JPS60239452A - Preparation of pentachlorobenzonitrile - Google Patents
Preparation of pentachlorobenzonitrileInfo
- Publication number
- JPS60239452A JPS60239452A JP59096191A JP9619184A JPS60239452A JP S60239452 A JPS60239452 A JP S60239452A JP 59096191 A JP59096191 A JP 59096191A JP 9619184 A JP9619184 A JP 9619184A JP S60239452 A JPS60239452 A JP S60239452A
- Authority
- JP
- Japan
- Prior art keywords
- iron
- catalyst
- compound
- reaction
- purity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、触媒として活性炭及び鉄化合物を使用し、ベ
ンゾニトリルと塩素とを気相で反応させて、各種農薬、
医薬或いは染料などの中間原料として有用なペンタクロ
ロベンゾニトリルを製造する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention uses activated carbon and an iron compound as a catalyst to react benzonitrile and chlorine in the gas phase, thereby producing various pesticides and
The present invention relates to a method for producing pentachlorobenzonitrile, which is useful as an intermediate raw material for medicines, dyes, and the like.
従来、ベンゾニトリル(以下BNと略す)を原料とし、
触媒の存在下、気相でペンタクロロベンゾニトリル(以
下PCBNと略す)を製造する方法としては、例えば特
許第618767号に記載された方法が知られている。Conventionally, benzonitrile (hereinafter abbreviated as BN) was used as a raw material,
As a method for producing pentachlorobenzonitrile (hereinafter abbreviated as PCBN) in the gas phase in the presence of a catalyst, for example, the method described in Japanese Patent No. 618767 is known.
しかしながら、前記特許方法においては、ニトリル基の
塩素化分解反応によるヘキサクロロベンゼンや、その他
の副生物が4〜7%も存在している。この様な副生物が
多量に存在することから、工業的且つ、大量にPCBN
を製造し、このものを次の反応工程に供するに際しては
、煩雑な分類、精製手段等の後処理が必要である。また
、前記特許に記載の方法について実験を行なったところ
、活性炭のみを触媒として使用した場合、反応開始1〜
2時間経過時点では、同明細書記載の通り、純度96%
前後のPCBNが得られることが確認された。しかしな
がら、更に実験を進めたところ、反応開始5時間後では
純度90%前後、10時間経過後では70%前後にまで
PCBHの純度が低下し、触媒の賦活化或いは取替えが
必要となり、反応を一時中断せざるを得ない状況となっ
た。また、アルカリ金属及びアルカリ土類金属の塩化物
、例えば塩化カリウム及び塩化バリウムを活性炭に付着
させた触媒を使用した場合、前述の活性炭のみを触媒と
して使用した場合と同様に、触媒活性は認められたもの
の、触媒寿命の改善は認められなかった。However, in the patented method, 4 to 7% of hexachlorobenzene and other by-products are present due to the chlorination decomposition reaction of nitrile groups. Because such by-products exist in large quantities, PCBN is used industrially and in large quantities.
When producing and subjecting this product to the next reaction step, complicated classification, purification means, and other post-treatments are required. In addition, when we conducted an experiment on the method described in the above patent, we found that when only activated carbon was used as a catalyst, the reaction started from 1 to 1.
After 2 hours, the purity was 96% as stated in the specification.
It was confirmed that the front and rear PCBNs could be obtained. However, as the experiment progressed further, the purity of PCBH decreased to around 90% 5 hours after the start of the reaction, and around 70% after 10 hours, making it necessary to activate or replace the catalyst, and the reaction was temporarily stopped. The situation had to be interrupted. In addition, when using a catalyst in which chlorides of alkali metals and alkaline earth metals, such as potassium chloride and barium chloride, are attached to activated carbon, no catalytic activity is observed, as in the case where activated carbon alone is used as the catalyst. However, no improvement in catalyst life was observed.
この様な状況から、前記特許の方法では、純度の高い、
煩雑な後処理操作を必要としないPCBNを、長期間連
続的に大量生産することは困難であると判断せざるを得
なかった。Under these circumstances, the method of the above patent provides highly pure,
We had no choice but to conclude that it would be difficult to continuously mass-produce PCBN over a long period of time without requiring complicated post-processing operations.
本発明者達は、BNの気相塩素化による高純度のPCB
Nを、長期間連続的に大量生産する方法を見出すべく、
種々検討を重ねた結果、触媒として活性炭及び鉄化合物
を使用すると、純度97%以上のPCBNが得られるこ
と、更には触媒寿命が長くなり、例えば反応開始80時
間経過後においても、純度99%のPCBNが得られる
ことを見出し、本発明を完成するに至った。The present inventors have developed a method for producing high-purity PCB by gas-phase chlorination of BN.
In order to find a way to mass produce N continuously over a long period of time,
As a result of various studies, we have found that when activated carbon and iron compounds are used as catalysts, PCBN with a purity of 97% or more can be obtained, and the catalyst life is also extended. It was discovered that PCBN could be obtained, and the present invention was completed.
すなわち本発明は、ベンゾニトリルと塩素とを触媒の存
在下に気相で反応させてペンタクロロベンゾニトリルを
製造する方法において、前記触媒として活性炭及び鉄化
合物を使用することを特徴とするペンタクロロベンゾニ
トリルの製造方法である。That is, the present invention provides a method for producing pentachlorobenzonitrile by reacting benzonitrile and chlorine in the gas phase in the presence of a catalyst, characterized in that activated carbon and an iron compound are used as the catalyst. This is a method for producing nitrile.
本発明で用いる触媒成分の一つである鉄化合物としては
、例えば金属鉄、鉄の酸化物、水酸化物、無機酸塩、有
機酸塩或いはカルボニル化合物などが挙げられるが、本
発明の塩素化反応時には、これらの鉄化合物は鉄の塩化
物として存在し、触媒として作用しているものと思われ
る。Examples of iron compounds that are one of the catalyst components used in the present invention include metallic iron, iron oxides, hydroxides, inorganic acid salts, organic acid salts, and carbonyl compounds. During the reaction, these iron compounds exist as iron chlorides and are thought to act as catalysts.
本発明方法の実施に当っては、反応器の反応部に触媒を
充填し、そこへ原料物質のBNと塩素とを別々に或いは
混合して供給することによって行なわれる。ここで用い
られる触媒成分は、担体としても作用する活性炭に金属
鉄、鉄の酸化物、水酸化物、無機酸塩、有機酸塩或いは
カルボニル化合物の少なくとも一種を担持させて使用さ
れる。担持方法は特に限定されないが、例えば鉄化合物
水溶液と活性炭とを混合する方法、活性炭の存在下に塩
素を導入し、そこへ鉄化合物を添加する方法或いは、活
性炭及び鉄化合物の存在下に塩素を導入する方法などが
ある。The method of the present invention is carried out by filling the reaction section of the reactor with a catalyst and supplying the raw materials BN and chlorine therein either separately or in a mixture. The catalyst component used here is such that at least one of metallic iron, iron oxide, hydroxide, inorganic acid salt, organic acid salt, or carbonyl compound is supported on activated carbon that also acts as a carrier. The supporting method is not particularly limited, but for example, a method of mixing an iron compound aqueous solution and activated carbon, a method of introducing chlorine in the presence of activated carbon and adding an iron compound thereto, or a method of introducing chlorine in the presence of activated carbon and an iron compound. There are ways to introduce it.
前記触媒は、本発明の塩素化反応に先立って、触媒層に
充填し、次いでこの触媒層に塩素を例えば200〜50
0°Cの温度で0.5〜2時間通じて触媒成分を活性化
して使用することもできる。もちろん、触媒は固定床、
流動床などの形式で反応器内に充填されるべく、予め適
当な大量さの粒状、ペレット状に成型されていてもよい
。工業的には活性炭に金属鉄、鉄の酸化物、水酸化物、
無機酸塩、有機酸塩或いはカルボニル化合物の少なくと
も一種を担持させたもの、中でも塩化鉄、金属鉄、水酸
化鉄、硫酸鉄、硝酸鉄、炭酸鉄、鉄カルボニル、有機酸
鉄などが好ましく、特に活性炭に塩化鉄、金属鉄、酸化
鉄或いは水酸化鉄を担持させたものが好ましい。触媒の
使用量は一種に規定されないが、長時間連続的に大量生
産するに有利な流動床で反応させる場合、一般に原料B
N 1時間当り100重量部投入する場合、触媒が1〜
100重量部、望ましくは5〜50重量部であり、鉄化
合物の担持割合は、一般に活性炭100重量部に対して
鉄として2〜20重量部、望ましくは5〜15重量部、
特に望ましくは7〜13重量部である。The catalyst is filled into a catalyst bed prior to the chlorination reaction of the present invention, and then chlorine is added to the catalyst bed at a concentration of, for example, 200 to 50%.
It is also possible to activate the catalyst components for 0.5 to 2 hours at a temperature of 0°C. Of course, the catalyst is a fixed bed,
It may be formed in advance into granules or pellets of an appropriate size so as to be filled into a reactor in the form of a fluidized bed or the like. Industrially, activated carbon is made of metallic iron, iron oxides, hydroxides,
Those carrying at least one of inorganic acid salts, organic acid salts, or carbonyl compounds are preferred, and among them, iron chloride, metallic iron, iron hydroxide, iron sulfate, iron nitrate, iron carbonate, iron carbonyl, organic acid iron, etc. are preferable. Preferably, activated carbon supports iron chloride, metallic iron, iron oxide, or iron hydroxide. The amount of catalyst to be used is not specified, but when the reaction is carried out in a fluidized bed, which is advantageous for long-term continuous mass production, raw material B is generally used.
When adding 100 parts by weight of N per hour, the catalyst
100 parts by weight, preferably 5 to 50 parts by weight, and the supporting ratio of the iron compound is generally 2 to 20 parts by weight, preferably 5 to 15 parts by weight of iron per 100 parts by weight of activated carbon.
Particularly preferably, the amount is 7 to 13 parts by weight.
鉄化合物の担持割合は特に重要であり、例えば、少なき
に過ぎると充分な触媒活性及び触媒寿命が得られず、ま
た、多とに過ぎると過塩素化状態になりやすく、副生物
が生成して目的物の純度が低下するので望ましくない。The supporting ratio of iron compounds is particularly important; for example, if it is too low, sufficient catalyst activity and catalyst life cannot be obtained, and if it is too high, a state of overchlorination is likely to occur, and by-products may be generated. This is undesirable because the purity of the target product decreases.
尚、前記触媒に、更に他の金属化合物、例えば二ンケル
、クロムなどを担持させてもよく、その場合鉄化合物の
担持割合を低)威させ得ることなど、より望ましい効果
を示すこともある。It should be noted that the catalyst may further support other metal compounds such as nickel, chromium, etc. In this case, more desirable effects such as lowering the supported ratio of the iron compound may be obtained.
本発明方法の塩素化反応を行うに際し、窒素、ヘリウム
、アルゴンなどの不活性希釈剤を使用してもよく、この
希釈剤は他の原料物質と一緒に或いは別々に反応管に導
入してもよい。不活性希釈剤の使用量は一種に規定でき
ないが、BN1モルに対して普通0〜30モルであり、
望ましくは3〜10モルである。本発明の塩素化反応に
おいて、原料物質は通常ガス状態で反応管に導入され、
例えばBNを気化させてそのまま導入することがで外る
。塩素の使用量は、BN、1モルに対して普通5〜10
モル、望ましくは5〜6.5モルである。本発明の塩素
化反応の反応温度は、普通300〜600℃、望ましく
は400〜500°Cである。When carrying out the chlorination reaction of the method of the present invention, an inert diluent such as nitrogen, helium, or argon may be used, and this diluent may be introduced into the reaction tube together with other raw materials or separately. good. The amount of inert diluent to be used cannot be specified as one type, but it is usually 0 to 30 mol per 1 mol of BN,
The amount is preferably 3 to 10 moles. In the chlorination reaction of the present invention, the raw material is usually introduced into the reaction tube in a gaseous state,
For example, this can be done by vaporizing BN and introducing it as it is. The amount of chlorine used is usually 5 to 10 per mole of BN.
mol, preferably 5 to 6.5 mol. The reaction temperature of the chlorination reaction of the present invention is generally 300 to 600°C, preferably 400 to 500°C.
反応器から排出されるガス状物質には、PCBNを主成
分とする塩素化生成物、未反応原料、副生塩酸ガス、場
合によっては不活性希釈剤が含まれているが、これらは
適当な冷却、濾過、水洗などの簡単な方法によって、目
的物であるPCBNを高純度物として単離することがで
きる。The gaseous substances discharged from the reactor include chlorinated products mainly composed of PCBN, unreacted raw materials, by-product hydrochloric acid gas, and in some cases, inert diluent. The target product, PCBN, can be isolated as a highly purified product by simple methods such as cooling, filtration, and washing with water.
本発明の方法では、前記触媒の条件、各反応条件を適宜
選択することによって、10時間以上に亘って純度97
%以上の目的物が、また更に各条件を選択することによ
って、純度99%以上の目的物を長時間に亘って得るこ
とが出来る。In the method of the present invention, by appropriately selecting the catalyst conditions and each reaction condition, purity of 97% can be maintained for 10 hours or more.
Furthermore, by selecting various conditions, it is possible to obtain the target product with a purity of 99% or higher over a long period of time.
実施例1
反応器として反応部が内径1.00mm、高さ1,20
0m+nの触媒流動床を有するインコネル製竪型反応管
であり、これに内径40闘、長さ550mmのインコネ
ル製予熱管を接続し、これらを温度制御できるように電
熱器及び断熱材で覆ったものを使用した。Example 1 As a reactor, the reaction part has an inner diameter of 1.00 mm and a height of 1.20 mm.
This is an Inconel vertical reaction tube with a catalyst fluidized bed of 0m+n, to which an Inconel preheating tube with an inner diameter of 40mm and a length of 550mm is connected, and these are covered with an electric heater and heat insulating material so that the temperature can be controlled. It was used.
窒素気流下、粒径32〜100メツシユに調整した活性
炭(ツルミコール製GL−60)2,900gを反応管
の触媒充填部に入れ、350°Cに昇温した後、塩素ガ
ス12.2ρ/分、窒素ガス14.60/分の割合にな
るよう導入し、導入開始20分後に鉄粉320gを反応
器上部より投入して約1時間触媒を活性化した。Under a nitrogen stream, 2,900 g of activated carbon (GL-60 manufactured by Tsurumicol) adjusted to a particle size of 32 to 100 mesh was placed in the catalyst-packed section of the reaction tube, heated to 350°C, and then chlorine gas was added at 12.2ρ/min. , nitrogen gas was introduced at a rate of 14.60/min, and 20 minutes after the start of introduction, 320 g of iron powder was introduced from the top of the reactor to activate the catalyst for about 1 hour.
ベンゾニトリル10.6+n(!/分を気化器を通して
窒素がス12.3ρ/分と共に予熱管を通じ、また塩素
ガス12.2θ/分を別の予熱管を通じてそれぞれ反応
管に導入し、430〜460°Cの温度で約10時間に
亘って反応させた。Benzonitrile 10.6+n(!/min) was passed through a vaporizer, nitrogen gas was introduced into the reaction tube along with 12.3ρ/min through a preheating tube, and chlorine gas 12.2θ/min was introduced into the reaction tube through another preheating tube. The reaction was carried out for about 10 hours at a temperature of °C.
反応器より排出するガスは、水スクラバーにて吸収スラ
リー化させ、濾過機にて濾別、洗浄、乾燥して純度99
.1%の目的物(白色結晶)16.15に8(収率93
.1%)を得た。The gas discharged from the reactor is absorbed into a slurry using a water scrubber, separated by filtration using a filter, washed, and dried to a purity of 99%.
.. 1% of target material (white crystals) 16.15 to 8 (yield 93
.. 1%).
実施例2〜13
前記実施例1と同様にして、触媒の活性化及び下記第1
表の条件に従って反応させた結果を第1表に示す。Examples 2 to 13 In the same manner as in Example 1, catalyst activation and the following first
Table 1 shows the results of the reaction according to the conditions shown in the table.
なお、第1表中各反応時間におけるPCBN含有率(%
)は、反応器上部に設けたサンプリング口よりサンプリ
ングし、ガスクロマトグラフィーにて分析した結果であ
る。In addition, PCBN content (%) at each reaction time in Table 1
) is the result of sampling from the sampling port provided at the top of the reactor and analyzing it by gas chromatography.
また、各実施例における目的物の収率は、92〜96%
であった。In addition, the yield of the target product in each example was 92 to 96%.
Met.
注)表中の略号は、次の通りである。Note) The abbreviations in the table are as follows.
A、C,:活性炭
Fe ;鉄粉を反応器上部より投入
Ni ;ニッケル粉を 〃
Cr ;クロム粉を 〃
FeCρ、:塩化第二鉄を充填前に活性炭と混合、担持
NiCθ2・61120 ;塩化ニッケルをCrCθ3
・6H20;塩化クロミウムをQ −Fe00tl ;
デーサイトを
KCρ ;塩化カリウムを
BaCρ2・2H20:塩化バリウムをt ++ 1
+ 1 +++
寝品 1 1 、;l l +
= : C:!、= Hm−紫「A, C,: Activated carbon Fe; iron powder is introduced from the top of the reactor Ni; nickel powder; Cr; chromium powder; CrCθ3
・6H20; Chromium chloride Q -Fe00tl;
Dacite is KCρ; Potassium chloride is BaCρ2・2H20: Barium chloride is t ++ 1
+ 1 +++ Bedding 1 1, ;l l + = : C:! , = Hm-purple"
Claims (1)
せてペンタクロロベンゾニトリルを製造する方法におい
て、前記触媒として活性炭及び鉄化合物を使用すること
を特徴とするペンタクロロベンゾニトリルの製造方法。A method for producing pentachlorobenzonitrile by reacting benzonitrile and chlorine in the gas phase in the presence of a catalyst, the method comprising using activated carbon and an iron compound as the catalyst.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59096191A JPS60239452A (en) | 1984-05-14 | 1984-05-14 | Preparation of pentachlorobenzonitrile |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59096191A JPS60239452A (en) | 1984-05-14 | 1984-05-14 | Preparation of pentachlorobenzonitrile |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60239452A true JPS60239452A (en) | 1985-11-28 |
JPH0475227B2 JPH0475227B2 (en) | 1992-11-30 |
Family
ID=14158409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59096191A Granted JPS60239452A (en) | 1984-05-14 | 1984-05-14 | Preparation of pentachlorobenzonitrile |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60239452A (en) |
-
1984
- 1984-05-14 JP JP59096191A patent/JPS60239452A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0475227B2 (en) | 1992-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0425197B2 (en) | Process for preparing diester of carbonic acid | |
EP0703207B1 (en) | Process for producing 1,1,1,3,3-pentafluoropropane and/or 1,1,3,3,3-pentafluoropropene | |
WO1992006066A1 (en) | Process for producing diester of carbonic acid | |
JPS6346748B2 (en) | ||
EP1165474B1 (en) | Method for the preparation of 1,1,1,3,3-pentafluoropropene and 1,1,1,3,3-pentafluoropropane | |
JPS60239452A (en) | Preparation of pentachlorobenzonitrile | |
JPH0543517A (en) | Production of carbonic acid diester | |
US5602288A (en) | Catalytic process for producing CF3 CH2 F | |
JPH04297445A (en) | Production of carbonic acid diester | |
JPH0489458A (en) | Production of carbonic acid diester | |
JPS62185082A (en) | Production of tetrachlorophthalic anhydride | |
JP3164785B2 (en) | Method for producing nuclear chlorinated aromatic compound having cyano group | |
WO1994011335A1 (en) | Process for producing carbonic diester | |
US3976754A (en) | Method for making cyanogen chloride | |
JPH08183774A (en) | Production of monochloro-3-cyanopyridines | |
US4808345A (en) | Process for the preparation of tetrachloroterephthaloyl dichloride by means of the chlorination of terephthaloyl dichloride with gaseous chlorine | |
JPH04297443A (en) | Production of carbonic acid diester | |
SU243513A1 (en) | METHOD OF OBTAINING LOWER UNSATURATED ALIPHATIC NITRILES | |
JPH08217752A (en) | Production of monochloro-3-cyanopyridine compound | |
JPH0825961B2 (en) | Method for producing carbonic acid diester | |
JPH0957106A (en) | Production of catalyst for synthesizing methacrolein and methacrylic acid | |
JPH0377847A (en) | Production of malonic ester | |
JPH04297444A (en) | Production of carbonic acid diester | |
JPH04139153A (en) | Production of carbonate diester | |
JPH0912539A (en) | Production of epsilon-caprolactam |