JPS60241276A - Semiconductor element - Google Patents

Semiconductor element

Info

Publication number
JPS60241276A
JPS60241276A JP59097772A JP9777284A JPS60241276A JP S60241276 A JPS60241276 A JP S60241276A JP 59097772 A JP59097772 A JP 59097772A JP 9777284 A JP9777284 A JP 9777284A JP S60241276 A JPS60241276 A JP S60241276A
Authority
JP
Japan
Prior art keywords
layer
guard ring
inp
semiconductor layer
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59097772A
Other languages
Japanese (ja)
Inventor
Yoshiharu Tashiro
田代 義春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59097772A priority Critical patent/JPS60241276A/en
Publication of JPS60241276A publication Critical patent/JPS60241276A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03042Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To eliminate the generation of heat-deteriorated layers during growth and that of displacement due to a projection by a method wherein one time successive growth is carried out to a flat wafer. CONSTITUTION:An N-InP buffer layer 11, an N<-> InGaAs layer 12, an N<-> InGa AsP layer 14, and an N-InP layer 15 are successively grown on an N<+> InP substrate 10. Thereafter, a guard ring 16 is formed in the N<-> InP layer 14 by Be<+> ion implantation. Then, the guard ring 16 is formed in the N<-> InP layer 14 by Zn thermal diffusion. Only the outer periphery of the guard ring 16 is removed until reaching the layer 14.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体素子に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to semiconductor devices.

(従来技術とその問題点) 動作部を構成するpn接合の周辺にガードリング部を有
する半導体素子においては、ガードリング部の降伏電圧
と動作部の降伏電圧との差を大きくすることが特性上、
信頼性上で重要である。この降伏電圧差を大きくするた
めに、たとえば安田らにより第44回応用物理学会学術
講演会講演予稿156ページに「埋込み構造をもつI−
■族APDの検討」と題して発表された講演においては
、第1図dに示した構造をしている。この構造は、以下
のようにして製作される。すなわちn+−1nP基板1
上にn−1nPバツフア一層2 、 n−−InGaA
s層3 、 n−−InGaAsP層4.n−InP層
5を連続成長させ(Zia図)、その後n−1nPを選
択的に除去し凸部6を形成する(J、pb図)。その後
n−−InP層7を成長させ(a1′、P c図ン凸部
6を中心に位置合わせを行い、ガードリング部8とp+
部9を形成した(J+d図)、この様な製造方法により
得られる素子はp+部の空乏層のみn−InP層に拡が
り、ガードリング部の空乏層はn −1nP中に留める
ことができる。それによりガードリング部の降伏電圧を
下げることなく動作部の降伏゛亀圧のみ下げることが可
能となり、両者の降伏電圧差を大きくすることができる
。しかし、n−InP1脅5上にn −InP層7 を
成長させるさいに熱劣化層が発生することや凸部6での
段差によりn−−InP層7には凸部6にそった転位が
発生することなどにより、素子のI−■特性が著しく劣
化する問題があった。
(Prior art and its problems) In a semiconductor element having a guard ring part around a pn junction constituting an active part, it is characteristically necessary to increase the difference between the breakdown voltage of the guard ring part and the breakdown voltage of the active part. ,
Important for reliability. In order to increase this breakdown voltage difference, Yasuda et al., for example, wrote in the 44th Japan Society of Applied Physics Conference Proceedings Proceedings, page 156, ``I
In the lecture titled ``Study of Family APD'', the structure was as shown in Figure 1d. This structure is fabricated as follows. That is, n+-1nP substrate 1
n-1nP buffer layer 2 on top, n--InGaA
s layer 3, n--InGaAsP layer 4. The n-InP layer 5 is continuously grown (Zia diagram), and then the n-1nP layer is selectively removed to form the convex portion 6 (J, pb diagram). After that, the n--InP layer 7 is grown (a1', Pc), and the guard ring part 8 and p+
In the device obtained by such a manufacturing method in which the portion 9 is formed (Fig. J+d), only the depletion layer in the p+ portion extends to the n-InP layer, and the depletion layer in the guard ring portion can be kept in the n-1nP layer. This makes it possible to reduce only the breakdown voltage of the active part without lowering the breakdown voltage of the guard ring part, and it is possible to increase the difference in breakdown voltage between the two parts. However, when growing the n-InP layer 7 on the n-InP1 layer 5, a thermally degraded layer is generated and the dislocations along the protrusion 6 occur in the n-InP layer 7 due to the step at the protrusion 6. There has been a problem in that the I-■ characteristics of the device are significantly deteriorated due to such occurrence.

(発明の目的) 本発明は、このような従来の欠点を除去せしめてガード
リング部降伏電圧と動作部の降伏電圧との差を大きくす
ることが可能でかつI−■特性の劣化のない半iH素子
を提供することにある。
(Object of the Invention) The present invention eliminates such conventional drawbacks, makes it possible to increase the difference between the breakdown voltage of the guard ring part and the breakdown voltage of the active part, and provides a half-half without deterioration of the I-■ characteristics. The purpose is to provide an iH element.

(本発明の構成) 本発明の素子は、第1導電型を示す第1の半導体層上に
第1の半導体層よりも不純物濃度の旨い第1導゛亀型の
第2の半導体層を備え、第2の半導体層中にpn接合を
備え、該pn接合の外周にこのpn接合の外縁部を内包
するようにして少なくとも第1の半導体層に達する深さ
のカードリング部を備え、さらに該ガードリング部の外
縁部を含む外周部が少なくとも第1の半導体層に達する
深さまでその表面が除去されている構成きなっている。
(Structure of the Present Invention) The device of the present invention includes a second semiconductor layer of a first conductivity type, which has a higher impurity concentration than the first semiconductor layer, on a first semiconductor layer exhibiting a first conductivity type. , a pn junction is provided in the second semiconductor layer, a card ring portion is provided at the outer periphery of the pn junction and has a depth reaching at least the first semiconductor layer so as to include the outer edge of the pn junction; The outer circumferential portion including the outer edge of the guard ring portion has a structure in which the surface thereof is removed to a depth that reaches at least the first semiconductor layer.

(構成の詳細な説明) 本発明は、上述の構成をとることにより従来技術の問題
点を解決した。すなわち従来技術でI−■特性の劣化原
因である2回に分けた結晶成長及び凸部6への段差のあ
るウェーハに対する結晶成長を除去し、平坦なウェーハ
への1回の連続成長により製造可能とすることにより成
長時における熱劣化層の発生及び凸部による転位の発生
をなくし、I−V%性の劣化を防いだ6才だ、素子動作
部を高濃度層である第1の半導体中に形成し、ガードリ
ング部の外周部の高濃度層をとり除きガードリング部を
低濃度層のみとすることでガードリング部の降伏電圧と
動作部の降伏電圧の差を大きくしている。
(Detailed Description of Configuration) The present invention solves the problems of the prior art by adopting the above-described configuration. In other words, by eliminating the two separate crystal growths and the crystal growth on wafers with steps to the convex portions 6, which are the causes of deterioration of the I-■ characteristics in the conventional technology, manufacturing is possible by one continuous growth on a flat wafer. This eliminates the generation of heat-degraded layers during growth and the generation of dislocations due to convex parts, and prevents the deterioration of I-V% characteristics. By removing the high concentration layer on the outer periphery of the guard ring portion and leaving the guard ring portion with only a low concentration layer, the difference between the breakdown voltage of the guard ring portion and the breakdown voltage of the active portion is increased.

(実施例) 以下本発明の実施例について図面を参照して詳細に説明
する。第2図は本発明の実施例を示す断面向で、n −
InP基板10上にn−InP バッファ層11、n−
−I nGaAs m (不純物1度5 X In!5
cva ’厚さ4 ttm) 12. n−−In()
aAsP層(不純物濃度5 X IQ”Cm−3,厚さ
05μm)13.n−−InP層(不純物、751i 
5 X 10” cm−3,厚さ1.5μff1)14
. n−Ink’層(不純・物濃度I X 10”傭−
1,厚さ3μm)15を連続成長した(tea図)。そ
の後Be+のイオン注入法によりガードリング部16を
n−InP層1層中4中r+7− InGaAsP 1
113とn−−InP層1層面4の界面から約0.5μ
mの位置)に形成した。その後Znの熱拡散法lこより
p+部エフをn −I n P層15 中(深さ2μm
)に形成した(iyt−b図)。その後ガードリング部
16の外周部のみをn−−InP層1層面4するまで除
去した(4!fc図)。
(Example) Examples of the present invention will be described in detail below with reference to the drawings. FIG. 2 is a cross-sectional view showing an embodiment of the present invention, with n −
An n-InP buffer layer 11, an n-
-InGaAs m (Impurity 1 degree 5 X In!5
cva' thickness 4 ttm) 12. n--In()
aAsP layer (impurity concentration 5 x IQ”Cm-3, thickness 05μm) 13.n--InP layer (impurity, 751i
5 X 10” cm-3, thickness 1.5μff1) 14
.. n-Ink' layer (Impurity concentration I x 10")
1, thickness 3 μm) was continuously grown (tea diagram). Thereafter, the guard ring portion 16 is formed by Be+ ion implantation to form r+7- InGaAsP 1 in 4 of the n-InP layers.
Approximately 0.5μ from the interface between 113 and n--InP layer 1 layer surface 4
m position). After that, the p+ part F was deposited in the n -I n P layer 15 (depth 2 μm) using Zn thermal diffusion method.
) (Figure iyt-b). Thereafter, only the outer peripheral part of the guard ring part 16 was removed until the n--InP layer 1 layer surface 4 was removed (Figure 4!fc).

(発明の効果) 本発明と従来方法による素子(前記文献及び第11’A
K示した製造方法lこよる)のI −V特性の比較を第
3図に示す、従来の素子のI −V特性18は空乏層が
2回成長時に発生した熱劣化層に達する約10V付近で
急激に増加する、また逆バイアス電圧をさらに印加する
と凸部埋込により発生した転位により暗電流が増加する
ことから降伏電圧の0.9倍の逆バイアス電圧印加時で
のHIE流は約IX]0’Aであった。しかし1本発明
による素子の1−4特性19は前記熱劣化及び転位を発
生しないために降伏電圧の0.9倍の逆バイアス電圧印
加時での暗電流は約2 X 1O−8Aと大幅な低減が
なされた。
(Effect of the invention) Elements according to the present invention and the conventional method (the above document and No. 11'A
Figure 3 shows a comparison of the I-V characteristics of the manufacturing method shown in Figure 3.The I-V characteristics of the conventional element18 are around 10V, which reaches the thermally degraded layer generated when the depletion layer grows twice. Furthermore, when the reverse bias voltage is further applied, the dark current increases due to dislocations generated by the embedding of the convex part. Therefore, when a reverse bias voltage of 0.9 times the breakdown voltage is applied, the HIE current is approximately IX. ]0'A. However, 1-4 characteristic 19 of the device according to the present invention is that the above-mentioned thermal deterioration and dislocation do not occur, so the dark current when a reverse bias voltage of 0.9 times the breakdown voltage is applied is as large as about 2 × 1O-8A. A reduction was made.

以上詳細に述べた通り1本発明によれば熱劣化・転位等
の結晶欠陥を無くすことができ、そのため大幅なJ −
V%性の改善をはかることができる。
As described above in detail, 1. According to the present invention, crystal defects such as thermal deterioration and dislocation can be eliminated, and therefore a large amount of J −
It is possible to improve the V% property.

尚1本発明ではAPD (アバランシェ・フォト・ダイ
オード)を例に用いたが、ガードリングをゼする他の半
導体素子にも適用可能であり、また実施例として第1の
半導体層にn −InP7〜を第2の半導体層としてn
−InP層を用いたが半導体材料・導電型lごはよらず
有効であることは言うまでもない。
In the present invention, an APD (avalanche photo diode) is used as an example, but it is also applicable to other semiconductor devices that have a guard ring. n as the second semiconductor layer
Although the -InP layer is used, it goes without saying that it is effective regardless of the semiconductor material and conductivity type.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体素子の製造工程を示す図、第2図
は本発明を通用した半導体素子の製造工程を示す図、第
3悶は従来の素子と本発明による素子のI −V特性を
ぞれぞれ示す図である。 図において、 1 、lo−n+−InP基板、2 、]l・・n−I
nPバッファ一層、3 、12・・n−−1nGaAs
層、 4 、13・・・n −In(JaAsP層、5
 、15・−n−InPIvI−7、14・・・n −
In2層、 6・・・凸部、8.16・・・ガードリン
グ部、9.17・・・p十部、 18・・・従来の素子
のI−V特性、19・・・本発明による素子のI−V特
性をそれぞれ示す。 代理人弁理士 内照 晋 第 1 図 差バイアス電圧 (V)
FIG. 1 is a diagram showing the manufacturing process of a conventional semiconductor device, FIG. 2 is a diagram showing the manufacturing process of a semiconductor device using the present invention, and the third figure is a diagram showing the I-V characteristics of the conventional device and the device according to the present invention. FIG. In the figure, 1, lo-n+-InP substrate, 2, ]l...n-I
nP buffer single layer, 3, 12...n--1nGaAs
layer, 4, 13...n-In (JaAsP layer, 5
, 15·-n-InPIvI-7, 14...n −
In2 layer, 6... Convex part, 8.16... Guard ring part, 9.17... P ten part, 18... I-V characteristics of conventional element, 19... According to the present invention The IV characteristics of each element are shown. Representative Patent Attorney Susumu Uchiteru 1 Diagram difference bias voltage (V)

Claims (1)

【特許請求の範囲】[Claims] 第1導電型を示す第1の半導体層上に、この第1の半導
体層よりも不純物濃度の高い第1導電徴の第2の半導体
層を備え、第2の半導体層中にpn接合を備え、該pn
接合の外周にこのpn接合の外縁部を内包するようにし
て少なくとも第1の半導体層に達する深さのガードリン
グ部を備え、さらに該ガードリング部の外縁を含む外周
部が少なくとも第1の半導体層に達する深さまでその表
面が除去されていることを特徴とする半導体素子。
A second semiconductor layer having a first conductivity characteristic with a higher impurity concentration than the first semiconductor layer is provided on the first semiconductor layer exhibiting the first conductivity type, and a pn junction is provided in the second semiconductor layer. , the pn
The outer periphery of the junction includes a guard ring portion having a depth that reaches at least the first semiconductor layer so as to include the outer edge of the pn junction, and the outer periphery including the outer edge of the guard ring portion includes at least the first semiconductor layer. A semiconductor device characterized in that its surface is removed to a depth that reaches a layer.
JP59097772A 1984-05-16 1984-05-16 Semiconductor element Pending JPS60241276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59097772A JPS60241276A (en) 1984-05-16 1984-05-16 Semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59097772A JPS60241276A (en) 1984-05-16 1984-05-16 Semiconductor element

Publications (1)

Publication Number Publication Date
JPS60241276A true JPS60241276A (en) 1985-11-30

Family

ID=14201136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59097772A Pending JPS60241276A (en) 1984-05-16 1984-05-16 Semiconductor element

Country Status (1)

Country Link
JP (1) JPS60241276A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021034644A (en) * 2019-08-28 2021-03-01 住友電気工業株式会社 Light receiving element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212076A (en) * 1975-07-18 1977-01-29 Kazuo Terada Method of backing and reinforcing structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212076A (en) * 1975-07-18 1977-01-29 Kazuo Terada Method of backing and reinforcing structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021034644A (en) * 2019-08-28 2021-03-01 住友電気工業株式会社 Light receiving element

Similar Documents

Publication Publication Date Title
JPH02159775A (en) Semiconductor photodetector and manufacture thereof
JPS61255074A (en) Photoelectric conversion semiconductor device
US5192695A (en) Method of making an infrared detector
JPS6058686A (en) Photodetector and method of producing same
US5391897A (en) Status induction semiconductor device
JPH03155137A (en) Semiconductor device and manufacture thereof
JPS60241276A (en) Semiconductor element
US11594570B2 (en) III-V semiconductor pixel X-ray detector
JPS61226973A (en) Avalanche photodiode
US6558973B2 (en) Metamorphic long wavelength high-speed photodiode
JPH09181349A (en) Fabrication of semiconductor device
US11894480B2 (en) Low leakage current germanium-on-silicon photo-devices
JPH01243480A (en) Infrared sensor and infrared camera including the same
JP2793238B2 (en) Semiconductor light receiving device and method of manufacturing the same
JPH10209486A (en) Semiconductor photodetector and its manufacture
JPS61129882A (en) Manufacture of semiconductor photodetector
JP2616707B2 (en) Manufacturing method of infrared detector
JPS61144076A (en) Semiconductor light-receiving element
KR102705153B1 (en) A semiconductor device
JP3676802B2 (en) Epitaxial passivation of infrared detectors made of materials from groups (2) to (6) of the periodic table
KR100278787B1 (en) Silicon Carbide Schotty Barrier Diode Device And Fabrication Methods Thereof
JPS61220481A (en) Manufacture of semiconductor light receiving device
JPH04246867A (en) Semiconductor photodetector
JPH0231509B2 (en)
JPH0258791B2 (en)