、実施例4と同
様にシランによる活性化、トリプトファンの固定を行な
った。固定化されたトリプトファンの量は38μmot
/−であった。
Comparative Example 4 Activation with silane and fixation of tryptophan were performed in the same manner as in Example 4, except that CPG75 (average pore size 79X) was used as the porous glass without being dissolved in NaOH. The amount of immobilized tryptophan is 38μmot
It was /-.

この吸着材は、孔径60〜1sooo X(0,2d〜
50d)の孔径範囲に全細孔容量(0,40cc/r)
の92%が分布しているが、60〜15000λの孔径
範囲で孔径をDとするとき、0.8D〜1.2Dの範囲
の細孔容量で最大の値は、全細孔容量の90チであった
。すなわち、孔径分布が非常にシャープであった。
This adsorbent has a pore size of 60 to 1 sooo
Total pore volume (0,40cc/r) in the pore size range of 50d)
However, when the pore size is D in the pore size range of 60 to 15,000λ, the maximum value in the pore volume range of 0.8D to 1.2D is 90% of the total pore volume. Met. That is, the pore size distribution was very sharp.

吸着実験を実施例4と同様に行なり几ところ、患者血漿
中の抗アセチルコリン・レセプター抗体カ25 p m
ot/−でわつfcのに対し、吸着後は20cmot/
mlにしか下がらなかった。
An adsorption experiment was conducted in the same manner as in Example 4, and it was found that 25 p m of anti-acetylcholine receptor antibodies in patient plasma
ot/- and Watsu fc, after adsorption it is 20 cmot/
It only went down to ml.

比較例5 多孔質ガラスとしてCpG350 (平均孔径345″
A)をNa OHで溶解処理せずに用いた以外は、実施
例4と同様にシランによる活性化、トリプトファンの固
定を行なった。固定化されたトリプトファンの量は32
μmo、j / areであった。
Comparative Example 5 CpG350 (average pore diameter 345'') as porous glass
Activation with silane and fixation of tryptophan were performed in the same manner as in Example 4, except that A) was used without dissolving with NaOH. The amount of immobilized tryptophan is 32
μmo, j/are.

この吸着拐は、孔径60〜15000X(0,2d〜5
0d)の孔径範囲に全細孔容M (1,020C/? 
)の99チが分布しているが、60〜15000Xの孔
径範囲で孔径iDとするとき、0.8D〜1.2Dの範
囲の細孔容量で最大の値は全細孔容−シ(、の95チで
あった。すなわち、孔径分布が非常にシャープであった
This adsorption process has a pore diameter of 60 to 15,000X (0.2d to 5
Total pore volume M (1,020C/?) in the pore size range of 0d)
) are distributed, but when the pore size iD is in the pore size range of 60 to 15000X, the maximum value in the pore volume range of 0.8D to 1.2D is the total pore volume - In other words, the pore size distribution was very sharp.

吸着実験を実施例4と同様に行なったところ、患者血漿
中の抗アセチルコリン・レセプター抗体が25cmot
/mlであったのに対し、吸着後は15 p mol 
/ mlにしか下がらなかった。
When an adsorption experiment was conducted in the same manner as in Example 4, the anti-acetylcholine receptor antibody in the patient's plasma was 25 cmot.
/ml, whereas after adsorption it was 15 p mol
/ml.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明体液浄化用吸着材全使用した吸着装置の一
例を示す断面図である。 代理人 清 水 猛
The drawing is a cross-sectional view showing an example of an adsorption device using the entire body fluid purifying adsorbent of the present invention. Agent Takeshi Shimizu

Claims (1)

【特許請求の範囲】[Claims] 被吸着物質と結合可能な表面を持つ多孔質吸着材におい
て、被吸着物質の直径1dとするとき、上記吸着材の全
細孔容量の70チ以上が孔径0.2dから50dの範囲
に分布し、かつ、孔径1kDとするとき、いかなる孔径
においても0.8Dから1.2Dの範囲の細孔容量が全
細孔容量の80チよシ少ないことを特徴とする体液浄化
用吸着材。
In a porous adsorbent having a surface capable of binding to an adsorbed substance, when the diameter of the adsorbed substance is 1 d, 70 or more of the total pore volume of the adsorbent is distributed in a pore size range of 0.2 d to 50 d. and, when the pore diameter is 1 kD, the pore volume in the range of 0.8D to 1.2D is less than 80% of the total pore volume at any pore diameter.
JP59096375A 1983-11-25 1984-05-16 Adsorbing material for purifying body fluids Granted JPS60241450A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59096375A JPS60241450A (en) 1984-05-16 1984-05-16 Adsorbing material for purifying body fluids
EP84113358A EP0143369B2 (en) 1983-11-25 1984-11-06 A porous adsorbent for adsorbing low density lipoproteins
DE8484113358T DE3480177D1 (en) 1983-11-25 1984-11-06 A porous adsorbent for adsorbing low density lipoproteins
US06/668,795 US4576927A (en) 1983-11-25 1984-11-06 Porous adsorbent for adsorbing low density lipoproteins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59096375A JPS60241450A (en) 1984-05-16 1984-05-16 Adsorbing material for purifying body fluids

Publications (2)

Publication Number Publication Date
JPS60241450A true JPS60241450A (en) 1985-11-30
JPS6359342B2 JPS6359342B2 (en) 1988-11-18

Family

ID=14163216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59096375A Granted JPS60241450A (en) 1983-11-25 1984-05-16 Adsorbing material for purifying body fluids

Country Status (1)

Country Link
JP (1) JPS60241450A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083202A1 (en) * 2001-04-12 2002-10-24 Kuraray Co., Ltd. Adsorbent device for body fluid treatment
WO2009034949A1 (en) * 2007-09-12 2009-03-19 Rei Medical Co., Ltd. Adsorption column for purifying body fluid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717658A (en) * 1980-07-04 1982-01-29 Kuraray Co Purifier for blood
JPS5810056A (en) * 1981-07-10 1983-01-20 株式会社クラレ Blood purifying apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717658A (en) * 1980-07-04 1982-01-29 Kuraray Co Purifier for blood
JPS5810056A (en) * 1981-07-10 1983-01-20 株式会社クラレ Blood purifying apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083202A1 (en) * 2001-04-12 2002-10-24 Kuraray Co., Ltd. Adsorbent device for body fluid treatment
WO2009034949A1 (en) * 2007-09-12 2009-03-19 Rei Medical Co., Ltd. Adsorption column for purifying body fluid
JP2009066117A (en) * 2007-09-12 2009-04-02 Rei Medical Co Ltd Adsorption column for body fluid purifying treatment

Also Published As

Publication number Publication date
JPS6359342B2 (en) 1988-11-18

Similar Documents

Publication Publication Date Title
JP2004516896A (en) Extracorporeal capture of specific biopolymers from extracellular body fluids
JPH0434451B2 (en)
JPS59193135A (en) Adsorbing body
JPS6090039A (en) Blood purifying adsorbing body
JPS60241450A (en) Adsorbing material for purifying body fluids
JPS60246765A (en) Adsorbing column for purifying body fluids
JP2543693B2 (en) Adsorbent for low-density lipoprotein and method for producing the same
JPS5812656A (en) Adsorbing material for treating recirculation
JP2649224B2 (en) Sterilization method for body fluid treatment device and sterilized body fluid treatment device
JPS6226073A (en) Method and apparatus for direct infusion and adsorption of blood
JPH0611333B2 (en) Immune complex adsorbent and immune complex removing apparatus using the same
JPS6399875A (en) Beta 2-microglobulin adsorbing body for treatment of extracorphoreal circulation
JPH01265972A (en) Removing method of harmful component in humors
JPS59186559A (en) Self-antibody and/or immunological composite adsorbing material
JPS6158664A (en) Porous glass adsorbent for ectosomatic recirculation treatment
JPS6259976B2 (en)
JPH0253061B2 (en)
JP2726662B2 (en) Adsorbent and removal device using the same
JPS6256782B2 (en)
JPS58165860A (en) Carrier of adsorbing material for purifying body liquid
JPH043988B2 (en)
JPS6259975B2 (en)
JP3251547B2 (en) Immune complex removal device
JPH0339736B2 (en)
JPH0134067B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term