JPS6023906A - Method of forming semiconductive organic thin film - Google Patents

Method of forming semiconductive organic thin film

Info

Publication number
JPS6023906A
JPS6023906A JP58130281A JP13028183A JPS6023906A JP S6023906 A JPS6023906 A JP S6023906A JP 58130281 A JP58130281 A JP 58130281A JP 13028183 A JP13028183 A JP 13028183A JP S6023906 A JPS6023906 A JP S6023906A
Authority
JP
Japan
Prior art keywords
thin film
forming
monomer
organic
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58130281A
Other languages
Japanese (ja)
Inventor
正典 坂本
公一 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58130281A priority Critical patent/JPS6023906A/en
Publication of JPS6023906A publication Critical patent/JPS6023906A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electric Cables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導性有機薄膜の形成法に関し、更に詳しくは
、結晶性が良好で、電荷担体(キャリヤ)の易動度が大
きい半導性有機薄膜の形成法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for forming a semiconducting organic thin film, and more specifically, the present invention relates to a method for forming a semiconducting organic thin film, and more specifically, a method for forming a semiconducting organic thin film with good crystallinity and high mobility of charge carriers. It relates to a method for forming organic thin films.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、半導性薄膜は主にSi 、 Ge等の単体元素又
はGaAs * InP 等の複合元素の無機化合物か
らなシ、一般に液相成長法又は気相成長法によって固体
基板上に形成されていた1、シカ・しながら、一様化合
物と異なり、有機化合物は光吸収度が大きく、また大面
積化が容易である等の利点を有しているため、近年、有
機化合物からなる半導性薄膜が注目されてきた。
Conventionally, semiconducting thin films were mainly made of inorganic compounds of simple elements such as Si and Ge or complex elements such as GaAs*InP, and were generally formed on solid substrates by liquid phase growth or vapor phase growth. 1. However, unlike homogeneous compounds, organic compounds have advantages such as high light absorption and ease of fabrication into large areas, so in recent years semiconducting thin films made of organic compounds have been developed. has been attracting attention.

現在迄に知られている半導性有機酵HKは、ポリアセチ
レン、ポリノ42フ二二レンスルフィド等の高分子膜及
びβ−カ目チン、メロシアニン等の色素膜などである。
Semiconducting organic enzymes HK known up to now include polymer films such as polyacetylene and polyno-42 phenylene sulfide, and pigment films such as β-kaline and merocyanine.

しかし、いずれの薄膜も、該層を形成する有機化合物が
非晶質ないしは極めて欠陥の多い結晶質であったため、
その半導体としての緒特性は一般に低劣であシ、中でも
キャリヤの易動度は無機半導体と比べて暑。8〜”/1
010の低さであった。即ち、例えば、ポリアセチレン
からなる半導性有機薄膜の場合は、通常適当な触媒を用
いてアセチレンモノマーを重合させることにょシ得られ
るが、この方法にょシ形成された胸は繊維状に重合した
ポリアセチレンが不規則にからみ合った構造をしている
ため、これがキャリヤトラップの原因となジ、との/こ
めキャリヤ易動度が極めて低かった。したがって、この
欠陥は、Iリアセチレン半導体を例えば太陽電池等の電
子素子に応用する際の大きな#害となっていた。
However, in all thin films, the organic compounds forming the layers were amorphous or crystalline with extremely many defects.
Their properties as semiconductors are generally poor, especially the mobility of carriers, which is higher than that of inorganic semiconductors. 8~”/1
It was as low as 0.010. That is, for example, in the case of a semiconductive organic thin film made of polyacetylene, it is usually obtained by polymerizing acetylene monomer using a suitable catalyst, but the material formed by this method is a polyacetylene polymerized in the form of fibers. Because the particles have an irregularly entangled structure, this causes carrier traps, and the carrier mobility is extremely low. Therefore, this defect has been a major problem when applying the I-reacetylene semiconductor to electronic devices such as solar cells.

上記欠陥が生じる理由としては、次の二つの理由が挙げ
られる。
There are two reasons why the above defects occur.

(13重合前のアセチレンモノマー膜は、必ずしも結晶
状ではなかったこと1゜ (2)触媒を分散しているため、重合反応はいたるとこ
ろで開始さ九、このため均一の結晶性膜が得られず、よ
って−次元秩序に限定しても結合交替欠陥が導入されて
しまうこと。
(13 The acetylene monomer film before polymerization was not necessarily crystalline1゜(2) Because the catalyst was dispersed, the polymerization reaction started everywhere.9 Therefore, a uniform crystalline film could not be obtained. Therefore, even if it is limited to -dimensional order, bond alternation defects will be introduced.

そこで、かかる欠陥を解消するためには、基板上にアセ
チレンモノマーの単結晶RW Be k形成し、これに
エネルギーを与えて同相重合させる方法が考えられるが
、該°方法にあっては、核形成の遅いモノマーを用いた
場合でなけれは、得られる胸が徽n11多結晶体となっ
て粒界欠陥が増してしまうという欠点があった。
Therefore, in order to eliminate such defects, a method can be considered to form a single crystal of acetylene monomer RW Bek on a substrate and give energy to it to cause homopolymerization, but in this method, nucleation Unless a slow monomer is used, there is a drawback that the resulting breast becomes a N11 polycrystalline body and grain boundary defects increase.

これに対し、ジアセチレンモノマーの単結晶を同様に同
相重合させた場合は、該モノマー単結晶は重合によって
体積変化による歪みを生じることなく、良質の高分子結
晶を形成することが知られている。しかしながら、ポリ
ンアセチレンの結晶薄膜を形成する方法は未だ知られて
いなかった。
On the other hand, it is known that when single crystals of diacetylene monomers are similarly in-phase polymerized, the monomer single crystals do not undergo distortion due to volume changes due to polymerization and form high-quality polymer crystals. . However, a method for forming a polyacetylene crystal thin film has not yet been known.

このため、所開ラングミュアープロジェット法(L、B
法)f!:用いて該薄膜を形成する方法が現在検討され
ている。しかし、L、B法では、溶媒上に単分子膜を造
シ、これを基板上に展開した後重合させるため、数分子
層以上の膜厚からなる膜を形成すること扛困難であり、
また溶媒(通常は水)上に単分子膜を造らなければなら
ないので、分子鎖端に疎水性基及び親水性基を導入する
必要があシ、このため使用するモノマー種に大きな制約
がおった。
For this reason, the open Langmuir-Prodgett method (L, B
law) f! A method of forming the thin film using the method is currently being studied. However, in the L and B methods, a monomolecular film is formed on a solvent, this is spread on a substrate, and then polymerized, so it is difficult to form a film with a thickness of several molecular layers or more.
Furthermore, since a monomolecular film must be formed on a solvent (usually water), it is necessary to introduce hydrophobic and hydrophilic groups at the ends of the molecular chains, which places significant restrictions on the types of monomers that can be used. .

〔発明の目的〕[Purpose of the invention]

本発明の目的は、結晶性が良好でキャリヤの易動度が大
きく、もって電子素子として応用することが可能な半導
性有機薄Mu ’fc提供することである。
An object of the present invention is to provide a semiconducting organic thin Mu'fc having good crystallinity and high carrier mobility, which can be applied as an electronic device.

〔発明の概要〕[Summary of the invention]

本発明の半導性有機薄膜の形成法は、固体基板上に有機
化合物モノマーの単結晶からなる薄Jノeを形成し、次
いて該層を融点以下の温度で加熱し、又は該層に波長1
〜10 armの電磁波若しくは電子線を照射して、該
有機化合物を固相重合せしめ、もって該化合物のポリマ
ー単結晶を生成せしめることを特徴とする。
The method for forming a semiconducting organic thin film of the present invention involves forming a thin film made of a single crystal of an organic compound monomer on a solid substrate, and then heating the layer at a temperature below its melting point, or heating the layer at a temperature below its melting point. wavelength 1
It is characterized in that the organic compound is solid phase polymerized by irradiation with electromagnetic waves or electron beams of ~10 arms, thereby producing a polymer single crystal of the compound.

以下、本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明では、まず、固体基板上に有機化合物モノマーの
単結晶からなる薄膜を形成する。薄膜が形成される固体
基板は、従来がら使用されているものであればいかなる
材質であってもよく、その具体例としては、例えば石英
ガラス、ホウ硅酸ガラス等ガラス基板、シリコン、グラ
ファイト、ゲルマニウム、ヒ化ガリウムなど結晶性基板
等が挙げられる。また、有機化合物としては、基板上に
単結晶としての薄膜全形成することが可能で、かつ加熱
又は電磁波照射によってポリマー単結晶を生成し、更に
得られたポリマーが半導性を有するものであれは′、い
かなるものでもよいが、次式:%式% (式中 Hl及びR2は同一でも異なっていてもよく、
各々、 (CH2) CH3、(CR2)n OH1(
CR2)n C02Hもしくはその塩、(CI42 )
n O’ CONH@ (CH2) 0−8O2RC)トCH3,−Cミc−c
副又は−CミCC1h O’−CO−NH【)等を表わ
し;nは1−10の整数を表わす) で示されるジアセチレンモノマーを用することが好まし
い。
In the present invention, first, a thin film made of a single crystal of an organic compound monomer is formed on a solid substrate. The solid substrate on which the thin film is formed may be made of any conventionally used material, including glass substrates such as quartz glass and borosilicate glass, silicon, graphite, and germanium. , a crystalline substrate such as gallium arsenide, and the like. In addition, as an organic compound, it is possible to form a thin film as a single crystal on a substrate, and a polymer single crystal is generated by heating or electromagnetic wave irradiation, and the resulting polymer has semiconductivity. may be of any value, but the following formula: % formula % (wherein Hl and R2 may be the same or different,
(CH2) CH3, (CR2)n OH1(
CR2)n C02H or its salt, (CI42)
n O' CONH@ (CH2) 0-8O2RC) TOCH3, -Cmi c-c
It is preferable to use a diacetylene monomer represented by the following formula: -CmiCC1hO'-CO-NH[); n represents an integer from 1 to 10).

固体基板上に有機化合物モノマーの単結晶からなるR膜
を形成する方法としては、例えば真空薄膜作成法及び化
学的気相成長法(いわゆるChemi−cal vap
or deposjtion)、スフ9ツタリング法、
液相成長法等が挙げられるが、真空薄膜作成法によるこ
とが好ましい。真空薄膜作成法としては、例えば、抵抗
加熱法又は電子ビーム法忙よる真空蒸着法;直流法、高
周波法、クラスタイオンビーム法又は熱陰極法によるイ
オンビーム法等が挙けられるが、この中では、抵抗加熱
法、クラスタイオンビーム法、熱陰極法が好ましい。上
記したいずれの真空#膜作成法においても、従来と同一
の装置を用いて、常法に従い操作することにょシ、固定
基板上にモノマー単結晶の薄膜を形成することができる
Methods for forming an R film made of a single crystal of an organic compound monomer on a solid substrate include, for example, a vacuum thin film formation method and a chemical vapor deposition method (so-called Chemi-cal vapor deposition method).
or deposition), Sufu 9 Tsutaring method,
Examples include a liquid phase growth method, but a vacuum thin film forming method is preferable. Vacuum thin film production methods include, for example, resistance heating method or vacuum evaporation method using electron beam method; ion beam method using direct current method, radio frequency method, cluster ion beam method or hot cathode method, etc. , resistance heating method, cluster ion beam method, and hot cathode method are preferred. In any of the vacuum film forming methods described above, a monomer single crystal thin film can be formed on a fixed substrate by using the same conventional equipment and operating according to a conventional method.

)Iへノ♀は通常10〜100OXである。真を蒸着法
による場合は、通常、有機化合物を10−6〜1O−8
Torr の圧力下で60〜200”CTC加熱して固
体基板上に蒸着せしめ、次いでこれを冷却することによ
り有機化合物モノマーの単結晶からなる薄膜が得られる
。尚、無機物からなる基板を用いる場合は、予め該膜を
加熱して、該板表面上の自然酸化層を除去しておくこと
が好ましい。
)I heno♀ is usually 10-100OX. When using the vapor deposition method, the organic compound is usually 10-6 to 1O-8.
A thin film consisting of a single crystal of an organic compound monomer can be obtained by heating the solid substrate under a pressure of 60 to 200'' CTC and then cooling it. It is preferable to heat the film in advance to remove the natural oxidation layer on the surface of the plate.

次に、本発明では、有機化合物モノマーの単結晶からな
る薄膜を加熱し又は該層に電磁波を照射して、該化合物
を同相重合させ、ポリマー単結晶からなる半導性有機薄
膜を形成する。#重合においては、加熱及び電磁波照射
を併用することも可能である1、通常、本重合反応は、
常圧下、不活性ガス(例えば、アルゴンガス等)雰囲気
中で行われる。加熱によって固相重合する場合は、モノ
マーの融点以下の温度で行うことが必要であり、ジアセ
チレンモノマーにあっては、通常40〜150℃で1〜
30時間加熱する。一方、電磁波照射によって固相重合
する場合は、波長100〜1mのマイクロ波、可視光、
紫外光、X線、γ線及び電子線のうちいずれか1種以上
のエネルギー線を照射するが、この中では紫外線又はγ
線を照射することが好ましい。照射時間は、通常、数秒
〜30時間である。一般に、ジアセチレンモノマー〇単
結晶は、無色又は淡いピンク色を呈しているが重合が完
了すると黄金色の?リジアセチレン結晶へと変化するの
で、この呈色変化を目安にして加熱又Ff:を磁波照射
を停止することができる。尚、得られる半導性有機薄膜
の導電率を高めるためK。
Next, in the present invention, a thin film made of a single crystal of an organic compound monomer is heated or the layer is irradiated with electromagnetic waves to cause in-phase polymerization of the compound to form a semiconducting organic thin film made of a polymer single crystal. # In polymerization, it is also possible to use heating and electromagnetic wave irradiation in combination 1. Usually, this polymerization reaction:
It is carried out under normal pressure in an inert gas (for example, argon gas, etc.) atmosphere. When solid phase polymerization is carried out by heating, it is necessary to carry out the polymerization at a temperature below the melting point of the monomer.
Heat for 30 hours. On the other hand, in the case of solid phase polymerization by electromagnetic wave irradiation, microwaves with a wavelength of 100 to 1 m, visible light,
Energy rays of one or more of ultraviolet light, X-rays, gamma rays, and electron beams are irradiated.
It is preferable to irradiate with a line. Irradiation time is usually several seconds to 30 hours. In general, diacetylene monomer〇 single crystals are colorless or pale pink, but once polymerization is complete, they turn golden yellow. Since it changes into lydiacetylene crystals, heating or magnetic wave irradiation can be stopped using this color change as a guide. In addition, K is added to increase the conductivity of the obtained semiconductive organic thin film.

PF4 、PFg 、 AsF6等のドープ剤を含む不
活性雰囲気中で同相重合を行うか、又は重合後、該ドー
プ剤を含む不活性雰囲気中に該薄膜を放置しておくこと
が可能であシ、更にはに+、 Na+、 Li+等のイ
オンを該薄膜中に打込むことも可能である。
It is possible to perform the in-phase polymerization in an inert atmosphere containing a dopant such as PF4, PFg, AsF6, etc., or to leave the thin film in an inert atmosphere containing the dopant after polymerization; Furthermore, it is also possible to implant ions such as Ni+, Na+, Li+, etc. into the thin film.

以上の薄膜形成法によれば、モノマー単結晶の配向性が
そのまま保持されて同相重合されるので、良質の高分子
結晶金有する半導性有機薄膜が得られる。本発明で得ら
れる有機薄膜の導電率は、ジアセチレンモノマーを用い
た場合 1o−16〜10”Ω m の範囲であシ、ま
たそのキャリヤ易動度tit 10〜10’ twr2
/ V−see の範囲である。
According to the above thin film forming method, since the orientation of the monomer single crystal is maintained as it is and the same phase polymerization is carried out, a semiconducting organic thin film having high quality polymer crystalline gold can be obtained. The conductivity of the organic thin film obtained in the present invention is in the range of 10-16 to 10'' Ω m when diacetylene monomer is used, and the carrier mobility tit is 10 to 10' twr2.
/ V-see.

〔発りjの効果〕[Effect of departure]

本発明によれば、結晶性が良好でキャリヤの易動度が大
きい等、優れた緒特性と有する半導性有機薄膜が得られ
る。した゛がって、該薄膜を利用することによル、各種
の電子素子を提供することが可能となる。
According to the present invention, a semiconducting organic thin film can be obtained which has excellent properties such as good crystallinity and high carrier mobility. Therefore, by using the thin film, it is possible to provide various electronic devices.

〔発明の実施例〕[Embodiments of the invention]

本実施例においては、以下に示したジアセチレンモノマ
ーを用いた。
In this example, the diacetylene monomer shown below was used.

R”−C=C−C=C−R2 実施例1 ジアセチレンモノマーとしてPTSt−用い、図に示し
た真空蒸着装置内で該モノマーの薄Mを形成した。図中
、11社蒸発源で、この中にはPTSが収納されておシ
、2は蒸発源を加熱するW又社Moヒーター、3はPT
Sに不純物が混入すること全防止するために蒸発源の周
囲に設けられた液体窒素シュラウドである。
R''-C=C-C=C-R2 Example 1 PTSt- was used as a diacetylene monomer, and a thin M of the monomer was formed in the vacuum evaporation apparatus shown in the figure. A PTS is housed in this, 2 is a Wmata Mo heater that heats the evaporation source, and 3 is a PT
A liquid nitrogen shroud is installed around the evaporation source to completely prevent impurities from entering the S.

本実施例ではまず、真空槽4内を10〜10Torr 
まで排気した。次に、基板加熱用ヒータ5に通電して基
板(S:ウエファ一、(100)面)6を500〜10
00℃に加熱し、表面の自然酸化層を除去した1、この
間、熱遮蔽板を兼ねたシャッター7は閉じておいた。基
板温度が室部まで下降した後、ヒータ2に通電して蒸発
源1を60℃〜200℃に加熱し、シャッター7を開い
て蒸Nを開始した1、この間、真空槽内k 10−6T
orr以下に保った。このようにして、シリコンウェフ
ァ−上に100〜1o、o o o Aの厚はの膜を形
成した。この膜をX線回折法で分析すると、鋭い優位配
向が認められた12次に、この膜を1気圧のアルゴン雰
囲気中で60℃に保ち、12時間放置すると、金色の金
1’A光沢を有する。19 リジアセチレン膜が得られ
た1、この膜をX+tdJ回折法で分析してみると、バ
ルク単結晶のb軸(主鎖軸)が膜面に平行に配向してい
ることが明らかに々つた。また、この膜の面内方向の導
電率は10−8〜10−10Ω−1crn−” でめシ
、面内異方性はみられなかった。1光導電性の実験から
キャリヤの易動度を測定したところ、3×10’ −/
 V−secであシ、極めて高い易動度を示すことがわ
かった1、この膜を1%のAsF5 t=含むアルゴン
ガス(1気圧)中に24時間放置すると、導電率は10
〜1Ω−1ffi−1に増加した。
In this embodiment, first, the inside of the vacuum chamber 4 is set at 10 to 10 Torr.
Exhausted until. Next, the heater 5 for heating the substrate is energized to heat the substrate (S: wafer 1, (100) side) 6 at
The sample was heated to 00° C. to remove the natural oxidation layer on the surface 1. During this time, the shutter 7, which also served as a heat shield, was kept closed. After the substrate temperature decreased to the chamber, the heater 2 was energized to heat the evaporation source 1 to 60°C to 200°C, and the shutter 7 was opened to start evaporating N. During this time, the temperature inside the vacuum chamber was 10-6T.
It was kept below orr. In this way, a film with a thickness of 100 to 10,000 A was formed on the silicon wafer. When this film was analyzed by X-ray diffraction, a sharp dominant orientation was observed. 12 Next, this film was kept at 60°C in an argon atmosphere of 1 atm and left for 12 hours, giving it a golden gold 1'A luster. have 19 A lydiacetylene film was obtained.1 When this film was analyzed by X+tdJ diffraction method, it was clear that the b-axis (main chain axis) of the bulk single crystal was oriented parallel to the film surface. . In addition, the in-plane conductivity of this film was 10-8 to 10-10 Ω-1 crn-'', and no in-plane anisotropy was observed.1 Photoconductivity experiments showed that carrier mobility When measured, 3×10' −/
It was found that V-sec showed extremely high mobility1. When this film was left in argon gas (1 atm) containing 1% AsF5 for 24 hours, the conductivity was 10
It increased to ~1Ω-1ffi-1.

実施例2 基板にP、TS単結晶を固相重合させたポリジアセチレ
ン単結晶を用いた他は、実施例1と同様にしてポリジア
セチレン単結晶与りUl’+面にPTSモノマーの膜上
蒸着した。ただし、基板の熱処理は行なわなかった。尚
、臂開面はポリジアセチレン結晶の主鎖に平行な面であ
る。得られたモノマー膜は厚さ100〜1oooo′A
であシ、X線結晶解析の結果、下地のポリジアセチレン
単結晶…1に格子整合して成長していることがわかった
3、この膜を、PF4を1%混合したアルゴンガス雰囲
気(1気圧)中で70℃に加熱し重合させた。この説の
上に金電極を設け4端子法で導電率を測定したところ、
1O−4〜10−1Ω−1副−1であった。一方、下地
のポリジアセチレン(PTS)単結晶に金電極をつけて
導電率を測定したところ、10’−150−” crn
−”であった。このことから、下地層の上に成長したポ
リジアセチレン単結晶膜のみPFaドーゾによシ高電導
性になっていることがわかった。又、この場合は実施例
1と異方、導電率について面内異方性が見出され、主鎖
軸に平行な方向、垂直な方向の導電率を夫々a/、−と
表わすと、a//6 は、約103〜104であった。
Example 2 A polydiacetylene single crystal obtained by solid phase polymerization of P and TS single crystals was used as the substrate, but in the same manner as in Example 1. PTS monomer was deposited on the Ul'+ surface of the polydiacetylene single crystal. did. However, the substrate was not heat-treated. Note that the arm opening plane is a plane parallel to the main chain of the polydiacetylene crystal. The obtained monomer film has a thickness of 100~1oooo'A
As a result of X-ray crystal analysis, it was found that the film was grown in a lattice-matched manner to the underlying polydiacetylene single crystal. ) to polymerize by heating to 70°C. When a gold electrode was placed on top of this theory and the conductivity was measured using the four-terminal method, it was found that
It was 10-4 to 10-1Ω-1 sub-1. On the other hand, when we attached a gold electrode to the underlying polydiacetylene (PTS) single crystal and measured the electrical conductivity, we found that it was 10'-150-" crn
-''. From this, it was found that only the polydiacetylene single crystal film grown on the underlayer had high conductivity due to PFa dosing. Also, this case was different from Example 1. On the other hand, in-plane anisotropy was found for electrical conductivity, and when the electrical conductivity in the direction parallel and perpendicular to the main chain axis is expressed as a/ and -, respectively, a//6 is approximately 103 to 104. there were.

ホール(Hall)効果の測定よル易動度を評価すると
、lo4〜1o56/I/V−8ecであシ、極めて高
い値が実測された。
When the Hall mobility was evaluated by measuring the Hall effect, an extremely high value of LO4 to 1O56/I/V-8ec was actually measured.

実施例3 モノマーとしてHD Uを用い、PTSポリジアセチレ
ン単結晶の労開面を下地に用いた。臂開面は主鎖と平行
になっている。図に示した蒸着装置を用いて、蒸発源に
HDUを仕込み、100〜200℃に加熱した。液体窒
素シュラウドを用い、蒸気圧の低い重合した成分を除去
してモノマーのみが基板に到達するようにし、基板上に
100〜1oooo入モノマー膜を形成した。次に、こ
の膜に約10eVの紫外mを照射してモノマーを重合さ
せた。次に、これに約100 KeVに加速された1“
イオンを打込んだ。表面に金電極を設け、4端子法を用
いて導電率を測定したところ、1o−4〜10 Ω 儒
 であった。導電率には面内異方性が見られ、 シ/σ
 は約lO5〜10’であった11元1 導電性よシ主鎖方向の易動度を評価すると、約10 t
yl/ V *secであった。・実施例4 基板としてGaAs ((100)面)を用い、モノマ
ーとしてTCDUを用いて、実施例1と同様にしてGa
As (100)面上にTCDUの薄膜を蒸着した。
Example 3 HDU was used as a monomer, and the open plane of a PTS polydiacetylene single crystal was used as a base. The arm opening plane is parallel to the main chain. Using the vapor deposition apparatus shown in the figure, HDU was charged into an evaporation source and heated to 100 to 200°C. Using a liquid nitrogen shroud, polymerized components with low vapor pressure were removed so that only the monomers reached the substrate, and a monomer film containing 100 to 1000 monomers was formed on the substrate. Next, this film was irradiated with ultraviolet light of about 10 eV to polymerize the monomer. This is then added to 1“ accelerated to about 100 KeV.
Ion implantation. When a gold electrode was provided on the surface and the electrical conductivity was measured using a four-terminal method, it was found to be 10-4 to 10 Ωf. In-plane anisotropy is seen in the electrical conductivity, and σ/σ
was about lO5~10'.Evaluating the mobility in the main chain direction of the conductivity, it was about 10t.
yl/V*sec.・Example 4 Using GaAs ((100) plane) as the substrate and using TCDU as the monomer, Ga was prepared in the same manner as in Example 1.
A thin film of TCDU was deposited on the As (100) surface.

ただし、GaAs基板を熱処理ではなく、蒸着に先だっ
て真空槽中で10−2Torrのアルゴンガス雰囲気下
グロー放電を行うことによシ清浄化した。次いで、10
−’ Torr以下に排気し、蒸発源fc60℃〜20
0℃に加熱後、シャッターを開いて蒸着した。
However, the GaAs substrate was cleaned not by heat treatment but by glow discharge under an argon gas atmosphere at 10<-2 >Torr in a vacuum chamber prior to vapor deposition. Then 10
-' Exhaust to below Torr, evaporation source fc60℃~20
After heating to 0°C, the shutter was opened to perform vapor deposition.

この間、真空槽内を10−6Tor’r以下に保った。During this time, the inside of the vacuum chamber was maintained at 10-6 Tor'r or less.

このようにしてGaAsつ’!−77−上に100〜1
0,000入の膜を形成した。この膜をX線回折法で分
析ツーると、鋭い優位配向が認められた。この膜を1気
圧のアルゴン雰囲気中で100℃に保ち、12時間放置
すると、金色の金相光沢を有するポリジアセチレン膜が
得られた。これをX線回折法で分析すると、バルク単結
晶のb軸(主鎖Ill )が膜面に平行に配向している
ことがわかった。B’Jの面内方向の導電率a 10”
 〜10”Ω−1cnl−”で6’)、面内異方aトは
なかった。、光消電性の実験からキャリヤ移動度全測定
したところ、3 X 10’ cnV V’ secで
あυ、極めて高い移動度を示した。この釣を1チのPF
sを含むアルゴンガス雰囲気(1気圧)中で24時間放
置すると、導電率は10〜lΩ−1cm−”に増加した
In this way, GaAs! -77-100-1 on top
A film containing 0,000 layers was formed. When this film was analyzed by X-ray diffraction, a sharp dominant orientation was observed. When this film was kept at 100° C. in an argon atmosphere of 1 atm and left for 12 hours, a polydiacetylene film having a golden luster was obtained. When this was analyzed by X-ray diffraction, it was found that the b-axis (main chain Ill) of the bulk single crystal was oriented parallel to the film surface. Electrical conductivity in the in-plane direction of B'J a 10"
6') at ~10"Ω-1cnl-", and there was no in-plane anisotropy. When the total carrier mobility was measured in a photo-dissipation experiment, it was found to be 3 x 10' cnV V' sec, which is an extremely high mobility. This fishing is 1 piece PF
When left for 24 hours in an argon gas atmosphere (1 atm) containing S, the conductivity increased to 10-1 Ω cm.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本実施例で使用した真空蒸着装僅の概略図であ
る。 l・・・蒸発源、2・・・ヒーター、3・・・液体窒素
シュラウド、4・・・真空槽、5・・・基板ヒーター、
6・・・基板、7・・・シャッター、8・・・排気系。
The drawing is a schematic diagram of the vacuum evaporation equipment used in this example. l... Evaporation source, 2... Heater, 3... Liquid nitrogen shroud, 4... Vacuum chamber, 5... Substrate heater,
6... Board, 7... Shutter, 8... Exhaust system.

Claims (1)

【特許請求の範囲】 Il+一固体基板上に有機化合物モノマーの単結晶から
なる薄膜を形成し、次いで該層を融点以下の温度で加熱
し、又は該層に波長1〜10”−”鮨の電磁波若しくは
電子線を照射して、該有機化合物を同相重合せしめ、も
って該化合物の、t5 リマー単結晶を生成せしめるこ
とを特徴とする半導性有機薄膜の形成法。 (2)有機化合物がジアセチレン化合物である特許請求
の範囲第1項記載の半導性有機酵)MA。 (3)真空薄膜作成法を用いて、固体基板上に有機化合
物モノマーの結晶からなる薄膜を形成する特許請求の範
囲第1項記載の半導性有機薄膜の形成法。 (4)真空薄膜作成法が真空蒸着法又はイオンブレーテ
ィング法である特許請求の範囲第3項記載の半導性有機
H膜の形成法。
[Claims] A thin film made of a single crystal of an organic compound monomer is formed on a solid substrate, and then the layer is heated at a temperature below the melting point, or the layer is coated with a material having a wavelength of 1 to 10"-" 1. A method for forming a semiconducting organic thin film, which comprises irradiating the organic compound with electromagnetic waves or electron beams to in-phase polymerize the organic compound, thereby producing a t5 reamer single crystal of the compound. (2) MA (semiconducting organic enzyme) according to claim 1, wherein the organic compound is a diacetylene compound. (3) A method for forming a semiconducting organic thin film according to claim 1, wherein a thin film made of crystals of an organic compound monomer is formed on a solid substrate using a vacuum thin film forming method. (4) The method for forming a semiconductive organic H film according to claim 3, wherein the vacuum thin film forming method is a vacuum evaporation method or an ion blating method.
JP58130281A 1983-07-19 1983-07-19 Method of forming semiconductive organic thin film Pending JPS6023906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58130281A JPS6023906A (en) 1983-07-19 1983-07-19 Method of forming semiconductive organic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58130281A JPS6023906A (en) 1983-07-19 1983-07-19 Method of forming semiconductive organic thin film

Publications (1)

Publication Number Publication Date
JPS6023906A true JPS6023906A (en) 1985-02-06

Family

ID=15030555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58130281A Pending JPS6023906A (en) 1983-07-19 1983-07-19 Method of forming semiconductive organic thin film

Country Status (1)

Country Link
JP (1) JPS6023906A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62232441A (en) * 1986-04-01 1987-10-12 Idemitsu Petrochem Co Ltd Polydiacetylene film
JPH01139255A (en) * 1987-07-13 1989-05-31 Mitsubishi Petrochem Co Ltd Molecularly oriented thin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62232441A (en) * 1986-04-01 1987-10-12 Idemitsu Petrochem Co Ltd Polydiacetylene film
JPH01139255A (en) * 1987-07-13 1989-05-31 Mitsubishi Petrochem Co Ltd Molecularly oriented thin film

Similar Documents

Publication Publication Date Title
Chidsey et al. Molecular order at the surface of an organic monolayer studied by low energy helium diffraction
EP0351092B1 (en) Method for the formation of monomolecular adsorption films or built-up films of monomolecular layers using silane compounds having an acetylene or diacetylene bond
JP3197036B2 (en) Method for forming crystalline silicon thin film
US4239788A (en) Method for the production of semiconductor devices using electron beam delineation
GB1602386A (en) Method of manufacturing semiconductor devices
JPS6023906A (en) Method of forming semiconductive organic thin film
Ueno et al. Hot-electron transmission through thin amorphous films of tetratetracontane: effects of the density of gap states on the band-gap current and its anomalous temperature dependence
JP3351679B2 (en) Method for manufacturing polycrystalline silicon thin film laminate and silicon thin film solar cell
Sengupta et al. Cadmium sulfide (CdS) thin films with improved morphology for humidity sensing by chemical bath deposition at lower pH
Kohl et al. Anomalous behaviour of electron mobility in space charge layers
Nara et al. Synchrotron radiation‐assisted silicon homoepitaxy at 100° C using Si2H6/H2 mixture
JPH03197385A (en) Preparation of substrate for depositing diamond thin film
JP2765295B2 (en) Method of forming aluminum thin film
JPH0652714B2 (en) Thin film material manufacturing method
JP2721869B2 (en) Method for manufacturing diluted magnetic semiconductor thin film
Mitsuishi et al. Laser sintering of VO2 film
Suchorski Field Stimulated Surface Diffusion of Lithium on Germanium (100) and (111) Planes
JP3013974B2 (en) Manufacturing method of thin film solar cell
JPS6276514A (en) Manufacture of semiconductor device
JPS62265663A (en) Dry developing resist for thin organic film
JPS62232180A (en) Superconducting material
JPS624326A (en) Semiconductor element
JPS6235512A (en) Manufacture of single crystal thin film of semiconductor
JP2875782B2 (en) Method and apparatus for manufacturing ZnSe compound semiconductor thin film crystal
JP3413892B2 (en) Manufacturing method of ultrafine particle dispersion material