JPS60239015A - Formation of amorphous silicon film - Google Patents

Formation of amorphous silicon film

Info

Publication number
JPS60239015A
JPS60239015A JP59094824A JP9482484A JPS60239015A JP S60239015 A JPS60239015 A JP S60239015A JP 59094824 A JP59094824 A JP 59094824A JP 9482484 A JP9482484 A JP 9482484A JP S60239015 A JPS60239015 A JP S60239015A
Authority
JP
Japan
Prior art keywords
discharge
film
discharge space
electrodes
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59094824A
Other languages
Japanese (ja)
Inventor
Hiroshi Imagawa
今川 容
Masumi Iwanishi
巖西 真純
Seiichiro Yokoyama
横山 誠一郎
Setsu Akiyama
秋山 節
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP59094824A priority Critical patent/JPS60239015A/en
Publication of JPS60239015A publication Critical patent/JPS60239015A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To contrive to suppress generation of powder and to enhance the depositing speed of an amorphous Si film at formation of the amorphous silicon film by a method wherein plasma intensity in glow discharge space is dispersed. CONSTITUTION:Raw material gas 9 is introduced into a reaction chamber 8. Gas 9 flows in discharge space, and deposited on a substrate 5. Discharge space is divided into two spaces of discharge space W formed by electrodes 1, 2, and discharge space S formed by the electrode 2 and an electrode 4 by equipping the electrode 2 between the electrodes 1, 4. At this case, weak discharge is generated in space W, and moreover strong discharge is generated in space S. An inclination of plasma intensity is provided to discharge space like this, and by flowing raw material gas to the strong part from the weak part of plasma intensity, the decomposition process of raw material gas, and other excitation, diffusion and surface reaction processes are made to be performed in different plasma intensity regions. Accordingly, the respective processes from decomposition of raw material gas to a surface reaction are advanced smoothly, and as a result, suppression of generation of powder, and enhancement of the depositing speed of an amorphous Si film can be attained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は膜形成速度を飛躍的に向上させたアモルファス
シリコン膜(以下a−8t膜)の形成方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for forming an amorphous silicon film (hereinafter referred to as an A-8T film) which dramatically improves the film formation rate.

従来技術との関係 a−8i膜は近年太陽電池、光センサ−、FET。Relationship with conventional technology A-8i film has recently been used in solar cells, optical sensors, and FETs.

電子写真感光体等に幅広く実用化されつつあり、注目さ
れる電子材料である。かかるa−8t膜の形成手段とし
てシリコンターゲラトラ活性水素雰囲気中でスパッタリ
ングする方法、又はSiH,、SiF。
It is an electronic material that is attracting attention as it is being widely put into practical use in electrophotographic photoreceptors and the like. A method for forming such an a-8T film is a method of sputtering in a silicon target atmosphere of activated hydrogen, or SiH, SiF.

ガスをグロー放電で分解する方法が知られている。A method of decomposing gas using glow discharge is known.

上記スパッタリング法で得られるa−8t膜に、膜特性
に大きく影響を与える水素含有量をコントロールするこ
とが困難なものであるため良質のものが得られにくい。
It is difficult to obtain a good quality A-8T film obtained by the above sputtering method because it is difficult to control the hydrogen content, which greatly affects the film properties.

一方グロー放電法ではダングリングボンド、ボイド等の
欠陥の少ない膜が得うnる(従って光導電体として使用
した場合非常に高感If々膜が得られる)、又P型、n
型への価電子制御が可能な膜がえられる、更には任意の
形状の基板上に膜形成が行ない得る(従って大面積化が
計れる)等のメリットが奏されかかるグロー放電法がa
−8i膜形成の主流となっている。
On the other hand, with the glow discharge method, a film with few defects such as dangling bonds and voids can be obtained (therefore, when used as a photoconductor, a film with very high sensitivity can be obtained).
The glow discharge method is a
-8i film formation has become mainstream.

しかしkがらこのグロー放電法といえども解決すべき問
題点を内在させている。例えば堆積速度、積速度を向上
させる試みもなされている。例えばSiHいSiF、笠
原料ガスの供給量全増加させるとか、放電電力を大きく
するとか等であるが、これとてもせいぜい3〜4μ/時
程度である。この場合更に堆積速度を大きくしようとす
れば膜物性が著しく低下する。更に膜物性の低下と相俟
ってa−8t膜の成形時に粉末が多量に発生しこれが膜
中にとり込まれて膜に欠陥部が形成する等不都合も派生
していた。
However, even this glow discharge method has inherent problems that need to be solved. For example, attempts have been made to improve the deposition rate and stacking rate. For example, increasing the supply amount of SiH, SiF, and Kasa raw material gas, or increasing the discharge power, etc., but this is at most about 3 to 4 μ/hour. In this case, if the deposition rate is further increased, the physical properties of the film will deteriorate significantly. Furthermore, together with the deterioration of the film properties, a large amount of powder is generated during molding of the A-8T film, which is incorporated into the film, resulting in the formation of defects in the film.

発明の目的 而して本発明者らは膜物性の低下を同等惹起せず、しか
も膜の堆積速度全署しく増加させるa−8t 膜の形成
方法について鋭意検討した結果、グロー放電空間のプラ
ズマ強度に分布全もたせることにより従来技術の欠点金
悉く解消し得ることを見い出し本発明に到達した。
The purpose of the invention is that the inventors of the present invention have conducted intensive studies on a method for forming an a-8t film that does not cause the same reduction in film physical properties and also increases the overall film deposition rate. The present inventors have discovered that all of the drawbacks of the prior art can be overcome by providing a complete distribution of .

発明の構成 即ち、本発明は水素又はハロゲンの少なくとも一方を含
有するシリコンを母体とするアモルファスシリコン膜全
グロー放電を用いて作製するにあたり、放電空間の放電
強度に分布をもたせること全特徴とするものである。
Components of the Invention Namely, the present invention is characterized in that the discharge intensity in the discharge space is distributed when it is produced using an amorphous silicon film whole glow discharge whose matrix is silicon containing at least one of hydrogen or halogen. It is.

以下本発明方法を図面を用いて説明する。The method of the present invention will be explained below with reference to the drawings.

第1図は容量型結合グロー放電装置で放電空間全2分割
して放電強度に分布をもたせる場合を示torr 、程
度まで排気された後反応室8内に導入される。かかる原
料ガス9ば5IHI、S i Fa、S i xHaに
希釈ガスとしてH!、He % A、r等、必要に応じ
てドープガスを混在させたものであり、放電空間を流れ
て基板5に堆積する。放電空間は電極1.40間に電極
2全装着して2分割されている。つまり電極1と2とで
形成される放電空間(W)、及び電極2と4とで形成さ
れる放電空間(S)である。
FIG. 1 shows the case of a capacitively coupled glow discharge device in which the entire discharge space is divided into two to give a distribution of discharge intensity.The discharge space is evacuated to a level of torr and then introduced into the reaction chamber 8. H! is added to these raw material gases 9, 5IHI, S i Fa, and S i xHa as a diluent gas. , He % A, r, etc., mixed with a doping gas as necessary, flows through the discharge space and is deposited on the substrate 5 . The discharge space is divided into two with all the electrodes 2 installed between the electrodes 1 and 40. That is, there is a discharge space (W) formed by electrodes 1 and 2, and a discharge space (S) formed by electrodes 2 and 4.

第1図の場合iRF電源6(高周波電源)1個で2分割
される。この場合放電空間(W)では弱い放電が、又放
電空間(S)では強い放電が起こる。
In the case of FIG. 1, one iRF power source 6 (high frequency power source) is divided into two. In this case, a weak discharge occurs in the discharge space (W), and a strong discharge occurs in the discharge space (S).

一般にa−8t膜は原料ガスを放電エネルギーにより分
解、励起し、この分解活性種全数電空間中全拡散、移動
させ基板上に固相膜として析出させるものである。従っ
て高速成膜全実現する為には原料ガスの分解、励起の高
効率化、活性種の拡散、移動の高速化及び基板上での表
面固相反応の高速化が計られなければならない。しかし
現実では上記各素過程全独立して制御することはきわめ
て困難である。
In general, an a-8t film is produced by decomposing and exciting a raw material gas by discharge energy, and causing all of the decomposed active species to diffuse and move in the electric space, thereby depositing a solid phase film on a substrate. Therefore, in order to fully realize high-speed film formation, it is necessary to decompose the source gas, increase the efficiency of excitation, increase the speed of diffusion and movement of the active species, and increase the speed of the surface solid phase reaction on the substrate. However, in reality, it is extremely difficult to control each of the above elementary processes completely independently.

ところで本発明の様に放電空間にプラズマ強度の勾配全
つけ、しかもプラズマ強度の弱い部分から強い部分へ原
料ガスを流すことによって原料ガスの分解過程(弱い部
分でおこる)と他の励起、拡散、表面反応過程(強い部
分でおこる)とが異なるプラズマ強度領域で実施される
ことになり、以て原料ガスの分解から表面反応に至る各
過程が円滑に進行し結果として粉未発生の抑制及びa 
−Si膜の堆積速度の向上が達成できたのである。
By the way, as in the present invention, by creating a complete plasma intensity gradient in the discharge space and flowing the raw material gas from a region where the plasma intensity is weak to a region where the plasma intensity is strong, the decomposition process of the raw material gas (which occurs in the weak region) and other excitation, diffusion, The surface reaction process (occurs in the strong part) is carried out in a different plasma intensity range, so each process from the decomposition of the raw material gas to the surface reaction proceeds smoothly, and as a result, the generation of powder is suppressed and a
- It was possible to improve the deposition rate of the Si film.

従来の様に上記各過程全同一放電強度の下で実施する場
合(第2図)でに前述した様に粉未発生、堆積速度の低
下が起こるがそれは粉末の発生が気相反応による固体の
発生であり活性種が基板上に5− 到達する以前に消費されてし1い表面反応が促進されな
いためである。
When all of the above processes are carried out under the same discharge intensity as in the past (Figure 2), no powder is generated and the deposition rate is reduced, but this is because the generation of powder is caused by the formation of solids due to gas phase reactions. This is because the surface reaction is not promoted since the activated species are consumed before they reach the substrate.

第1図において電極1及び/又に電極2に通気可能な開
口部を有するものが採用される。又基板5は電極1.4
どちらに設置してもよいが電極1に設ける際には電極1
.2間のプラズマ強度を電極2.4間のそれよりも強く
することが好ましい。
In FIG. 1, electrodes 1 and/or electrodes 2 having openings that allow ventilation are employed. Also, the substrate 5 has electrodes 1.4
It can be installed on either side, but when installing it on electrode 1,
.. It is preferred that the plasma intensity between electrodes 2.2 is stronger than that between electrodes 2.4.

第1図に電極により放電空間が2分割された場合を示す
ものであるが、本発明でにプラズマ強度に勾配さえ形成
できi、は分割数を同等限定する必要がない。かかる分
割数は電源としてRF及び/又はDC(直流電源)を適
宜使用す、ることにより決定できる。
FIG. 1 shows a case where the discharge space is divided into two by electrodes, but the present invention can even form a gradient in the plasma intensity, so there is no need to equally limit the number of divisions. The number of divisions can be determined by appropriately using RF and/or DC (direct current power) as a power source.

ここで放電強度の分布について説明する。放電強度の分
布は原料ガスのグロー放電プラズマからの発光スペクト
ルを発光分光分析装置によって測定してめらnる。例え
ば原料ガスがSiH+ガスの場合、波長414nmの[
SiH,:]の発光強度を観測することにより放電の強
弱(勾配)がまる。
Here, the distribution of discharge intensity will be explained. The distribution of the discharge intensity is determined by measuring the emission spectrum from the glow discharge plasma of the source gas using an emission spectrometer. For example, if the raw material gas is SiH+ gas, the wavelength of 414 nm is [
By observing the emission intensity of SiH, :], the intensity (gradient) of the discharge is determined.

第3図は電極1.2開音DC放電、電極3.46− 間をRF放電にてa−8t膜全形成させる態様全示すも
のである。電極1.2.3とも開口部を有する通気可能
なものが採用される。電極1.2間は弱い放電強度、電
極3.4間は強い放電強度が形成される。
FIG. 3 shows the complete formation of the A-8T film using open DC discharge between electrodes 1 and 2 and RF discharge between electrodes 3 and 46. The electrodes 1, 2, and 3 are all ventilated and have openings. A weak discharge intensity is formed between electrodes 1 and 2, and a strong discharge intensity is formed between electrodes 3 and 4.

第4図はRF電源6を2個を用いて放電空間を分割した
例を示すものである。電極1.2.3とも開口部を有す
る通気可能力ものが採用される。
FIG. 4 shows an example in which two RF power sources 6 are used to divide the discharge space. Electrodes 1, 2, and 3 each have an opening that allows ventilation.

電極1.2間は弱い放電強度、電極3.4間は強い放電
強度が形成される。
A weak discharge intensity is formed between electrodes 1 and 2, and a strong discharge intensity is formed between electrodes 3 and 4.

以上の実施態様はいず扛も容鉗細合型グロー放電につい
てのものであるが、第5図は誘導結合型グロー放tにつ
いての例を示す。第5図にオイテはガラス管8に誘導コ
イル11を巻き2個のRF電源6を用い弱い放電強度部
Aと強い放電強度部B’t−形成させるものである。尚
、大規模生産、均一膜特性を有する大面積の膜を作製す
るには前述の容量結合型装置の採用が有利である。
Although the embodiments described above are all related to a joint type glow discharge, FIG. 5 shows an example of an inductively coupled type glow discharge. In FIG. 5, an induction coil 11 is wound around a glass tube 8 and two RF power sources 6 are used to form a weak discharge intensity section A and a strong discharge intensity section B't-. Incidentally, it is advantageous to employ the above-mentioned capacitive coupling type device for large-scale production and for producing a large-area film having uniform film characteristics.

発明の効果 上記の様な本発明方法によればa−8i膜の堆積速度の
大幅な向上が達成さn得たと同時に反応容器内における
粉末の発生がほぼ完全に抑制され得ることができた。粉
末発生がなくなったことは安全面でも好都合である。ま
た得られた膜の膜特性は堆積連間の大幅が向上が達成さ
れたにもかかわらずきわめて良好なものであった。本発
明方法で得られるa−8t膜ぼ太陽電池、光センサ−、
FET。
Effects of the Invention According to the method of the present invention as described above, a significant improvement in the deposition rate of the a-8i film was achieved, and at the same time, the generation of powder in the reaction vessel could be almost completely suppressed. The elimination of powder generation is also advantageous in terms of safety. Furthermore, the film properties of the obtained film were extremely good despite the fact that a significant improvement in the deposition period was achieved. A-8T membrane solar cell, optical sensor, obtained by the method of the present invention,
FET.

電子写真感光体等の用途に好適なものである。就中大き
な膜厚が必要である電子写真感光体には特に有望である
It is suitable for applications such as electrophotographic photoreceptors. It is particularly promising for electrophotographic photoreceptors that require a large film thickness.

実施例 以下本発明の実施例全記載するが、本発明にかかる実施
例によって同等限定全うけるものではない0 比較例1 第2図に示す様な放電空間の分割のない装置?用いて成
膜を実施した。電極1.4間の間隔50■の距離関係を
有し、13.56MeHzの高周波電源を用い、パワー
500Wで高周波電圧を印加し、9の原料ガスとしてS
iH,100%で400CC/馴の流速で導入し、基板
温度250℃、ガス圧0,5 Torr。
EXAMPLES All examples of the present invention will be described below, but the same limitations will not apply to the examples according to the present invention.Comparative Example 1 A device without division of discharge space as shown in FIG. 2? Film formation was carried out using the following method. The distance between the electrodes 1.4 was 50 cm, and a high frequency voltage of 500 W was applied using a high frequency power source of 13.56 MeHz.
Introduced at iH, 100% at a flow rate of 400 CC/cm, substrate temperature 250°C, gas pressure 0.5 Torr.

で成膜全実施したところ堆積速度3.5u/Hr k得
たが、粉末の発生が極めて多く、又第1表に物性値に示
す様に得られた膜の膜物性は良くなかった。
When the entire film was formed, a deposition rate of 3.5 u/hr k was obtained, but a very large amount of powder was generated, and the physical properties of the obtained film were not good as shown in the physical property values in Table 1.

実施例1 第1図において1.2は開口全有する電極であり1.2
間の間隔25謹、2.4間の間隔25+imの距離関係
を有し、13.56MeHzのRF定電源用い、パワー
500Wで高周波電圧全印加し、9の原料ガスとしてS
iH,100qbで400cc/IItRo流速で導入
し、基板温度250℃、ガス圧0−5 Torr、で成
膜を実施したところ、堆積速$ 25 It /Hrを
得、第1表に示す様々良好ガ物性値を得た。
Example 1 In Fig. 1, 1.2 is an electrode with a full opening;
The distance relationship was 25 + im between 2.4 m and 2.4 m, and using a 13.56 MeHz RF constant power source, a full high frequency voltage was applied at a power of 500 W, and S was used as the raw material gas in step 9.
Introducing iH, 100qb at a flow rate of 400cc/IItRo, and performing film formation at a substrate temperature of 250°C and a gas pressure of 0-5 Torr, a deposition rate of $25 It/Hr was obtained, and various good gases as shown in Table 1 were obtained. Physical property values were obtained.

実施例2 原料ガスとしてSiF+ ガスを用いて実施例1と同様
に製膜を実施したところ堆積速度28μ/Hr k得、
第1表に示す様な良好な物性値を得た0実施例3 第3図に電極1.2間をDC放電、3.4間合RF放電
によf)a−8i膜を作成する。電極1.2、−〇− 3に5メツシユの開口を有する電極であり1.2間の間
隔25m、3,4間の間隔25mの距離関係を有し、1
.2のDC放電’e30w、3.4間f 13 、56
MeHzの高周波電源音用いパワー500Wで高周波電
圧全印加し、9の原料ガスとして、5iHa k用い、
実施例1と同様に製膜全実施したところ、堆積速度24
μ/Hr會得、第1表に示す様な満足すべき物性値を得
た。
Example 2 Film formation was carried out in the same manner as in Example 1 using SiF+ gas as the raw material gas, and a deposition rate of 28 μ/Hr k was obtained.
EXAMPLE 3 In which good physical properties as shown in Table 1 were obtained, f) an a-8i film was produced by DC discharge between electrodes 1.2 and RF discharge between electrodes 1.2 and 3.4 as shown in FIG. Electrodes 1.2, -〇- 3 are electrodes with 5 mesh openings, and the distance relationship is 25 m between electrodes 1.2 and 25 m between 3 and 4, and 1.
.. DC discharge of 2'e30w, between 3.4 f 13 , 56
Using MeHz high-frequency power source sound, the full high-frequency voltage was applied at a power of 500 W, and 5iHa k was used as the raw material gas in step 9.
When the entire film was formed in the same manner as in Example 1, the deposition rate was 24.
μ/Hr and satisfactory physical property values as shown in Table 1 were obtained.

実施例4 第4図に高周波電源2個を用いて放電空間全分割し、電
極1.2間の間隔25m、3.4間の間隔25■、又2
.3の間隔3mの距離関係を示し、1.2間に60w、
3.4間に500Wのパワーで高周波電圧を印加し、S
iH,100%ガスを原料ガスとして実施例1と同様に
成膜を実施したところ、堆積速度23μ〆Hr’lH得
、第1表に示す様な良好な物性値を得た。
Example 4 As shown in Fig. 4, the discharge space is completely divided using two high-frequency power sources, and the spacing between electrodes 1.2 is 25 m, the spacing between electrodes 3.4 is 25 m, and 2.
.. 3 shows the distance relationship with an interval of 3m, 60W between 1.2,
3. Apply a high frequency voltage with a power of 500W between S
When a film was formed in the same manner as in Example 1 using iH, 100% gas as the raw material gas, a deposition rate of 23μ〆Hr'lH was obtained, and good physical properties as shown in Table 1 were obtained.

実施例5 第5図に誘導結合型グロー放電についての例會示す。Example 5 FIG. 5 shows an example of an inductively coupled glow discharge.

10− 外径8crnのパイレックスガラス管8に誘導コイル全
巻き2個の高周波電源6を用い、弱い放電部の、強い放
電部■全生成させる。原料と1〜でSIH*100%T
150CC/mで9から導入し、ガス圧0.5Torr
、基板温度250℃で成膜全実施した。
10- Using a high frequency power source 6 with two full windings of induction coils in a Pyrex glass tube 8 with an outer diameter of 8 crn, generate a weak discharge part and a strong discharge part. SIH*100%T with raw materials and 1~
Introduced from 9 at 150CC/m, gas pressure 0.5Torr
All film formation was carried out at a substrate temperature of 250°C.

■全放電パワー30w、■全放置パワー200wで高周
波電圧を印加する。発光分光分析装置による、発光種(
SiH)の観測から■の強度■[有]、0部の強度工■
としてIO/I■=0.1であった。この時、堆積速度
として20μ/Hr會得、第1表に示す様な満足すべき
物性値を得た。
■Apply a high frequency voltage with a total discharge power of 30w and ■a total leaving power of 200w. Luminescent species (
From the observation of SiH), the strength of ■ [Yes], the strength of 0 parts ■
As a result, IO/I■=0.1. At this time, a deposition rate of 20 μ/Hr was achieved, and satisfactory physical property values as shown in Table 1 were obtained.

第 1 表 ※1暗導電率・・・コーニング7059ガラス上にa−
8iJtWk堆積し、その上にアルミ ニウムによるギャップ電極全形成 させたもの全測定用試料形態とす る0 これを室温、暗状態で導電率全開 定0 ※2光導電率・・・暗導電率の場合と同一試料に室温で
600 n m、 50 μw/ca の光照射下で導
電率全測定。
Table 1 *1 Dark conductivity...a- on Corning 7059 glass
8iJtWk was deposited, and a gap electrode made of aluminum was completely formed on top of it. This was used as the sample for all measurements. The conductivity was set at full open at room temperature and in the dark. *2 Photoconductivity...In the case of dark conductivity All conductivity measurements were made on the same sample under irradiation with light at 600 nm and 50 μw/ca at room temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第3図〜第5図は本発明方法の実施態様を示す
ものであり、又第2図に本発明方法外のものである。 1 電 極 9原料ガス 2 電 極 10 排気系 3 電 極 11 誘導コイル 4を極 5基板 6電源 7 マツチングボックス 8 反応容器 特許出願人 東洋紡績株式会社 13− 第1@ 第3!Q 第51!l
1 and 3 to 5 show embodiments of the method of the present invention, and FIG. 2 shows an embodiment of the method other than the method of the present invention. 1 Electrode 9 Raw material gas 2 Electrode 10 Exhaust system 3 Electrode 11 Induction coil 4 to pole 5 Substrate 6 Power supply 7 Matching box 8 Reaction vessel Patent applicant Toyobo Co., Ltd. 13- 1st @ 3rd! Q 51st! l

Claims (1)

【特許請求の範囲】 1、水素又はハロゲンの少なくとも一方を含有するシリ
コンを母体とするアモルファスシリコン膜をグロー放電
?用いて作製するにあたり、放電空間の放電強度に分布
をもたせることt−特徴とするアモルファスシリコン膜
の形成方法。 2、原料ガス全放電強度の小なる部分から大なる部分へ
流入する特許請求の範囲第1項記載の形成方法。
[Claims] 1. Glow discharge of an amorphous silicon film whose base material is silicon containing at least one of hydrogen or halogen? 1. A method for forming an amorphous silicon film characterized by providing a distribution of discharge intensity in a discharge space. 2. The forming method according to claim 1, wherein the raw material gas flows from a portion where the total discharge intensity is small to a portion where it is large.
JP59094824A 1984-05-11 1984-05-11 Formation of amorphous silicon film Pending JPS60239015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59094824A JPS60239015A (en) 1984-05-11 1984-05-11 Formation of amorphous silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59094824A JPS60239015A (en) 1984-05-11 1984-05-11 Formation of amorphous silicon film

Publications (1)

Publication Number Publication Date
JPS60239015A true JPS60239015A (en) 1985-11-27

Family

ID=14120799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59094824A Pending JPS60239015A (en) 1984-05-11 1984-05-11 Formation of amorphous silicon film

Country Status (1)

Country Link
JP (1) JPS60239015A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5368171A (en) * 1976-11-30 1978-06-17 Hitachi Ltd Method and apparatus for plasma treatment
JPS5698820A (en) * 1980-01-09 1981-08-08 Nec Corp Preparation of amorphous semiconductor film
JPS57211237A (en) * 1981-06-22 1982-12-25 Hitachi Ltd Plasma reaction device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5368171A (en) * 1976-11-30 1978-06-17 Hitachi Ltd Method and apparatus for plasma treatment
JPS5698820A (en) * 1980-01-09 1981-08-08 Nec Corp Preparation of amorphous semiconductor film
JPS57211237A (en) * 1981-06-22 1982-12-25 Hitachi Ltd Plasma reaction device

Similar Documents

Publication Publication Date Title
EP0312383B1 (en) Luminescing member, process for preparation thereof, and electroluminescent device employing same
US4818560A (en) Method for preparation of multi-layer structure film
US20100009242A1 (en) Carbon nanowall with controlled structure and method for controlling carbon nanowall structure
US5427827A (en) Deposition of diamond-like films by ECR microwave plasma
US4767517A (en) Process of depositing diamond-like thin film by cathode sputtering
JPH0210720A (en) Method and apparatus for manufacture of amorphous silicon-germanium alloy semiconductor layer
JPH0192375A (en) Device for forming functional deposited film by microwave plasma cvd
Vandevelde et al. Correlation between the OES plasma composition and the diamond film properties during microwave PA-CVD with nitrogen addition
US20020005159A1 (en) Method of producing thin semiconductor film and apparatus therefor
Liang et al. Investigation of active species in low-pressure capacitively coupled N2/Ar plasmas
JPS60239015A (en) Formation of amorphous silicon film
Hata et al. Silane plasma and surface processes in amorphous silicon deposition
Manage Structural and optical characterization of hydrogenated amorphous carbon thin films.
Tabuchi et al. Remotely induced high-density hollow-anode plasma and its application to fast deposition of photosensitive microcrystalline silicon thin film with preferential< 110> orientation
JPS634454B2 (en)
Ismail et al. Pressure dependence of the electrical potential and electron temperature in a microwave-generated plasma
JP2001176870A (en) Method for forming nitride film
JPS6028225A (en) Optical vapor growth method
EP0418438A1 (en) Method and apparatus for the plasma etching, substrate cleaning or deposition of materials by D.C. glow discharge
Jia et al. A microwave-induced plasma source: Characterization and application for the fast deposition of crystalline silicon films
JPH03229871A (en) Production of insulating film and production of semiconductor device using this insulating film
JPS6254083A (en) Formation of film
Uchida dc Glow Discharge
JPS6230880A (en) Deposited film forming device by plasma cvd method
JPS5966045A (en) Surface modifying device