JPS6024072A - Field-effect type transistor - Google Patents

Field-effect type transistor

Info

Publication number
JPS6024072A
JPS6024072A JP13242583A JP13242583A JPS6024072A JP S6024072 A JPS6024072 A JP S6024072A JP 13242583 A JP13242583 A JP 13242583A JP 13242583 A JP13242583 A JP 13242583A JP S6024072 A JPS6024072 A JP S6024072A
Authority
JP
Japan
Prior art keywords
gate
active layer
gate electrode
gaas
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13242583A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamazoe
山添 博司
Atsushi Nakagawa
敦 中川
Takashi Hirose
広瀬 貴司
Ichiro Yamashita
一郎 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13242583A priority Critical patent/JPS6024072A/en
Publication of JPS6024072A publication Critical patent/JPS6024072A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain a GaAs FET, which has large mutual conductance and characteristics thereof do not deteriorate even at a temperature of approximately 500 deg.C, by directly forming a source electrode, a drain electrode and a gate electrode on a GaAs active layer and constituting the gate electrode by an Ir thin- film. CONSTITUTION:A GaAs active layer 2 containing S as an impurity is grown on a semi-insulating GaAs substrate 1 in the vapor phse, and formed to a desired shape through mesa etching by using an etchant mainly comprising NaOH. A source electrode 3 and a drain electrode 4 are each applied in an ohmic manner extending over the surface of the substrate 1 from the upper section of the layer 2 while being mutually opposed by using an Au alloy containing 12wt% Ge, and a gate electrode film 5 consisting of Ir-Ti-Al extending on the surface of the substrate 1 from the upper section of the layer 2 while being positioned in a clearance between these mutually opposite electrodes 3 and 4 is formed. Accordingly, the quality of a Schottky junction in the gate electrode film 5 is improved, and large mutual conductance is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、砒化ガリウム(G&As)半導体表面に、金
属薄膜が直接、接してなるゲートを有する、砒化ガリウ
ム(GaAS)電界効果型トランジスター(以下、電界
効果型トランジスター全MEs・FETと言う)に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a gallium arsenide (GaAS) field effect transistor (hereinafter referred to as an electric field This relates to effect type transistors (all called MEs/FETs).

従来例の構成とその問題点 近年、数Gllz以上の高周波帯での通信において、砒
化ガリウム(GaAs) M7C3−FITは鍵となる
素子とみなされるに至っており、産業界においては、素
子の開発・製造が盛んである。
Conventional configurations and their problems In recent years, gallium arsenide (GaAs) M7C3-FIT has come to be regarded as a key element in communication in high frequency bands of several Gllz or higher, and in the industry, there is a lot of effort in the development and development of elements. Manufacturing is active.

ここで、MES 、FETについて説明する。Here, MES and FET will be explained.

MKS・FETの構成を示す斜視図を図に示す。The figure shows a perspective view showing the configuration of the MKS-FET.

1ば、絶縁性ないし、半絶縁性基板、2Fi砒化ガリウ
ム(GaAS)半導体からなる活性層、3,4(はソー
スとドレイン、5がゲートである。前記半絶縁性の意味
は、体積抵抗率がはq1o’Ω・(1m以上であること
である。MES−FETの動作原理は、ゲート金属6と
、活性層半導体2の接触による半導体2の内部への空乏
層の広がりを、ゲート金属6の電位で制御し得ることに
由来する。
1 is an insulating or semi-insulating substrate, 2 is an active layer made of a Fi gallium arsenide (GaAS) semiconductor, 3 and 4 are a source and a drain, and 5 is a gate. The meaning of semi-insulating is the volume resistivity. is q1 o'Ω・(1 m or more. The operating principle of the MES-FET is that the spread of the depletion layer inside the semiconductor 2 due to the contact between the gate metal 6 and the active layer semiconductor 2 is This is due to the fact that it can be controlled by the potential of

この半導体としては、砒化ガリウム(GaAs )をさ
している。
This semiconductor is gallium arsenide (GaAs).

図に示されるようなMKS−F″ETにおいて、ゲート
6は、従来、アルミニウム(Alり、チタン(’[’i
 )、りoム(Or)、白金(pt)、pングステン(
W)が用いられて来た。
In the MKS-F''ET as shown in the figure, the gate 6 is conventionally made of aluminum (Al, titanium ('['i
), rim (Or), platinum (pt), p-ungsten (
W) has been used.

これら従来のMES−FETにおいては、また、。In these conventional MES-FETs, also.

相互コンダクタンス(crm)が十分でない。現在、ゲ
ート伺近に掘り込み(リセス)を入れない通常の構造で
、ゲート長(第1図L)1μmとして、ゲート巾(W 
) 1mm (ミリメートル)当り、160〜200m
5(ミリシーメンス)程度であろう。
Insufficient mutual conductance (crm). Currently, the gate length (L in Figure 1) is 1 μm, and the gate width (W) is a normal structure that does not have a recess near the gate.
) 160-200m per 1mm (millimetre)
It would be around 5 (milliSiemens).

ゲート6’j5Aβとした場合400℃近傍で、klが
半導体2の中へ拡散し、また、半導体2の各原子がこの
Alの内部へ拡散し、MES−FETの特性を太きく劣
化させる。
When the gate is 6'j5Aβ, at around 400° C., kl diffuses into the semiconductor 2, and each atom of the semiconductor 2 diffuses into this Al, significantly deteriorating the characteristics of the MES-FET.

ゲート6iTiとした場合、460℃付近で、空気中の
水分のため、酸化されてしまう。
If the gate is 6iTi, it will be oxidized at around 460° C. due to moisture in the air.

ゲート5全crとした場合、400℃でCrが半導体2
の中へ拡散し、また半導体2の構成原子のうち、ガリウ
ム(Ga)、インジウム(In)、&いしアルミニウム
(A#)等が、ゲートのCrの内部へ拡散する。
When the gate 5 is made entirely of Cr, Cr becomes the semiconductor 2 at 400°C.
Among the atoms constituting the semiconductor 2, gallium (Ga), indium (In), aluminum (A#), etc. diffuse into the Cr of the gate.

ゲート6をptとした場合、260〜300℃で半導体
20表層と反応し、新たな化合物を作る。
When the gate 6 is made of PT, it reacts with the surface layer of the semiconductor 20 at 260 to 300°C to form a new compound.

ゲート5’kW(タングステン)とした場危ヲ鴫者達の
経験によれば、400 ℃伺近で、ゲート6が半導体2
から剥離する。
According to the experience of field safety experts with a gate of 5'kW (tungsten), at 400°C, gate 6 is made of semiconductor 2.
Peel from.

前述oように、MES−FETが600°Cの温度を経
験しても、特性が全て不変のゲート材料はない。
As mentioned above, there is no gate material whose properties remain unchanged even when the MES-FET experiences temperatures of 600°C.

以上、従来のMKS 、FETはqmが未た不満足であ
ること高温で特性等が変化、これが信頼性にも影響する
と想定されることの2つの不満な点が残る。
As described above, two unsatisfactory points remain in the conventional MKS and FET: qm is still unsatisfactory, and characteristics etc. change at high temperatures, which is assumed to affect reliability.

発明の目的 本発明の目的は、従来より大きなgmを有し、かつ、約
500℃の温度を経験しても、全と特性が劣化しないよ
うなuws−trET2提供するものである。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a UWS-trET2 which has a larger gm than conventional devices and whose overall characteristics do not deteriorate even when exposed to temperatures of approximately 500°C.

発明の構成 本発明のMl!:5−FITは、砒化ガリウムからなる
活性層と、前記活性層上に設けられたソース電極と、前
記活性層の上に設けられたドレイン電極と、前記活性層
上に設けられ少なくともイリジウム(Ir)薄膜を有す
るゲート電極とからなるMES−FETである。前記ゲ
ート電極が、イリジウム(Ir)薄膜の上に更に金属薄
膜を積層すること、すなわち多層膜の溝造全有する場合
も本発明は包含するものである。これにより、前記ME
S・FETは、従来より大きなqIII’e有し、かつ
、約6oO℃の温度全経験しても、全どMES−FET
特性が劣化しないものである。
Structure of the Invention Ml of the present invention! :5-FIT includes an active layer made of gallium arsenide, a source electrode provided on the active layer, a drain electrode provided on the active layer, and at least iridium (Ir) provided on the active layer. ) A MES-FET consisting of a gate electrode having a thin film. The present invention also includes a case where the gate electrode further has a metal thin film laminated on the iridium (Ir) thin film, that is, has a groove structure of a multilayer film. As a result, the ME
The S-FET has a larger qIII'e than the conventional one, and even after experiencing a temperature of about 6 oO ℃, it is completely different from the MES-FET.
The characteristics do not deteriorate.

実施例の説明 以下本発明の実施例について、図全参照しながら説明す
る。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to all the drawings.

半絶縁性砒化ガリウム(、GaAs)1上に、濃度約2
 X 1 o”/crlの硫黄(S)不純物を含むGa
As活性層(厚み約20oO人)を気相成長で形成した
基板全用意した。
On semi-insulating gallium arsenide (GaAs) 1, a concentration of about 2
Ga containing sulfur (S) impurity of X 1 o”/crl
All substrates on which As active layers (about 20 μm thick) were formed by vapor phase growth were prepared.

つき゛に、前記基板について、苛性ソーダ(Nail)
を図のようにメサエッチする。同図において、Ga A
s活性層の厚みAは約200o人である。
In addition, caustic soda (Nail) is applied to the substrate.
Etch the mesa as shown in the figure. In the same figure, Ga A
The thickness A of the active layer is about 200 degrees.

つぎに、ソースとドレインのオーミック電極全以下の如
く形成した。金(Au)−ゲルマニウム(Ge)合金(
Geが12w10含まれる)を約13ω人、ニッケル(
Ni)を約300人、さらに金(Au)全豹3000・
人、順次、電子ヒーム蒸着し、リフト・オフ法で電極パ
ターン全形成し、その後、アルゴン(Ar)気流中で、
450’C3分熱処理した。
Next, source and drain ohmic electrodes were formed as shown below. Gold (Au)-germanium (Ge) alloy (
Ge contains 12w10) about 13ω people, nickel (
Approximately 300 Ni) and 3000 gold (Au)
Electrode beam deposition was performed sequentially, and the entire electrode pattern was formed using the lift-off method, and then in an argon (Ar) stream.
Heat treatment was performed at 450'C for 3 minutes.

つぎにゲート5の形成を行う。電極パターンの形成はリ
フト・オフ法によった。ゲーI・金属膜O形成の直前に
、活性層は酒石酸系のエッチ液で、かるく、エツチング
される。本実施例で使用された金属材料は、アルミニウ
ム(Al)、チタン(T1)、クロム(Or)、白金(
pt)、タングステン(W)、金(Au)及びイリジウ
ム(Ir)であった。これらの金属のゲート用膜形成法
としては、イリジウム(Ir)の場合は、複数枚の箔を
平板に溶接で張りつけ−(Jnc・マグネトロ/・スパ
ッター法で、タングステン(W)の場合も同じく、DC
・マグネトロン・スパッター法で、他のものは、lX1
O−6Torr Id下の真空中で電子ビーム蒸着法で
形成した。図において、ゲート長りは1μm1チヤンネ
ル巾Wは260μmとした。
Next, the gate 5 is formed. The electrode pattern was formed by the lift-off method. Immediately before forming the Ge I/metal film O, the active layer is lightly etched with a tartaric acid-based etchant. The metal materials used in this example were aluminum (Al), titanium (T1), chromium (Or), and platinum (
pt), tungsten (W), gold (Au) and iridium (Ir). In the case of iridium (Ir), multiple sheets of foil are welded to a flat plate to form a gate film for these metals. In the case of tungsten (W), the same method is used. D.C.
・By magnetron sputtering method, other methods are lX1
It was formed by electron beam evaporation in a vacuum under O-6 Torr Id. In the figure, the gate length was 1 μm and the channel width W was 260 μm.

MES 、FETの相互コンダクタンス(cim)の測
定は、カーブ・トレーサーを使用して行った。
Measurements of MES, FET transconductance (cim) were performed using a curve tracer.

相互コンダクタンス(qm)は、ドレイン電圧を3Vと
し、ドレイン電流2smA付近の測定値である。qmは
ミリ・ノーメンス(ms)で表わされる。
The mutual conductance (qm) is a measured value when the drain voltage is 3V and the drain current is around 2smA. qm is expressed in millimeters (ms).

実施例の結果を第1表に示す。The results of the examples are shown in Table 1.

以下余白 第1表のゲートの構成にお込て、金属多層膜の場合、G
aAs活性層の上に、順次左端の金属層から形成されて
ゆく。括弧内は、この時の膜厚モニターから得られたお
5よその膜厚値である。
In the gate configuration shown in Table 1 below, in the case of a metal multilayer film, G
Metal layers are sequentially formed on the aAs active layer starting from the leftmost metal layer. The values in parentheses are approximately 5 film thickness values obtained from the film thickness monitor at this time.

各ロフトには、複数個のGaAS基板が使われ、また、
各基板には数100個の測定M E S−F E Tが
ある。第1表のqm値は、これら測定MES・FETに
亘る平均値である。
Each loft uses multiple GaAS substrates, and
There are several hundred measurement ME S-F ET on each board. The qm values in Table 1 are average values over these measured MES/FETs.

温度による影響を知るための、600℃の温度ストレス
全MR8−FETに印加する実験の場合には、MES−
FETの製作の手順に関して、前述のものから変更した
。すなわち、最初にゲートの形成を行い、つぎに600
℃10分間の温度ストレス全アルゴン(Ar)雰囲気で
印加し、さらに、ソースとドレインのオーミック電極を
形成して、M E S −F E ’11’?得た。そ
の結果は″60o℃経験ののちの結果“の欄に示されて
いる。
In the case of an experiment in which a temperature stress of 600°C was applied to all MR8-FETs in order to understand the influence of temperature, MES-
The FET manufacturing procedure has been changed from the previous one. That is, first the gate is formed, and then the 600
A temperature stress of 10 minutes at °C was applied in a total argon (Ar) atmosphere, and further, ohmic electrodes for the source and drain were formed, and M E S -F E '11'? Obtained. The results are shown in the column "Results after 60oC experience".

第1表1〜6は従来法による比較例である。ゲート金属
’1A7JやTi−klの多層膜とした場合、600℃
の温度全経験すると。ゲート・リークが増加する。甚し
い場合は、それ以後、MES、FET特性を示さなくな
る。
Tables 1 to 6 are comparative examples using the conventional method. When using a multilayer film of gate metal '1A7J or Ti-kl, the temperature is 600℃.
The whole temperature you experience. Increased gate leakage. In severe cases, the MES and FET characteristics will no longer be exhibited.

つぎに、ゲート金属を、Cr−Pt−AuやW −Ti
−ムUの多層膜とした場合、500℃の温度ストレスを
印加すると、その後は、ドレイン電流が極端に小さくな
り、ドレイン電流25mAが流せず、測定不能となる。
Next, the gate metal is made of Cr-Pt-Au or W-Ti.
- When a temperature stress of 500° C. is applied to a multilayer film of 500° C., the drain current becomes extremely small, and a drain current of 25 mA cannot flow, making measurement impossible.

本発明によるイリジウム(Ir )・ゲートをもつ場合
の実施例ioン)番号6に示す。qm も従来のものよ
シ高い。また、500’Cの熱処理では、qmは更に向
上する傾向にある。
An example with an iridium (Ir) gate according to the present invention is shown in No. 6. qm is also higher than the conventional one. In addition, heat treatment at 500'C tends to further improve qm.

つぎに、本発明に対応して、イリジウム(Ir)薄膜を
含む多層膜として、■r−Pt−AuあるいはIr−T
i−Alの場合の結果f、oyト番号6〜8に示されて
いる。qmII′i従来法による比較例に比べて高く、
また、600℃の温度ストレスにも、qmは、若干向上
するか(ゲートがIr−Pt−Auの場合)、若干減少
する(ケートがIr =Ti 、AIの場合)。いずれ
にしても、比較例に比べて格段に優れている。
Next, in accordance with the present invention, as a multilayer film containing an iridium (Ir) thin film, ■r-Pt-Au or Ir-T
The results for i-Al are shown in numbers 6-8. qmII'i is higher than the comparative example using the conventional method,
In addition, even under temperature stress of 600° C., qm slightly improves (when the gate is Ir-Pt-Au) or slightly decreases (when the gate is Ir=Ti, AI). In any case, it is much better than the comparative example.

600″Cの温度オドレス印加における、qm の前記
向上は、イリジウム(Ir)と砒化ガリウム(GaAs
)表面がわずかに反応し、ゲート直下のショットキー接
合の質が若干向上していると推定している。500℃の
温度ストレス印加におけるgmの前記減少は、多層膜I
r−Ti−Aβのうち、アルミニウム(Aβ)が酸化し
たことに由来すると推定している。
The above improvement in qm at a temperature adjustment of 600″C is due to
) We estimate that the surface has reacted slightly and the quality of the Schottky junction directly under the gate has improved slightly. The decrease in gm upon application of a temperature stress of 500°C is due to the fact that the multilayer film I
It is estimated that this is due to the oxidation of aluminum (Aβ) in r-Ti-Aβ.

発明の効果 以上の説明から明らかなように、本発明は、イリジウム
(IrH専j模、またはイリジウム(Ir)?jJ膜を
含む多層膜からなり、しかも前記イリジウム(Ir)P
iJ膜が、砒化ガリウム(GaAs)半導体表面に接し
てなる、ゲー)k有するGaAs−MES・FET1供
給するものであって、高い相互コンダクタンス(crm
)’a=有し、温要ストレスにも、従来のものよりも、
女定なMES、Fl!:Tが得られる。
Effects of the Invention As is clear from the above explanation, the present invention comprises a multilayer film including an iridium (IrH) film or an iridium (Ir) film, and furthermore, the iridium (Ir)P
The iJ film is in contact with the surface of a gallium arsenide (GaAs) semiconductor.
)'a = has, and is more resistant to stress than conventional ones.
Female MES, Fl! :T is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例の電界効果トランジスターの斜視図
である。 1・・・・・・絶縁性又は半絶縁性基板、2・・川・半
導体活性層、3.4・・・・・・ソースまたはドレイン
、6・・・・・・ゲート。
The figure is a perspective view of a field effect transistor according to an embodiment of the present invention. 1...Insulating or semi-insulating substrate, 2... River/semiconductor active layer, 3.4... Source or drain, 6... Gate.

Claims (2)

【特許請求の範囲】[Claims] (1)砒化ガリウムからなる活性層と、前記活性層上に
設けられたソース電極と、前記活性層上に設けられたド
レイン電極と、前記活性層上に設けられ少なくともイリ
ジウム薄膜を有するゲート電極とからなる電界効果型ト
ランジスター。
(1) An active layer made of gallium arsenide, a source electrode provided on the active layer, a drain electrode provided on the active layer, and a gate electrode provided on the active layer and having at least an iridium thin film. A field effect transistor consisting of.
(2) ゲート電極が、イリジウム薄膜を含む多層膜で
あることを特徴とする特許請求の範囲第1項記載の電界
効果型トランジスター。
(2) The field effect transistor according to claim 1, wherein the gate electrode is a multilayer film containing an iridium thin film.
JP13242583A 1983-07-19 1983-07-19 Field-effect type transistor Pending JPS6024072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13242583A JPS6024072A (en) 1983-07-19 1983-07-19 Field-effect type transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13242583A JPS6024072A (en) 1983-07-19 1983-07-19 Field-effect type transistor

Publications (1)

Publication Number Publication Date
JPS6024072A true JPS6024072A (en) 1985-02-06

Family

ID=15081072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13242583A Pending JPS6024072A (en) 1983-07-19 1983-07-19 Field-effect type transistor

Country Status (1)

Country Link
JP (1) JPS6024072A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5700309A (en) * 1993-12-01 1997-12-23 Glaverbel Method and powder mixture for repairing oxide based refractory bodies

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5700309A (en) * 1993-12-01 1997-12-23 Glaverbel Method and powder mixture for repairing oxide based refractory bodies

Similar Documents

Publication Publication Date Title
US3994758A (en) Method of manufacturing a semiconductor device having closely spaced electrodes by perpendicular projection
JPS6024072A (en) Field-effect type transistor
JPS6024067A (en) Field-effect type transistor
JPS6024069A (en) Field-effect type transistor
JPS6042871A (en) Gaas fet
JP2503269B2 (en) Method for forming gate electrode of field effect transistor
JPS6024066A (en) Field-effect type transistor
JP2863780B2 (en) Multi-layer metal Schottky electrode
JPS6024068A (en) Field-effect type transistor
JPS5833714B2 (en) Method for manufacturing gallium arsenide Schottky barrier gate field effect transistor
JP4972822B2 (en) Method for manufacturing field effect semiconductor device
JP2977378B2 (en) Ohmic electrode
JPS6042872A (en) Gaas fet
JPS6057977A (en) Manufacture of shottky gate field effect transistor
JPS6154263B2 (en)
JPS61154177A (en) Manufacture of semiconductor device
JPS5921193B2 (en) Method for manufacturing field effect transistors
JPS61284969A (en) Manufacture of field effect transistor
JPS61116877A (en) Manufacture of field effect transistor
JPH02219244A (en) Field effect trensistor and its manufacture
JPH0284734A (en) Manufacture of semiconductor device
JPH03225823A (en) Compound semiconductor device
JPH02150064A (en) Electrode structure for gallium arsenide field effect transistor
JPH02156544A (en) Manufacture of gaas mesfet
JPH01265573A (en) Manufacture of semiconductor device