JPS6024044B2 - diamond manufacturing method - Google Patents

diamond manufacturing method

Info

Publication number
JPS6024044B2
JPS6024044B2 JP52084996A JP8499677A JPS6024044B2 JP S6024044 B2 JPS6024044 B2 JP S6024044B2 JP 52084996 A JP52084996 A JP 52084996A JP 8499677 A JP8499677 A JP 8499677A JP S6024044 B2 JPS6024044 B2 JP S6024044B2
Authority
JP
Japan
Prior art keywords
diamond
metal
carbide
temperature
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52084996A
Other languages
Japanese (ja)
Other versions
JPS5420990A (en
Inventor
博 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP52084996A priority Critical patent/JPS6024044B2/en
Publication of JPS5420990A publication Critical patent/JPS5420990A/en
Publication of JPS6024044B2 publication Critical patent/JPS6024044B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は炭素を溶解する溶媒金属の存在下で炭素を高温
高圧条件下に供してダイヤモンドを合成する方法、特に
金属炭化物をダイヤモンド結晶形成の譲起剤として用い
ることにより従来方法よりも低い温度圧力条件下で結晶
性の良好なダイヤモンドを合成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for synthesizing diamond by subjecting carbon to high temperature and high pressure conditions in the presence of a solvent metal that dissolves the carbon, in particular by using a metal carbide as an accelerator for diamond crystal formation. This invention relates to a method for synthesizing diamond with good crystallinity under lower temperature and pressure conditions than conventional methods.

ダイヤモンドの結晶を製造する一つの方法としては、例
えば特公昭37−4407、37−83球号等の公報か
らも知られる如く、黒鉛等の非ダイヤモンド炭素を溶解
した溶媒金属からダイヤモンド安定領域内の圧力温度条
件下で析出させる方法がある。
One method for producing diamond crystals is to produce diamond crystals from a solvent metal in which non-diamond carbon such as graphite is dissolved, as known from Japanese Patent Publications No. 37-4407 and 37-83. There is a method of precipitation under pressure and temperature conditions.

(この際ダイヤモンドの結晶生成の核となるのは、例え
ば溶媒金属としてニッケルを用いた場合は炭化ニッケル
だと言われている。更に合成に際しては一般に結晶核が
自生し易いことが知られている。)このような種子を用
いないでダイヤモンドの合成が可能な温度圧力条件領域
は例えば溶媒金属としてコバルトを用いた場合、第1図
に示せる炭素の状態図において曲線A−Bよりも高圧高
温側の部分として規定されている。これはダイヤモンド
が熱力学的に安定で、且つ炭素と溶媒金属との共晶温度
よりも約5びC上方の領域であり、従って用いる溶媒金
属の種類によってこの曲線における圧力温度の最低値が
決定される。ダイヤモンドは、また、種子として添加さ
れたダイヤモンドの微づ・結晶を成長させることによっ
ても得ることができる。
(In this case, it is said that the nucleus for diamond crystal formation is nickel carbide, for example when nickel is used as the solvent metal. Furthermore, it is known that crystal nuclei are generally likely to spontaneously grow during synthesis. ) The range of temperature and pressure conditions in which diamond can be synthesized without using such seeds is, for example, when cobalt is used as the solvent metal, on the higher pressure and higher temperature side than curve A-B in the carbon phase diagram shown in Figure 1. It is defined as a part of This is the region where diamond is thermodynamically stable and approximately 5°C above the eutectic temperature of carbon and solvent metal, so the lowest pressure temperature value in this curve is determined by the type of solvent metal used. be done. Diamonds can also be obtained by growing diamond granules added as seeds.

か)る方法は例えば特公昭38−511び号公報及び米
国特許第3423177号等に記載されているが、これ
らの成長反応の圧力温度条件領域も前記曲線A−Bより
も高圧高温側の部分に含まれる。そして共晶温度曲線曲
線A−B、及びBenman−Simon曲線にて囲ま
れた部分は上記公知方法にては結晶の成長速度が極めて
小さ〈、また貧弱な結晶しか得られないとして従来ダイ
ヤモンドの製造にとって実用的な領域とはみなされてい
なかった。本発明は炭素一溶媒金属の境界面に点在せし
めた金属炭化物の粒によりダイヤモンド結晶の形成をこ
)に誘起させることによって、.従釆方法においては、
前述の如くダイヤモンド合成にとって実用的な領域とは
見倣されていなかった領域、及び更に低温の領域におい
て結晶性の良好なダイヤモンドの合成を可能としたもの
であって、その要旨とするところは、互に接して配置さ
れた炭素と、鉄、コバルト、ニッケル又はこれらを含有
する合金から成る溶媒金属とをダイヤモンド安定領域内
の圧力温度条件下に供してダイヤモンドを合成するに際
し、まず炭素と溶媒金属とを交互に積層配置し、、隣接
層間の境界面にバナジウム、クロム、マンガン、ニオブ
、タンタル、及びタングステンのうちの少くとも1種の
金属の炭化物の粒を点在せしめ、次いでかかる炭素、溶
媒金属及び金属炭化物から成る反応物質をダイヤモンド
安定領域内の圧力温度条件下に供することを特徴とする
ダイヤモンド製造法に存する。
This method is described in, for example, Japanese Patent Publication No. 38-511 and U.S. Patent No. 3,423,177, but the pressure and temperature condition range for these growth reactions is also on the high pressure and high temperature side of the curve A-B. include. The area surrounded by the eutectic temperature curve A-B and the Benman-Simon curve is a region surrounded by the conventional diamond manufacturing method because the above-mentioned known method has an extremely low crystal growth rate and only poor crystals can be obtained. It was not considered to be a practical area. The present invention induces the formation of diamond crystals by metal carbide grains scattered at the carbon-solvent metal interface. In the subordinate method,
As mentioned above, it has made it possible to synthesize diamond with good crystallinity in an area that has not been considered practical for diamond synthesis, and in an even lower temperature area, and its gist is as follows: When synthesizing diamond by subjecting carbon placed in contact with each other and a solvent metal consisting of iron, cobalt, nickel, or an alloy containing these under pressure and temperature conditions within the diamond stability region, first the carbon and the solvent metal are are arranged in alternating layers, grains of carbide of at least one metal selected from vanadium, chromium, manganese, niobium, tantalum, and tungsten are dotted on the interface between adjacent layers, and then such carbon and a solvent are interspersed. The present invention relates to a method for producing diamond, characterized in that reactants consisting of a metal and a metal carbide are subjected to pressure and temperature conditions within a diamond stability region.

本発明においては結晶形成の譲起剤として、炭化クロム
、炭化タンタル、炭化タングステン、炭化バナジウムの
如き金属炭化物、或いはクロム、マンガン、タンタルの
如き炭素雰囲気下で安定な炭化物を形成する金属が用い
られる。
In the present invention, metal carbides such as chromium carbide, tantalum carbide, tungsten carbide, and vanadium carbide, or metals that form stable carbides in a carbon atmosphere such as chromium, manganese, and tantalum are used as crystal formation promoting agents. .

これらはいずれもダイヤモンド形成時に溶媒金属と炭化
物とからなる共晶の形成により、溶媒金属の熔融温度よ
り低い温度で液相を生じるように選ばれる。用いる誘起
剤の量はサィィズや反応装置へ仕込む際の分散条件によ
っても異なるが、重量比にて溶媒金属の0.1%以下で
充分であり、比較的多量、特に1%以上使用されると、
結晶が相接して形成されるため、結晶性の良好なダイヤ
モンドは得られなくなる。本発明方法において例えば、
溶媒金属にコバルトを用いるダイヤモンド合成反応にお
いて譲起剤として炭化クロム粉を添加した場合、炭化ク
ロムとコバルトと黒鉛とが共存する個所においてCo一
Cr−C三元共晶によってCo一Cの場合よりも更に低
い温度で液相が生成し、この液相の作用用によってダイ
ヤモンドの形成が行なわれる。
All of these are selected so that during diamond formation, a liquid phase is produced at a temperature lower than the melting temperature of the solvent metal due to the formation of a eutectic consisting of the solvent metal and the carbide. The amount of inducer used varies depending on the size and dispersion conditions when charging the reactor, but 0.1% or less of the solvent metal by weight is sufficient, and if used in a relatively large amount, especially 1% or more, ,
Since the crystals are formed adjacent to each other, diamond with good crystallinity cannot be obtained. In the method of the present invention, for example,
When chromium carbide powder is added as an accelerator in a diamond synthesis reaction using cobalt as the solvent metal, the Co-Cr-C ternary eutectic generates a higher concentration than the case of Co-C at locations where chromium carbide, cobalt, and graphite coexist. A liquid phase is formed at an even lower temperature, and diamond formation occurs due to the action of this liquid phase.

この際予め炭化クロムを点在させておくことによって液
相の生成個所を限定することができ、これより生成する
ダイヤモンドの個数を決定することができる。ダイヤモ
ンドの形が進むに従って炭化物の大部分を含む液相はダ
イヤモンドの周囲に押し出され、この液相の存在により
さらにダイヤモンドの結晶生長が進行する。
At this time, by scattering chromium carbide in advance, the locations where the liquid phase is generated can be limited, and from this the number of diamonds to be generated can be determined. As the shape of the diamond progresses, the liquid phase containing most of the carbides is pushed out around the diamond, and the presence of this liquid phase further promotes diamond crystal growth.

また種子結晶上へのダイヤモンドの結晶成長はダイヤモ
ンドの核が自生する温度、圧力条件よりも低い条件で進
行することにより、誘起剤の使用が徴量で結晶生成時に
ダイヤモンド中へ介在物として取り込まれた場合におい
ても、既に生成した結晶上へのダイヤモンド成長の続行
が可能である。こうして、ダイヤモンドの形成はコバル
トに接して炭化クロムを点在させた個所のみに生じるの
で、生成した結晶がお互に干渉しないこと、反応温度が
比較的低いため生成速度が遅いことにより、各結晶面が
一様に発達した即ち結晶の完全なダイヤモンドが得られ
る。
In addition, diamond crystal growth on the seed crystal proceeds under conditions of temperature and pressure lower than those in which the diamond nucleus grows naturally, so the use of an inducing agent is necessary, and it is incorporated into the diamond as inclusions during crystal formation. Even in such cases, it is possible to continue diamond growth on already formed crystals. In this way, diamond formation occurs only in areas where chromium carbide is dotted in contact with cobalt, so the formed crystals do not interfere with each other, and because the reaction temperature is relatively low, the formation rate is slow, so each crystal is A diamond with uniformly developed surfaces, ie, a perfect crystal, is obtained.

さらに本方法によって得られるダイヤモンドは比較的低
温低圧で結晶成長を行なうものではあるが、核形成から
結晶の完成まで一貫して反応が進行するので、結晶は均
質であり、種子結晶上に成長させる場合に種子結晶との
成長層と間にいまいま見られる不連続面は見られず、従
って強度の大きな結晶が得られる。金属炭化物の代りに
クロム、マンガン、タンタル等の金属粒を用いても同機
の効果が得られる。これはダイヤモンド合成反応に先立
つ昇温中に炭素の拡散によって炭化物の形成が行なわれ
ることによる。これらの金属は炭化物形成能が大きいの
に加えて加圧下では炭化物が安定であること、炭素の拡
散は速やかに進行することにより金属炭化物粒を用いる
場合と効果において殆んど差が認められない。用いる謙
起剤の粒度が大き過ぎる場合は、、ダイヤモンド形成時
の液相の量が多過ぎることとなり、このため同時に複数
個の結晶核が生成し、また生長速度も大きくなるので複
雑な形状のダイヤモンドとなって使用目的に合致しない
Furthermore, although the diamond obtained by this method undergoes crystal growth at relatively low temperature and low pressure, the reaction proceeds consistently from nucleation to completion of the crystal, so the crystal is homogeneous and cannot be grown on a seed crystal. In this case, there are no discontinuous surfaces between the seed crystal and the growth layer, which are presently observed, and therefore a crystal with high strength can be obtained. The same effect can be obtained by using metal grains such as chromium, manganese, tantalum, etc. instead of metal carbide. This is due to the formation of carbides due to carbon diffusion during the temperature rise prior to the diamond synthesis reaction. These metals have a high ability to form carbides, the carbides are stable under pressure, and carbon diffusion proceeds quickly, so there is almost no difference in effectiveness compared to when metal carbide particles are used. . If the particle size of the suspending agent used is too large, the amount of liquid phase during diamond formation will be too large, resulting in the formation of multiple crystal nuclei at the same time, and the growth rate will be high, making it difficult to form complex shapes. It becomes a diamond and does not meet the purpose of use.

一方溶媒金属に接して配置された譲起剤の粒度が小さ過
ぎる場合は昇温中に溶媒金属中へ拡散して消失する場合
が生じる。従って本発明方法において用いる譲起剤とし
ては約10〜100仏mの粒蓬を有するものが好ましい
。本発明方法により操作を行なった後高圧装置から回収
した反応生成物には未溶融の溶媒金属に接してよく成長
したダイヤモンド結晶の存在が認められる。
On the other hand, if the particle size of the enhancer placed in contact with the solvent metal is too small, it may diffuse into the solvent metal and disappear during temperature rise. Therefore, the raising agent used in the method of the present invention preferably has a grain size of about 10 to 100 meters. The reaction product recovered from the high-pressure apparatus after operating according to the method of the invention shows the presence of well-grown diamond crystals in contact with the unmolten solvent metal.

これらの結晶は主に六一八面体のよく発達した結晶面を
有し、且つ透明な黄色を呈していて、この領域において
は六面体の貧弱な結晶しか生成しないと言われていた従
釆の生成方法とは異なるダイヤモンド合成方法であるこ
とを示している。本発明方法ではダイヤモンドの生成は
誘起剤溶媒金属黒鉛の接する個所のみで行なわれるもの
であって、誘起剤配置個所におけるダイヤモンドの成長
量は、溶媒金属の種類、反応温度および加熱時間で決定
され、譲起剤の分布密度により生成する結晶の大きさが
決められる。
These crystals mainly have well-developed hexagonal octahedral crystal faces and are transparent yellow in color, indicating the formation of subordinate structures that were said to produce only poor hexahedral crystals in this region. This shows that the diamond synthesis method is different from the method used in this study. In the method of the present invention, diamond formation occurs only at the locations where the inducing agent solvent metal graphite comes into contact with the inducing agent, and the amount of diamond growth at the location where the inducing agent is placed is determined by the type of solvent metal, reaction temperature, and heating time. The size of the crystals produced is determined by the distribution density of the enhancing agent.

以下本発明を実施例によって説明する。The present invention will be explained below with reference to Examples.

実施例 1 内径3山肌高ご4抗吻の間接加熱容器内に反応物質とし
て直径3仇肋厚さ2肌のコバルト板と、厚さ6肌の黒鉛
板とを交互に配置し、両者の接触部に粒律約5坪mに粉
砕した炭化クロム粒30雌を配置した。
Example 1 Cobalt plates with a diameter of 3 ribs and 2 skins in thickness and graphite plates with a thickness of 6 skins were placed alternately as reactants in an indirect heating container with an inner diameter of 3 walls, height of 4 holes, and contact between the two. 30 pieces of chromium carbide crushed to a particle size of approximately 5 tsubom were placed in the chamber.

この容器の両端をろう石製円板で蓋をし、従来の一軸加
圧型高温高圧装置に装置して約50kbに加圧すると共
に反応室の周囲に配置されたヒーターに通電して約13
00qoに加熱し15分間維持した。この結果平均粒径
0.1〜0.2の結晶面の良く発達した黄色乃至黄緑色
のダイヤモンド約16タrを得た。実施例 2 上記実施例と同一寸法の反応容器を用い、厚さ2側のニ
ッケル板と厚さ6肌の黒鉛板とを交互に配置し、両者の
接触部に粒径約100〆mの炭化クロム粒10の夕を配
置した。
Both ends of this container were covered with waxite disks, and the container was placed in a conventional uniaxial pressure type high temperature and high pressure device to pressurize it to about 50 kb, and a heater placed around the reaction chamber was energized to give about 13 kb.
00qo and maintained for 15 minutes. As a result, approximately 16 tar of yellow to yellow-green diamonds with well-developed crystal planes and an average grain size of 0.1 to 0.2 were obtained. Example 2 Using a reaction vessel with the same dimensions as in the above example, 2-thickness nickel plates and 6-thickness graphite plates were arranged alternately, and carbonized particles with a particle size of about 100 m were placed in the contact area between the two. A layer of 10 chrome grains was placed.

この反応物質を約52kb、約1350午Cの圧力温度
条件に4び分間維持した。
‐この結果0.3〜0.4側の粒径を有するダイ
ヤモンド約15タrを得た。
The reactants were maintained at pressure and temperature conditions of about 52 kb and about 1350 pm for 4 minutes.
-As a result, about 15 tare of diamonds with a grain size on the 0.3-0.4 side were obtained.

実施例 3 実施例2と同一の構成を用い、ニッケル板と黒鉛板との
接触部に300/400メッシュのタンタルカーバィド
粒30の9を配置した。
Example 3 Using the same configuration as Example 2, 30/9 of 300/400 mesh tantalum carbide grains were placed in the contact area between the nickel plate and the graphite plate.

この反応物質を約54kb、約140000の圧力温度
条件に30分間維持し、0.2〜0.3肌の粒径を有す
るダイヤモンド約18タrを得た。実施例 4 実施例1と同一の反応容器の構成を用い、コバルト板と
黒鉛板との接触部に粒蓬約1叫mの金属クロム粒15の
3を配置した。
The reactant was maintained at a pressure and temperature condition of about 54 kb and about 140,000 for 30 minutes, yielding about 18 tar of diamonds having a particle size of 0.2 to 0.3 skin. Example 4 Using the same reaction vessel configuration as in Example 1, 3 out of 15 metal chromium grains each having a diameter of about 1 m were placed in the contact area between the cobalt plate and the graphite plate.

この反応物質を約50kb、約13000030分間維
持し、平均粒蓬0.3側のダイヤモンド約12タrを得
た。実施例 5 実施例1と同一の反応容器の構成を用い、厚さ2肋の鉄
板と厚さ6肌の黒鉛板との接触部に粒律約10岬mの金
属マンガン粒10の9を配督した。
This reaction material was maintained for about 50 kb and about 1,300,0030 minutes to obtain about 12 tar of diamonds with an average grain size of 0.3. Example 5 Using the same reaction vessel configuration as in Example 1, metallic manganese grains with a particle size of about 10 m were arranged at the contact area between the iron plate with a thickness of 2 and the graphite plate with a thickness of 6. Supervised.

これを約5水b、約1350℃の圧力温度条件に40分
間維持し、、粒径0.4〜0.5側の六一八面体結晶約
18タrを得た。以上述べた如く本発明方法においては ‘1} 徴量の結晶形成誘起剤の添加により、溶媒金属
の溶融温度に近接し温度範囲、或いは溶媒金属の溶融温
度よりさらに低い温度条件下でダイヤモンドの合成が可
能となった。
This was maintained under pressure and temperature conditions of about 5 water b and about 1350° C. for 40 minutes to obtain about 18 ta r of hexa-octahedral crystals with a grain size of 0.4 to 0.5. As described above, in the method of the present invention, diamond can be synthesized in a temperature range close to the melting temperature of the solvent metal or even lower than the melting temperature of the solvent metal by adding a certain amount of a crystal formation inducer. became possible.

このように低温での合成のための結晶の成長速度を比較
的小さく制御でき、各結晶面の生成速度をほぼ一様とす
ることができるので対称性が高く、且つ結晶面の良く発
達したダイヤモンドが得られる。■ 結晶の成長は誘起
剤を配置した個所のみに生じるので誘起剤の量によって
生成するダイヤモンドの個数と大きさを決めることがで
きる。‘3} 誘起剤は金属炭化物または安定な炭化物
を形成する金属のため、ダイヤモンド種子を用いて合成
、温度、圧力条件を下げる反応方法の場合における合成
反応に先立って種子が消失する現象は生ず、反応の再現
性が良好である。■ 誘起剤を用いることにり従来のダ
イヤモンド合成方法に比して低い圧力、温度条件を用い
ながら良質のダイヤモンド合成が可能になった。
In this way, the crystal growth rate for low-temperature synthesis can be controlled to a relatively low level, and the growth rate of each crystal plane can be made almost uniform, making it possible to produce diamonds with high symmetry and well-developed crystal planes. is obtained. ■ Since crystal growth occurs only at the location where the inducing agent is placed, the number and size of diamonds to be produced can be determined by the amount of inducing agent. '3} Because the inducer is a metal carbide or a metal that forms a stable carbide, the phenomenon of seeds disappearing prior to the synthesis reaction does not occur in the case of a reaction method that uses diamond seeds to lower the synthesis, temperature, and pressure conditions. , the reproducibility of the reaction is good. ■ By using an inducing agent, it is now possible to synthesize high-quality diamonds using lower pressure and temperature conditions than in conventional diamond synthesis methods.

このため用いる反応装置の耐用回数を増すことができる
。特徴を有する。
Therefore, the number of lifetimes of the reactor used can be increased. Has characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は炭素の状態図を示すものであり、縦軸は圧力、
機軸は温度を表わす図において曲線A−Bはコバルトを
溶媒金属として用いた場合、ダイヤモンド結晶の核が自
生できる限界を示す。
Figure 1 shows the phase diagram of carbon, where the vertical axis is pressure;
In the diagram where the axis represents temperature, the curve A-B shows the limit at which diamond crystal nuclei can spontaneously grow when cobalt is used as a solvent metal.

Claims (1)

【特許請求の範囲】 1 互に接して配置さた炭素と鉄、コバルト、ニツケル
又はこれらを含有する合金から成る溶媒金属とを、ダイ
ヤモンド安定領域内の圧力温度条件下に供してダイヤモ
ンドを合成するに際し、まず炭素と溶媒金属とを交互に
積層配置し、隣接層間の境界面に、バナジウム、クロム
、マンガン、ニオブ、タンタル、タングステンのうちの
少くとも1種の金属の炭化物の粒を点在せしめ、次いで
かかる炭素、溶媒金属及び金属炭化物から成る反応物質
をダイヤモンド安定領域内の圧力温度条件下に加圧加熱
することを特徴とするダイヤモンド製造法。 2 上記金属炭化物の粒を加圧加熱に先立ち予め上記境
界面に配置する、特許請求の範囲第1項記載のダイヤモ
ンド製造法。 3 上記金属炭化物を形成する金属を、加圧加熱に先立
ち金属粒として上記境界面に配置し、加熱に際しかゝる
金属炭化物を形成せしめる、特許請求の範囲第1項記載
のダイヤモンド製造法。
[Claims] 1. Diamond is synthesized by subjecting carbon and a solvent metal consisting of iron, cobalt, nickel, or an alloy containing these, which are arranged in contact with each other, to pressure and temperature conditions within the diamond stability region. In this process, carbon and solvent metal are first layered alternately, and the interface between adjacent layers is dotted with grains of carbide of at least one metal among vanadium, chromium, manganese, niobium, tantalum, and tungsten. , and then pressurizing and heating the reactant consisting of carbon, solvent metal, and metal carbide under pressure and temperature conditions within the diamond stability region. 2. The diamond manufacturing method according to claim 1, wherein the metal carbide grains are placed on the boundary surface in advance before pressurizing and heating. 3. The diamond manufacturing method according to claim 1, wherein the metal that forms the metal carbide is placed on the boundary surface as metal grains prior to pressurization and heating, and the metal carbide is formed only during heating.
JP52084996A 1977-07-18 1977-07-18 diamond manufacturing method Expired JPS6024044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52084996A JPS6024044B2 (en) 1977-07-18 1977-07-18 diamond manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52084996A JPS6024044B2 (en) 1977-07-18 1977-07-18 diamond manufacturing method

Publications (2)

Publication Number Publication Date
JPS5420990A JPS5420990A (en) 1979-02-16
JPS6024044B2 true JPS6024044B2 (en) 1985-06-11

Family

ID=13846232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52084996A Expired JPS6024044B2 (en) 1977-07-18 1977-07-18 diamond manufacturing method

Country Status (1)

Country Link
JP (1) JPS6024044B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5187315A (en) * 1989-03-20 1993-02-16 Yamaha Corporation Musical tone central parameter controller for a musical instrument

Also Published As

Publication number Publication date
JPS5420990A (en) 1979-02-16

Similar Documents

Publication Publication Date Title
JP3318002B2 (en) Reaction vessel for diamond synthesis
US4547257A (en) Method for growing diamond crystals
US4632817A (en) Method of synthesizing diamond
JP3814303B2 (en) Sintering method for diamond and diamond growth
KR100503542B1 (en) Diamond growth
JPH01139133A (en) Production of ultrahard polishing particle
JPS5828230B2 (en) High hardness polycrystalline material and its manufacturing method
JPS62274034A (en) Manufacture of polycrystalline diamond sintered compact by reaction sintering
JPS6024044B2 (en) diamond manufacturing method
US4246005A (en) Diamond aggregate abrasive materials for resin-bonded applications
Mallika et al. On the low pressure transformation of graphite to diamond in the presence of a ‘catalyst-solvent’
JPS58161995A (en) Method for synthesizing diamond
JPS61117106A (en) Synthesis of cubic boron nitride
JP4190196B2 (en) Diamond synthesis method
US4123504A (en) Method of making diamonds synthetically
JPH0435213B2 (en)
JPH0330828A (en) Synthesizing of diamond
JPS6225601B2 (en)
JPS6035282B2 (en) Diamond synthesis method
JPH04139292A (en) Production of diamond abrasive grain in presence of non-metal catalyst
JP2932300B2 (en) Diamond synthesis method
JPS59203717A (en) Manufacture of diamond crystal
JPS6384627A (en) Production of diamond crystal
SU54392A1 (en) The method of producing synthetic hydrocarbons
JPH02265637A (en) Synthesizing process for diamond