JPS60240161A - Semiconductor radiation detector - Google Patents

Semiconductor radiation detector

Info

Publication number
JPS60240161A
JPS60240161A JP59096110A JP9611084A JPS60240161A JP S60240161 A JPS60240161 A JP S60240161A JP 59096110 A JP59096110 A JP 59096110A JP 9611084 A JP9611084 A JP 9611084A JP S60240161 A JPS60240161 A JP S60240161A
Authority
JP
Japan
Prior art keywords
rays
boron
thermal neutron
neutron
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59096110A
Other languages
Japanese (ja)
Other versions
JPH0473636B2 (en
Inventor
Noritada Sato
則忠 佐藤
Yasukazu Seki
康和 関
Masaya Yabe
正也 矢部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59096110A priority Critical patent/JPS60240161A/en
Publication of JPS60240161A publication Critical patent/JPS60240161A/en
Publication of JPH0473636B2 publication Critical patent/JPH0473636B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • H01L31/118Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation of the surface barrier or shallow PN junction detector type, e.g. surface barrier alpha-particle detectors

Abstract

PURPOSE:To obtain a detector, in which neutron nuclear transformation reaction material need not be mounted on the front surface in order to detect thermal neutron-rays, by forming a film comprising boron on the surface of the semiconductor substrate of a detecting element or on the surface of an electrode. CONSTITUTION:In the case of a detecting element having a surface barrier structure, e.g., aluminum is evaporated in a vacuum for barrier metal 6, and gold is evaporated in a vacuum for an ohmic contact electrode 7 for P type silicon. A boron film 8 is formed on at least one surface of said electrodes 6 and 7. A reverse voltage is applied to the element having the surface barrier structure. When thermal neutron rays 4 are inputted under this state, alpha rays are generated by the reaction of the neutron transformation <10>B+n <7>Li+alpha in the boron film 8. Pairs of electrons and holes are generated in a depletion layer by the alpha rays, and a current flows. Therefore the thermal neutron rays can be detected. When the boron films 8 are formed on both surfaces of the electrodes 6 and 7, the alpha rays, which are generated on the back surface, are detected. Therefore, the detecting efficiency of the thermal neutron is further enhanced.

Description

【発明の詳細な説明】 〔発明のにする技術分野〕 本発明1は熱中性子線を含む放射線を検出する半導体放
射線検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention 1 relates to a semiconductor radiation detector that detects radiation including thermal neutron beams.

〔従来技術とその問題点〕[Prior art and its problems]

半導体放射線検出器は、その代表例を第8図に示すよう
に、P形の高比抵抗シリコン板1にりん拡散によってn
領域2を形成し、このPn接合に対する逆電圧の印加に
よって生ずる空乏層内に放射線が入射した際発生する電
子−正孔対忙基づき、図示しない両面の両電極間に流れ
る電流によって放射線を検出するものである。
As a typical example of the semiconductor radiation detector is shown in FIG.
Region 2 is formed, and radiation is detected by a current flowing between both electrodes on both sides (not shown) based on electron-hole pairs generated when radiation enters a depletion layer created by applying a reverse voltage to this Pn junction. It is something.

しかし中性子線は電荷をもっていないので、核反応以外
には軌道電子や原子核のクーロン場にはなんらの作用も
及ぼさず、従って電子−正孔対が生じない。このため、
中性子線を中性子吸収断面積の大きい物質を透過させ、
中性子核変換反応によりα線を発生させ、それらによっ
て空乏層内に電子−正孔対を生成する。すなわち、従来
は検出器のシリコン板1に放射線が入射する窓の部分K
However, since neutron beams have no electric charge, they do not have any effect on the orbital electrons or the Coulomb field of the atomic nucleus other than nuclear reactions, and therefore no electron-hole pairs are generated. For this reason,
Transmits a neutron beam through a material with a large neutron absorption cross section,
The neutron transmutation reaction generates alpha rays, which generate electron-hole pairs in the depletion layer. That is, conventionally, the window portion K where radiation enters the silicon plate 1 of the detector
.

例えばほう素を含むボラル板3を装着し、熱中性子線4
の入射の際にほう素中の中性子吸収断面積の約5桁大き
いほう素の同位元素 Bの B(n。
For example, a Boral plate 3 containing boron is attached, and a thermal neutron beam 4 is attached.
B(n) of the isotope of boron, which is about five orders of magnitude larger than the neutron absorption cross section in boron upon incidence of B.

α)反応を利用してα線5を発生させ、これを検出する
α) Generate α-rays 5 using the reaction and detect them.

〔発明の目的〕[Purpose of the invention]

本発明は、このように熱中性子線検出のために、前面忙
中性子核変換反応物質を装着する必要のない半導体放射
線検出器を提供することを目的とする。
An object of the present invention is thus to provide a semiconductor radiation detector that does not require a front-facing neutron transmutation reaction material for thermal neutron beam detection.

〔発明の要点〕[Key points of the invention]

この発明は、検出素子の半導体基体の表面または電極の
表面にほう素よりなる被膜を形成し、そのほう素抜膜中
に存在する同位元素 Bの B(n。
This invention forms a film made of boron on the surface of a semiconductor substrate or an electrode of a detection element, and B(n) of isotope B present in the boron-free film.

α)反応を利用してα線を発生させ、このα線の検出を
行うことにより中性子線の検出を可能にすることにある
α) It is possible to detect neutron beams by generating α rays using reactions and detecting these α rays.

〔発明の実施例〕[Embodiments of the invention]

以下図を引用して本発明の実施例について説明する。各
図において、第8図と共通の部分には同一の符号を付し
ている。第1図ないし第7図において6及び7はこの検
出素子の両面に形成した電極で、放射線が半導体基体1
に入射したとき、逆バイアス電圧印加状態で生じた空乏
層内結晶と作用して発生する電子−正孔対をパルス信号
として取り出すためのものである。
Embodiments of the present invention will be described below with reference to the drawings. In each figure, parts common to those in FIG. 8 are given the same reference numerals. In FIGS. 1 to 7, 6 and 7 are electrodes formed on both sides of this detection element, and radiation is transmitted to the semiconductor substrate 1.
This is for extracting as a pulse signal electron-hole pairs generated by interacting with crystals in the depletion layer generated when a reverse bias voltage is applied.

第1図及び第2図は表面障壁形構造の検出素子の場合で
、例えばP形シリコンでは障壁金属6としてアルミ、オ
ーミックコンタクト電極7として金をそれぞれ真空蒸着
したものである。はう素抜膜8は前記電極6及び7の少
くとも一方の表面に形成される。この表面障壁形構造の
素子に逆電圧を印加した状態で熱中性子線4が入射する
と、はう素抜膜8において”B+n→’7 L i+α
の中性子核変換反応によりα線5が発生し、このα線に
よって空乏層内に電子・正孔対が生成されて電流が流れ
るので熱中性子線が検出できる。第2図に示すように両
電極6及び70表面にそれぞれほう素抜膜8を形成させ
た場合は、裏面で発生したα線も検出するので熱中性子
の検出効率が第1図に示した実施例よりさらに高められ
る。
1 and 2 show the case of a detection element having a surface barrier type structure, for example, in P-type silicon, aluminum is vacuum-deposited as the barrier metal 6, and gold is vacuum-deposited as the ohmic contact electrode 7. A porosity removal film 8 is formed on at least one surface of the electrodes 6 and 7. When a thermal neutron beam 4 is incident on an element with this surface barrier type structure while a reverse voltage is applied, "B+n→'7 L i+α
α rays 5 are generated by the neutron transmutation reaction, and the α rays generate electron-hole pairs in the depletion layer, causing current to flow, so thermal neutron beams can be detected. When the boron removal film 8 is formed on the surfaces of both electrodes 6 and 70, as shown in FIG. 2, the alpha rays generated on the back surface are also detected, so the thermal neutron detection efficiency is lower than that shown in FIG. Even higher than the example.

第3図、第4図および第5図はPn接合形放射線検出素
子の場合で、n形シリコン基板9に選択的にほう素抜膜
8を形成する。はう素抜膜8の直下のn形シリコン基板
9にほう素侵入層、すなわち2層10が形成される。こ
のP層は、lO〜lO原子/CrIL3 の極めて高い
ほう素濃度を有するため、熱中性子線を効率良く検出す
る。さらに熱中性子線の検出効率を高めるため、第4図
及び第5図に示すように電極6及び7の表面にもほう素
抜膜8を形成する。その結果第2図と同じ効果力を得ら
れる。
3, 4, and 5 show the case of a Pn junction type radiation detection element, in which a boron removal film 8 is selectively formed on an n-type silicon substrate 9. A boron interstitial layer, ie, two layers 10, is formed on the n-type silicon substrate 9 directly under the boron removal film 8. Since this P layer has an extremely high boron concentration of 10 to 10 atoms/CrIL3, it efficiently detects thermal neutron beams. Furthermore, in order to improve the detection efficiency of thermal neutron beams, a boron removal film 8 is also formed on the surfaces of the electrodes 6 and 7, as shown in FIGS. 4 and 5. As a result, the same effect as in Figure 2 can be obtained.

第6図及び第7図はP形シリコン基板を用いた表面障壁
形及びPnn接合槽構造検出素子であり、はう素抜膜8
の直下KP+層10、すなわちオーミックコンタクト層
を形成し、さらに電極−Hにもほう素抜膜8を形成して
いる。
Figures 6 and 7 show surface barrier type and Pnn junction tank structure detection elements using a P-type silicon substrate.
A KP+ layer 10, that is, an ohmic contact layer, is formed directly under the electrode -H, and a boron removal film 8 is also formed on the electrode -H.

上述のほう素抜膜は、真空容器内に被着すべき基体を収
容して所定の温度、例えば300’Oに加熱し、前記容
器にジボランガスを導入し、前記容器内にグロー放電を
発生させて上記ガスを分解し、基体上にほう素抜膜を堆
積させるという方法で形成するのが望ましい。この時の
ほう素濃度は1023厘子/cr/L3以上で、またほ
う素抜膜の厚みは約500Aである。なお、上記はう素
抜膜の形成法ならびにほう素抜膜の被着による半導体基
体表面の高ドープ領域の生成については、本出願人の出
願に係る特許願昭58−93218号および同58−9
3220号明細書を参照されたい。もちろん、このほう
素抜膜には11Bと10Bが4:1の比率で含まれてい
るので、10Bの含有量は17.にすぎない。しかるに
このよう処して形成したほう素抜膜のほう素濃度は10
23原子/α3以上であるため、例えば特開昭57−8
5268号公報に示したような、 Bのみを質量分離し
てほう素層を形成するイオン注入量にくらべ【、より高
濃度のほう素を含む被膜が容易に形成でき、したがって
熱中性子線の検出効率が高められる。
The above-mentioned boron removal film is produced by storing the substrate to be deposited in a vacuum container, heating it to a predetermined temperature, for example, 300'O, and introducing diborane gas into the container to generate a glow discharge in the container. It is preferable to form the boron-free film by decomposing the gas and depositing a boron-free film on the substrate. The boron concentration at this time is 1023 cm/cr/L3 or more, and the thickness of the boron removal film is about 500A. The above-mentioned method for forming a porosity-free film and the formation of a highly doped region on the surface of a semiconductor substrate by depositing a boron-free film are described in Patent Application Nos. 58-93218 and 58-58 filed by the present applicant. 9
See specification No. 3220. Of course, this boron removal film contains 11B and 10B at a ratio of 4:1, so the content of 10B is 17. It's nothing more than that. However, the boron concentration of the boron-free film formed in this way was 10
Since it is more than 23 atoms/α3, for example, JP-A-57-8
Compared to the amount of ion implantation that forms a boron layer by mass-separating only B as shown in Publication No. Efficiency is increased.

本発明による放射線検出器の構造自体は、従来の検出器
と同様であるから、当然熱中性子線以外の放射線も検出
できる。例えばr線の場合には、光電効果、コンプトン
効果による二次電子線を検出するため、第5図の曲線1
1のように出力はパルス波高に対し連続スペクトルを示
すから、曲線ルに示す熱中性子線のパルス波高と明確に
判別できる。また入射窓にポリエチレン板をおけば速中
性子線の検出も可能である。すなわち、速中性子線がポ
リエチレン板に入射すると、弾性衝突によつて叩き出さ
れたプロトンが空乏層に入射して電子・正孔対を生ずる
ので、他の放射線と同様に検出できる。
Since the structure itself of the radiation detector according to the present invention is similar to that of conventional detectors, it is naturally possible to detect radiation other than thermal neutron beams. For example, in the case of r-rays, curve 1 in Figure 5 is used to detect secondary electron beams due to the photoelectric effect and Compton effect.
1, the output shows a continuous spectrum with respect to the pulse height, so it can be clearly distinguished from the pulse height of the thermal neutron beam shown in curve 1. Furthermore, if a polyethylene plate is placed in the entrance window, fast neutron beams can also be detected. That is, when a fast neutron beam is incident on a polyethylene plate, protons knocked out by elastic collisions enter the depletion layer and generate electron-hole pairs, so it can be detected like other radiation.

ここで使用される半導体基体は、上述のシリコン、ゲル
マニウムのほかにGaAg 、 CdTeなどの化合物
半導体であっても、はう素抜膜の形成温度が300°C
以下のため、結晶性を損うこともなく、中性子線を含め
た放射線検出器として有効である。
The semiconductor substrate used here may be a compound semiconductor such as GaAg or CdTe in addition to the above-mentioned silicon or germanium, but the temperature at which the silicone-free film is formed is 300°C.
Because of the following, it does not impair crystallinity and is effective as a radiation detector including neutron beams.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、従来のように中性子核変換反応物質
を放射線検出素子の前面に装着することなく熱中性子線
を検出することができる。しかもこのほう素抜膜は、放
射線検出素子に密接しているため、 Bによる B(n
、α)反応を起して発生したα線が効率よく半導体基体
中に侵入するため、熱中性子線の検出効率が高められる
と同時に、はう素抜膜の厚みも約50OAで不感層幅も
極めて薄くできる。その結果、α線や低エネルギのβ線
及びγ線の検出にもとくに支障がない。
According to the present invention, thermal neutron beams can be detected without attaching a neutron transmutation reactant to the front surface of a radiation detection element as in the prior art. Moreover, since this boron-free film is in close contact with the radiation detection element, B(n
, α) Since the α rays generated by the reaction efficiently penetrate into the semiconductor substrate, the detection efficiency of thermal neutron beams is increased, and at the same time, the thickness of the matrix removal film is approximately 50 OA, and the width of the dead layer is also reduced. Can be made extremely thin. As a result, there is no particular problem in detecting α rays and low energy β rays and γ rays.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第7図は本発明のそれぞれ異なる実施例を
示す断面図、第8図は従来の半導体放射線検出器により
熱中性子線を検出する例を示す断面図、第9図は本発明
による検出器の出力パルス波高を例示する線図である。 1・・・P形シリコン基板、4・・・熱中性子線、5・
・・α線、6,7・・・電極、8・・・はう素抜膜、9
・・・n形シリコン基板、10・・・P領域。 才1 閃 才2図 ?3閃 才乙(3) 才5閃
1 to 7 are cross-sectional views showing different embodiments of the present invention, FIG. 8 is a cross-sectional view showing an example of detecting a thermal neutron beam using a conventional semiconductor radiation detector, and FIG. 9 is a cross-sectional view showing an example of detecting a thermal neutron beam using a conventional semiconductor radiation detector. FIG. 3 is a diagram illustrating the output pulse height of a detector. 1...P-type silicon substrate, 4...thermal neutron beam, 5...
・・・α ray, 6, 7... Electrode, 8... Base removal membrane, 9
. . . N-type silicon substrate, 10 . . . P region. Talent 1, genius 2? 3 Sensai Otsu (3) Sai 5 Sen

Claims (1)

【特許請求の範囲】 1)半導体基体の表面と、該半導体基体上に形成した電
極の表面の少くともいずれか一方の表面K、はう素被膜
層を有することを特徴とする半導体放射線検出器。 2、特許請求の範囲第1項記載の検出器において、はう
素被膜層が、ジボランガスを含む雰囲気中でグロー放電
を行うことにより上記表面上に形成されたものであるこ
とを特徴とする半導体放射線検出器。
[Scope of Claims] 1) A semiconductor radiation detector characterized in that the surface K of at least one of the surface of a semiconductor substrate and the surface of an electrode formed on the semiconductor substrate has a boron coating layer. . 2. The semiconductor according to claim 1, wherein the boron coating layer is formed on the surface by glow discharge in an atmosphere containing diborane gas. Radiation detector.
JP59096110A 1984-05-14 1984-05-14 Semiconductor radiation detector Granted JPS60240161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59096110A JPS60240161A (en) 1984-05-14 1984-05-14 Semiconductor radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59096110A JPS60240161A (en) 1984-05-14 1984-05-14 Semiconductor radiation detector

Publications (2)

Publication Number Publication Date
JPS60240161A true JPS60240161A (en) 1985-11-29
JPH0473636B2 JPH0473636B2 (en) 1992-11-24

Family

ID=14156247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59096110A Granted JPS60240161A (en) 1984-05-14 1984-05-14 Semiconductor radiation detector

Country Status (1)

Country Link
JP (1) JPS60240161A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01253683A (en) * 1988-03-31 1989-10-09 Matsushita Electric Ind Co Ltd Neutron detector and neutron detector array
JPH05232239A (en) * 1992-02-25 1993-09-07 Aloka Co Ltd Neutron detector
FR2763744A1 (en) * 1997-05-26 1998-11-27 Fuji Electric Co Ltd Neutron detector of semiconductor type

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01253683A (en) * 1988-03-31 1989-10-09 Matsushita Electric Ind Co Ltd Neutron detector and neutron detector array
JPH05232239A (en) * 1992-02-25 1993-09-07 Aloka Co Ltd Neutron detector
FR2763744A1 (en) * 1997-05-26 1998-11-27 Fuji Electric Co Ltd Neutron detector of semiconductor type

Also Published As

Publication number Publication date
JPH0473636B2 (en) 1992-11-24

Similar Documents

Publication Publication Date Title
US6479826B1 (en) Coated semiconductor devices for neutron detection
US5726453A (en) Radiation resistant solid state neutron detector
US20110266643A1 (en) Solid state neutron detector
Wyrsch et al. Review of amorphous silicon based particle detectors: the quest for single particle detection
US7060523B2 (en) Lithium-drifted silicon detector with segmented contacts
McGregor et al. Designs for thin-film-coated semiconductor thermal neutron detectors
Naruse et al. Metal/amorphous silicon multilayer radiation detectors
Menichelli et al. Status and perspectives of hydrogenated amorphous silicon detectors for MIP detection and beam flux measurements
JPS60240161A (en) Semiconductor radiation detector
Luke et al. Recent developments in semiconductor gamma-ray detectors
JPS6135384A (en) Neutron detector
Rossington et al. Si (Li) detectors with thin dead layers for low energy x-ray detection
JPS61152084A (en) Semiconductor element for neutron detector
JPH0227776A (en) Semiconductor neutron beam detector
Dubeau et al. Response of a-Si: H detectors to protons and alphas
KR102405357B1 (en) Radioactivity detector, manufacturing method of the same, and use of the same
JPS61174778A (en) Semiconductor radiation detector
JPS6142433B2 (en)
Stephens et al. A method for measuring effective contact emf between a metal and a semi-conductor
JPH07107941B2 (en) Radiation detector
Messenger Electron-and gamma-induced displacement damage effects in indium phosphide semiconductor devices
Chen et al. A universal gain theory of the multiplying layer in EBCMOS based on elastic and inelastic scattering
Qureshi Hydrogenated amorphous silicon radiation detectors: Material parameters; radiation hardness; charge collection
HD Rasolonjatovo et al. Development of a gamma ray monitor using a CdZnTe semiconductor detector
JPH0447992B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term