JPS60239114A - Filter circuit - Google Patents
Filter circuitInfo
- Publication number
- JPS60239114A JPS60239114A JP9445584A JP9445584A JPS60239114A JP S60239114 A JPS60239114 A JP S60239114A JP 9445584 A JP9445584 A JP 9445584A JP 9445584 A JP9445584 A JP 9445584A JP S60239114 A JPS60239114 A JP S60239114A
- Authority
- JP
- Japan
- Prior art keywords
- capacitor
- capacitance
- resistor
- amplifier
- lpf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H11/00—Networks using active elements
- H03H11/02—Multiple-port networks
- H03H11/04—Frequency selective two-port networks
- H03H11/12—Frequency selective two-port networks using amplifiers with feedback
- H03H11/126—Frequency selective two-port networks using amplifiers with feedback using a single operational amplifier
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H11/00—Networks using active elements
- H03H11/02—Multiple-port networks
- H03H11/04—Frequency selective two-port networks
- H03H11/12—Frequency selective two-port networks using amplifiers with feedback
- H03H11/1213—Frequency selective two-port networks using amplifiers with feedback using transistor amplifiers
Landscapes
- Networks Using Active Elements (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、シリコンウェハ上などに形成する七ノリシ・
νりIC内にフィルタを集積する場合に適したフィルタ
集積回路に関するものである。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for forming a silicon wafer on a silicon wafer or the like.
The present invention relates to a filter integrated circuit suitable for integrating a filter in a V-type IC.
電気回路の集積化(モノリシックIC化、以下単にIC
化と略す)が進むにつれ、外付けのブロックフィルタの
IC化が、回路の小形化、低コスト化を実現するうえで
重要な課題となりつつある。従来のフィルタは、インダ
クタンスL1容量C1抵抗Rで構成されているが、イン
ダクタンスLはIC化がむずかしく、L、C,Rで構成
されるフィルタのIC化は困難である。したがって容量
C1抵抗Rのみで構成可能なアクティブフィルタがIC
化には適している。ローパスフィルタ(以下LPFと略
す)としては、第1図に示す正帰還形LPFがよく知ら
れている。同図において、1はゲインかに倍の演算増幅
器である。Integration of electrical circuits (monolithic IC, hereinafter simply IC)
As the technology (hereinafter referred to as ``electronic circuits'') progresses, the use of ICs for external block filters is becoming an important issue in realizing circuit miniaturization and cost reduction. A conventional filter is composed of an inductance L, a capacitance C1, and a resistor R. However, it is difficult to integrate the inductance L into an IC, and it is difficult to integrate a filter composed of L, C, and R into an IC. Therefore, an active filter that can be configured only with a capacitor C1 and a resistor R is an IC.
It is suitable for As a low-pass filter (hereinafter abbreviated as LPF), a positive feedback LPF shown in FIG. 1 is well known. In the figure, 1 is an operational amplifier with a gain of 5 times.
抵抗R9容量Cをそれぞれ、抵抗R1m R1* 容量
’l mC1とすると、共振周波数foはで表わされる
。Il+jは入力信号源、116は出力端である。また
共振周波数付近のピーキングを決めるものとして、フィ
ルタのQがある。第1図のLPFのQは、
で表わされる。Qを大きくすると、ピーキングを大きく
することができる。一般にブロックフィルタは高次のフ
ィルタで構成されておシ、実際に用いられているものは
、4次以上のものが多い。しかし、フィルタを構成する
際、低次の周波数特性の等しいフィルタを組み合わせ、
高次のフィルタを構成すると、カットオフ周波数付近で
、位相回り、群遅延が加算され、信号伝達のうえで好ま
しくない。フィルタの特性は、通過帯域では、位相特性
、群遅延特性はできるだけ平坦なものが望せれる。した
がって、一般的には周波数特性の異方る低次のフィルタ
を組み合わせ高次のLPFを構成する。例として、2と
3の2次の正帰還形LPFを組み合わせた、4次のLP
Fを第2図に示す。2のLPFでは、Qを高くして第3
図に示す振幅特性にし、乙のLPFでは、Qを低くして
、第4図に示す振幅特性にして2と乙のLPFを組み合
わせ第5図に示す振幅特性を得ている。If the resistance R9 and the capacitance C are respectively resistance R1m, R1*, capacitance 'l, and mC1, then the resonant frequency fo is expressed as follows. Il+j is an input signal source, and 116 is an output terminal. Furthermore, the Q of the filter determines the peaking near the resonance frequency. The Q of the LPF in FIG. 1 is expressed as follows. By increasing Q, peaking can be increased. In general, block filters are composed of high-order filters, and many of those actually used are of fourth order or higher. However, when constructing a filter, combining filters with equal low-order frequency characteristics,
If a high-order filter is configured, phase rotation and group delay will be added around the cutoff frequency, which is not favorable for signal transmission. As for the characteristics of the filter, it is desirable that the phase characteristics and group delay characteristics in the passband be as flat as possible. Therefore, generally, a high-order LPF is constructed by combining low-order filters with anisotropic frequency characteristics. As an example, a 4th-order LP that combines 2nd and 3rd-order positive feedback LPFs
F is shown in FIG. In LPF 2, the Q is high and the third
With the amplitude characteristics shown in the figure, the LPF of No. 2 and Otsu are combined to have the amplitude characteristics shown in FIG. 4 by lowering the Q and the amplitude characteristics shown in FIG. 5 are obtained.
第3図に示す様な高Qの特性を得るためには、式(2)
より、容量C2に対する容量C3の比を大きくすれば良
いが、容量C2を小さくすると寄生容量の影響が問題と
なるので、容量C1を大きくする必要がある。しかしI
C内では、容量が占める面積は、抵抗やトランジスタに
比較して大きく、ICのチップ面積が大形化し、歩留シ
の減少によるコストアップという問題があった。In order to obtain high Q characteristics as shown in Figure 3, formula (2) is used.
Therefore, the ratio of the capacitance C3 to the capacitance C2 can be increased, but if the capacitance C2 is made small, the influence of parasitic capacitance becomes a problem, so it is necessary to make the capacitance C1 large. But I
In C, the area occupied by a capacitor is larger than that of a resistor or a transistor, resulting in an increase in the chip area of the IC, resulting in a problem of increased cost due to a decrease in yield.
本発明の目的は、上記した欠点を取り除くフィルタ回路
を提供することにある。It is an object of the present invention to provide a filter circuit which eliminates the above-mentioned drawbacks.
正帰還形LPP において、第2の容量の代わりに、ト
ランジスタのベース入力容量を用いることにより、第2
の容量が省略可能で、また、その容量値は小さいために
、第1の容量値を大きくすることなく高Qの特性のLP
Fを得ることが可能となる。In positive feedback type LPP, by using the base input capacitance of the transistor instead of the second capacitance, the second
can be omitted and its capacitance value is small, so it is possible to create an LP with high Q characteristics without increasing the first capacitance value.
It becomes possible to obtain F.
以下、本発明の一実施例を第6図により説明する。同図
において、R,、R,は抵抗s CIは第1の容量、4
は、トランジスタ(h、Qt、Qs、(hと抵抗8.
9.10.11.12により構成されるアンプ、Q、け
トランジスタで、抵抗16とエミッタホロワを構成して
いる。5,6.7は電圧源である。抵抗R1p R1及
び容量C8とトランジスタQ2 +QIlのベース入力
容量で時定数回路を構成しておシ、信号は4のアンプに
よ多容量C!にフィードパ、りされ、2次の正帰還形L
PFが構成される。An embodiment of the present invention will be described below with reference to FIG. In the same figure, R,, R, is the resistance s, CI is the first capacitance, 4
are transistors (h, Qt, Qs, (h and resistor 8.
The amplifier constituted by 9.10.11.12, the Q transistor, and the resistor 16 constitute an emitter follower. 5, 6.7 are voltage sources. A time constant circuit is constructed with the resistor R1p R1, capacitor C8, and base input capacitance of transistor Q2 + QIl, and the signal is sent to amplifier 4 with a large capacitance C! The feeder is connected to the secondary positive feedback type L.
PF is configured.
出力信号ハ、トランジスタQ、9−エミッタによりとシ
出される。第2の容量として利用するのはトランジスタ
のベース入力容量で、これは主に、トランジスタの能動
領域において、ペース−コレクタのP−N接合が逆バイ
アスになっている為に生じる接合容量である。本実施例
に工れば、第1図で示す容量C7のような第2の容量に
、トランジスタのベース入力容量を用いることにより、
容量が1つで2次の正帰還形LPFが構成でき、また、
トランジスタQ、のトランジスタ面積や、トランジスタ
Q、と並列に接続するトランジスタの数によシ、第2の
容量の容量値を自由に選べる。以上述べてき2 LPF
回路において、4の増幅器のみ、あるいはエミッタホロ
ワのみの入力容量を用いても、2次のLPFが構成でき
ることは容易に理解できる。Output signal C is output by transistor Q, 9-emitter. The base input capacitance of the transistor is used as the second capacitance, and this is mainly the junction capacitance that occurs because the P-N junction of the pace-collector is reverse biased in the active region of the transistor. In this embodiment, by using the base input capacitance of the transistor as the second capacitor such as capacitor C7 shown in FIG.
A second-order positive feedback LPF can be configured with one capacitor, and
The capacitance value of the second capacitor can be freely selected depending on the area of the transistor Q and the number of transistors connected in parallel with the transistor Q. As mentioned above 2 LPF
It is easy to understand that a second-order LPF can be constructed even if the input capacitance of only four amplifiers or only an emitter follower is used in the circuit.
以上説明した様に、本発明によるフィルタ回路では、容
量が1つで2次のLPFが構成できるため、ICの小形
化、低コスト化に極めて有効である。As explained above, the filter circuit according to the present invention can configure a second-order LPF with one capacitor, and is therefore extremely effective in reducing the size and cost of an IC.
第1図は、正帰還形LPFの一例を示す回路図、第2図
は、正帰還形LPFを2つ組み合わせ、4次のLPFを
構成した一例の回路図、第一3図、第4図は正帰還形L
PFの振幅特性線図、第5図は4次のLPFの振幅特性
線図、第6図は本発明の一実施例のブロック図である。
R1+ RR・・・2次のLPFを構成する抵抗C1・
・・2次のLPFの第1の容量
代理人弁理士 高 a 明 夫
第1図
CI
第2図
暁:3図
第4図
喘S図Figure 1 is a circuit diagram showing an example of a positive feedback type LPF, Figure 2 is a circuit diagram of an example of a fourth-order LPF constructed by combining two positive feedback type LPFs, Figures 13 and 4. is positive feedback type L
FIG. 5 is an amplitude characteristic diagram of a PF, FIG. 5 is an amplitude characteristic diagram of a fourth-order LPF, and FIG. 6 is a block diagram of an embodiment of the present invention. R1+ RR... Resistor C1 that constitutes the second-order LPF
...secondary LPF's first capacity representative patent attorney Akio Gao Figure 1 CI Figure 2 Akio: Figure 3 Figure 4 Panasonic S diagram
Claims (1)
よ構成るアクティブフィルタ回路において、信号入力端
に接続された第1の抵抗と、該第1の抵抗と増幅器入力
端との間に直列に接続された第2の抵抗と、増幅器の出
力端と第1.第2の抵抗の間に接続され友容量を有する
ことを特徴とするフィルタ回路1. In an active filter circuit constructed on a semiconductor wafer and consisting of a folding capacitor and an amplifier, a first resistor connected to the signal input terminal and a resistor connected in series between the first resistor and the amplifier input terminal a second resistor connected to the output terminal of the amplifier and the first . A filter circuit characterized by being connected between a second resistor and having a friend capacitance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9445584A JPS60239114A (en) | 1984-05-14 | 1984-05-14 | Filter circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9445584A JPS60239114A (en) | 1984-05-14 | 1984-05-14 | Filter circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60239114A true JPS60239114A (en) | 1985-11-28 |
Family
ID=14110737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9445584A Pending JPS60239114A (en) | 1984-05-14 | 1984-05-14 | Filter circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60239114A (en) |
-
1984
- 1984-05-14 JP JP9445584A patent/JPS60239114A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0516696B2 (en) | ||
JP2706501B2 (en) | Filter configuration and control | |
US5192884A (en) | Active filter having reduced capacitor area but maintaining filter characteristics | |
JPH0716142B2 (en) | Filter circuit | |
JPS60239114A (en) | Filter circuit | |
US4689580A (en) | Active filter circuit | |
US4456885A (en) | Filter circuit suitable for being fabricated into integrated circuit | |
JP2002118443A (en) | Filter circuit | |
JPH06104666A (en) | Variable voltage/current conversion circuit | |
JPS60229417A (en) | Filter integrated circuit | |
JPH0256846B2 (en) | ||
JPS60229415A (en) | Filter integrated circuit | |
JPH0325085B2 (en) | ||
JP3148469B2 (en) | Filter circuit | |
GB2054307A (en) | Integrated circuit capacitors | |
JPH1079642A (en) | Filter circuit | |
JPS60223317A (en) | Filter integrated circuit | |
JPS60185421A (en) | Integrated circuit | |
JPS5827555Y2 (en) | active filter | |
JPS6132847B2 (en) | ||
JPS5932209A (en) | Amplifier circuit | |
JPH0323011B2 (en) | ||
JPH0113242B2 (en) | ||
JPH01109911A (en) | Active filter circuit | |
JPH1056335A (en) | Mixer circuit |