JPS60238613A - Monitoring method for combustion state - Google Patents

Monitoring method for combustion state

Info

Publication number
JPS60238613A
JPS60238613A JP9287284A JP9287284A JPS60238613A JP S60238613 A JPS60238613 A JP S60238613A JP 9287284 A JP9287284 A JP 9287284A JP 9287284 A JP9287284 A JP 9287284A JP S60238613 A JPS60238613 A JP S60238613A
Authority
JP
Japan
Prior art keywords
flame
nox
combustion
degree
monitoring method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9287284A
Other languages
Japanese (ja)
Other versions
JPH05612B2 (en
Inventor
Nobuo Kurihara
伸夫 栗原
Mitsuyo Nishikawa
西川 光世
Yoshio Sato
佐藤 美雄
Atsumi Watabe
渡部 篤美
Hisanori Miyagaki
宮垣 久典
Toshihiko Azuma
東 敏彦
Atsushi Yokogawa
横川 篤
Yoshihiro Shimada
島田 善弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9287284A priority Critical patent/JPS60238613A/en
Priority to US06/726,392 priority patent/US4620491A/en
Priority to DE19853515209 priority patent/DE3515209A1/en
Publication of JPS60238613A publication Critical patent/JPS60238613A/en
Publication of JPH05612B2 publication Critical patent/JPH05612B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To estimate and monitor an amount of NOx produced, by a method wherein an oxidation flame as a high luminance region is extracted through measurement of a picture of flame in the vicinity of a burner outlet, and parameter about the degree of reduction of NOx is computed from the extracted oxidation flame. CONSTITUTION:Photo picture data 100-1 and 100-2 of flame are converted into an electric signal by an ITV camera 12, and is transmitted as an analogue picture signal 101 to a channel switching device 13. The channel switching device 13 transmits the analogue picture signal 102 of an assigned channel to an A/D converter 14 according to a channel selecting signal 105 outputted from a processor 16. The analogue picture signal is further converted into a flame picture signal 103 by the A/D converter 14, and the assigned flame picture data is stored in a flame memory 15. By the use of the flame picture data, the processor 16 calculates an index INOx indicating the degree of reduction of NOx, and an NOx value produced by a burner is estimated by the use of an NOx-INOx characteristics.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は微粉炭、CWM[石炭/水スラリ)等の燃焼状
態の監視に係り、特に燃焼で生成されるN Oxを監視
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to monitoring the combustion state of pulverized coal, CWM [coal/water slurry], etc., and particularly relates to a method of monitoring NOx generated during combustion.

〔発明の背景〕[Background of the invention]

石油代替エネルギとしての石炭見向しの中で、微粉炭燃
焼技術が注目されている。微粉炭の燃焼技術そのものは
すでに構成されたと口われるが、近年の大気汚染物質の
排出規制に対して、新たな技m対応を迫られている。
As coal is viewed as an energy alternative to oil, pulverized coal combustion technology is attracting attention. It is said that the combustion technology for pulverized coal has already been established, but in recent years, new technology has been required to comply with regulations on air pollutant emissions.

SるH4−φ本りl汁肴9市 −← 7→ト勺tσ)虜
紅石トー帰に誉↓Vr lセベて8分含有量が多いため
、燃焼時の大気汚染の原因となる窒素酸化物(以下NO
xとする)の発生濃度が高い。さらにこの燃料中の窒素
分子と燃焼して結合生成する熱NOxや燃料中の炭化水
素と燃焼用空気中の酸素分子の結合で生成される即発N
Oxに比べて、燃焼温度にはめ1り依存しない。
Suru H4-φhonri l soup appetizer 9 city -← 7→to tσ) prison red stone to return to honor ↓ Vr l sebe te 8 minutes Due to the high content, nitrogen oxidation which causes air pollution during combustion things (hereinafter NO
x) occurs at a high concentration. Furthermore, thermal NOx is generated by combining with nitrogen molecules in the fuel, and prompt N is generated by combining hydrocarbons in the fuel with oxygen molecules in the combustion air.
Compared to Ox, it is less dependent on combustion temperature.

この関係から微粉炭燃焼のNOx低減を図るには、NO
xを生成させない燃焼法よりもむしろ生成されたNOx
をN2などに還元させる手段を構する必要があると考え
られている。また、微粉炭燃料は燃料比、灰分、粘結性
、粒径分布など性状に係わる因子が多いだけに燃焼過程
での変動が大きく、さらに粉砕、輸送、バーナでの噴出
などの経時変変化も重油、ナフサ、I、NG等の燃焼設
備に比べて無視できない。
From this relationship, in order to reduce NOx in pulverized coal combustion, it is necessary to
NOx produced rather than combustion methods that do not produce
It is believed that it is necessary to provide a means to reduce the amount of nitrogen into N2 or the like. In addition, pulverized coal fuel has many factors related to its properties, such as fuel ratio, ash content, caking property, and particle size distribution, so it fluctuates greatly during the combustion process, and there are also changes over time such as pulverization, transportation, and ejection from burners. It cannot be ignored compared to combustion equipment for heavy oil, naphtha, I, NG, etc.

以上で述べたように微粉炭の低NOx燃焼を実施するに
は、(i) N Oxの還元効果、(ii)燃焼現象の
変動を考慮した燃焼法が要請畑れる。これに対し現状の
事業用あるいは産業用の微粉炭焚ボイラにおいては、ボ
イラ出口で排ガス中のNOx濃度を監視している。すな
わち数10本のバーナかつ多段構成から成る燃焼領域で
発生したNOxのトータル量を平均値で監視しているこ
とになる。したがって、従来の燃焼状態監視方法では火
炉内の状態を計測していないために、N Ox還元効果
や燃焼現象の変動を把握することができなかった。
As described above, in order to achieve low NOx combustion of pulverized coal, a combustion method that takes into account (i) the NOx reduction effect and (ii) fluctuations in combustion phenomena is required. In contrast, in current commercial or industrial pulverized coal-fired boilers, the NOx concentration in the exhaust gas is monitored at the boiler outlet. In other words, the total amount of NOx generated in the combustion region consisting of several dozen burners and a multi-stage configuration is monitored as an average value. Therefore, since the conventional combustion state monitoring method does not measure the state inside the furnace, it has not been possible to understand the NOx reduction effect or fluctuations in combustion phenomena.

また、火炎の光−i:を計測するフレームディテクタに
よる方法がある。しかしながらこのフレームディテクタ
は視野全体の平均光量を監視して火炎の有無を調べるだ
けであって、燃焼で生成されるN Oxに関する情報は
把握できないという欠点があった。
There is also a method using a flame detector that measures flame light -i:. However, this flame detector only monitors the average light intensity over the entire field of view to check for the presence or absence of flame, and has the disadvantage that it cannot obtain information regarding NOx produced by combustion.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、微粉炭燃焼時のIN Ox還元現象を
利用した結果として生ずるN0xifll(lJt度又
は量)をバーナごとに監視できる方法を提供することに
ある。
An object of the present invention is to provide a method for monitoring NOxifll (lJt degree or amount) generated as a result of utilizing the IN Ox reduction phenomenon during pulverized coal combustion for each burner.

〔発明の概要〕[Summary of the invention]

本発明はバーナ出口近傍における火炎画像を計測して高
輝度領域としての酸化炎を抽出し、該抽出きれたI′俊
化炎からN Oxの還元の程度に関するパラメータを演
算し、該演算烙れたパラメータを用いてN Ox生成数
を推定監視することに特徴がある。
The present invention measures a flame image near the burner outlet, extracts an oxidizing flame as a high-intensity region, calculates a parameter related to the degree of NOx reduction from the extracted I' ablation flame, and calculates a parameter regarding the degree of NOx reduction. The feature is that the number of NOx generated is estimated and monitored using the parameters.

N Oxの還元の程度に関するパラメータとじて具体的
には該酸化炎の重心位置、重心間距離、酸化炎の細長さ
などを用いることに特徴がある。
Specifically, the method is characterized in that the position of the center of gravity of the oxidizing flame, the distance between the centers of gravity, the slenderness of the oxidizing flame, etc. are used as parameters related to the degree of reduction of NOx.

〔発明の実施例〕[Embodiments of the invention]

はじめに本発明の基礎となる事項について述べる。 First, matters that form the basis of the present invention will be described.

第1図は発明の動機となる微粉炭燃焼の火炎形状の異な
る代表的な3ケースを示す、、(a)ItJ、 N O
x濃度がきわめて高い火炎を、(b)はNOx濃度が(
a)と(b)の中間である火炎を、(C)はN0xdl
Atが低い火炎工を示す。火炎すなわち微粉炭の燃焼領
域は、揮発分が主体である1次燃焼領域Fl、チャー(
固形炭素分)の燃焼が生体でめる2仄燃焼領域1(2、
そして還元作用が促進されている脱硝領域1−、に4Y
けもれ、これらの領」虚の大政なと結果と1゜て生成さ
れるNOx濃度と極めて相関性が高い。
Figure 1 shows three typical cases with different flame shapes of pulverized coal combustion, which are the motivation for the invention, (a) ItJ, N O
(b) shows a flame with extremely high x concentration;
The flame that is intermediate between a) and (b), (C) is N0xdl
Indicates a flame treatment with low At. The flame, that is, the combustion region of pulverized coal, consists of the primary combustion region Fl, where volatile matter is the main component, and the char (
2-burn combustion region 1 (2, 2,
and 4Y in the denitrification areas 1- and 4Y where the reduction action is promoted.
There is an extremely high correlation between the result of these "fake governments" and the NOx concentration generated.

第1図で(a)は脱硝領域F3がない。(b)は1次燃
焼頭域F1と2次燃焼領域の間に脱硝領域F3が形成さ
れている。(C)は1次燃焼領域F1が太く短かくなシ
、その分だけ脱硝領域F3が広くなっている。
In FIG. 1(a), there is no denitration region F3. In (b), a denitration region F3 is formed between the primary combustion head region F1 and the secondary combustion region. In (C), the primary combustion region F1 is not thick and short, and the denitrification region F3 is correspondingly wide.

本発明は、微粉炭燃焼時の1次燃焼領域が太くかつ短か
くなるとN Ox還元効果が大きくなる現象を巧みに利
用したものである。この覗、象は以下のように定性的に
説明できる。
The present invention cleverly utilizes the phenomenon that the NOx reduction effect increases as the primary combustion region becomes wider and shorter during pulverized coal combustion. This phenomenon can be explained qualitatively as follows.

バーナから微粉炭が高m雰囲気にある火炉に噴出される
と表面で着火し、この表面の燃焼で加熱されて微粉体に
含まれる揮発分が分離きれ周囲に拡散して1次燃焼領域
が形成される。この1次燃焼領域では、(1)式の反応
によりNOが多量に生成N2 (揮発N分) + 02
 IN O−(1)される。一方、加熱された火炎の中
央部から・HC発生し、(2)式の反応がおこる。
When pulverized coal is ejected from a burner into a furnace in a high-m atmosphere, it ignites on the surface, is heated by combustion on the surface, and the volatile matter contained in the pulverized powder is separated and diffused to the surrounding area, forming a primary combustion area. be done. In this primary combustion region, a large amount of NO is produced by the reaction of equation (1) N2 (volatile N content) + 02
IN O-(1). On the other hand, HC is generated from the center of the heated flame, and the reaction of equation (2) occurs.

NO+・HC→・NX ・・・(2) ここで、・NXH・NHあふいは・CNfあス−この・
NXが後流の脱硝領域にて(3)式に従ってNOを還元
する。
NO+・HC→・NX ...(2) Here, ・NXH・NH Afuiha・CNf Asu-Ko・
NX reduces NO in the downstream denitration region according to equation (3).

・N X + N O−+N 2 ・・・(3)たたし
、このN Ox還元剤となる。NXは酸素が任在すると
逆にNoを増加ヒせる原因になる。
-NX+NO-+N2...(3) This becomes the NOx reducing agent. When oxygen is present, NX causes an increase in No.

・NX+0−)NO・・・(4) したかつ−C1低NOx燃焼のポイントは、揮発分音バ
ーナ近くで燃焼し、火炎の中央部を高温かつM素不足状
態とするところにある。この燃焼法t、」1、微粉炭燃
焼で生成されるNOxの大部分が揮発分の燃焼によるも
のでチャー燃焼によるNOxの生成は僅かであること力
)ら、NOx低減に極めて効果がある。火炎形状からみ
ると、揮発分燃焼を促進させしかも火炎の中央部への空
気の拡散を少なくするので1次燃焼領域は太く、また全
体としての空気量も脱硝領域を酸素不足にするべく少な
くするので1次燃焼領域は短かくなる。
-NX+0-)NO...(4) The key to low NOx combustion in Shikatsu-C1 is to burn near the volatile tone burner and make the central part of the flame high in temperature and lacking in M element. This combustion method is extremely effective in reducing NOx because most of the NOx produced by pulverized coal combustion is due to the combustion of volatile matter and only a small amount of NOx is produced by char combustion. In terms of flame shape, the primary combustion area is wide to promote the combustion of volatile matter and to reduce the diffusion of air to the center of the flame, and the overall amount of air is small to make the denitrification area oxygen deficient. Therefore, the primary combustion region becomes shorter.

以上の考察にもとづく低NOx燃焼の指標INO!を第
2図により説明する。
Based on the above considerations, the index of low NOx combustion is INO! will be explained with reference to FIG.

バーナ近傍の輝匿の高い領域を酸化炎と呼ぶことにして
、この酸化炎につき、 重心位ti!イ X+ = d z / d n ・”
(5)重心間距離 X 2 = d x / d B 
−(6)細長さ X3=ty/SF ・・・(7)とし
て、NOx還元の程度を表わす指標IN oxはlN0
X 二Xi ’ ・X2 ・刈’ −(8)で定義する
We will call the region of high brightness near the burner an oxidation flame, and for this oxidation flame, the center of gravity is ti! I X+ = d z / d n ・”
(5) Distance between centers of gravity X 2 = d x / d B
-(6) Slenderness X3=ty/SF As (7), the index INox representing the degree of NOx reduction is lN0
Defined by X2Xi' ・X2 ・Kari' - (8).

とこでdIIニスロート径、tF:周囲長、SF二面槓
(第2図)・ツチング部) 第3図は燃焼実験の結果から得られたN0x−lNOx
 特性を示す。本発明はこの特性をあらかじめめておき
、INox を実測することにより燃焼中のNOx生成
量を推定する。
Where, dII Nithroat diameter, tF: Perimeter length, SF two-sided ram (Fig. 2)/Touching part) Fig. 3 shows the NOx-lNOx obtained from the results of the combustion experiment.
Show characteristics. The present invention estimates the amount of NOx generated during combustion by determining this characteristic in advance and actually measuring INox.

本発明の一実施例を第4図、第5図により説明する。本
発明になる燃焼状態監視装置は、イメージガイド(11
−1,1l−2)、■TVカメラ12 (12−1,1
2−2)、チャネル切替装置13 、A / D変換装
置14、フレームメモリエ5、プロセッサ16、表示装
置17から構成される。
An embodiment of the present invention will be described with reference to FIGS. 4 and 5. The combustion state monitoring device according to the present invention has an image guide (11
-1,1l-2), ■TV camera 12 (12-1,1
2-2), a channel switching device 13, an A/D converter 14, a frame memory 5, a processor 16, and a display device 17.

微粉炭バーナ2 (2−t、 2−2.、’2−3 )
近傍の火炎画イνがitl’ d+’lでさるよう、イ
メージガイド11をホイラ1の覗窓に取付ける。イメー
ジガイド11は1冑硯雰囲気に耐えられるよう頭部を水
又は空気で冷却され、さらに微粉炭の燃焼灰の伺着を防
ぐために前面のクト周より空気を噴射する構造になって
いる。火炎の光面像テーク100−1゜100−2はI
TVカメラ12 (12−1,12−2ンで電気信号に
変換され、アナログ画像信号101 (101−1,1
01−2)としてチャネル切替装置13へ伝送される。
Pulverized coal burner 2 (2-t, 2-2., '2-3)
The image guide 11 is attached to the viewing window of the foiler 1 so that the nearby flame image ν is equal to itl'd+'l. The head of the image guide 11 is cooled with water or air so that it can withstand the atmosphere, and is also structured to inject air from around the front to prevent pulverized coal combustion ash from accumulating. The optical plane image of the flame 100-1゜100-2 is I
The analog image signal 101 (101-1, 1
01-2) and is transmitted to the channel switching device 13.

このチャネル切替装置u13はプロセッサ16から出力
されるチャネル選択信号105に従って、指定されたチ
ャネルのアナログ画像信号102をA/D変換器14へ
伝送する。さらにA/D変換器14にてディジタル画像
信号103に変換され、フレームメモリ15に指定され
た火炎画像データが記憶される。
This channel switching device u13 transmits the analog image signal 102 of the designated channel to the A/D converter 14 in accordance with the channel selection signal 105 output from the processor 16. Further, the flame image data is converted into a digital image signal 103 by the A/D converter 14, and the specified flame image data is stored in the frame memory 15.

この火炎画像テークを用いてプロセッサ16は、(8)
式で定義されたINo、’il−算出し、さらに第3図
のN Ox〜INox 特性を用いて該バーナから生成
されるNOx値を推冗する。このブリセッサ16におけ
る処理手順を第5図囚、 l:B)に示す。第5図(イ
)において、 ■火炎画像テーク入力200では指冗されたチャネルの
火炎画像データをフレームメモリに取込み、■火炎形状
的徴抽出201では酸化炎の重心座標及び周囲長を第5
図(13)に示す手順で嘗−出する。■l5ox 計算
202では(8)式に従って演算する。■NOx推定2
03ではあらかじめデータテーブルとして記憶されたN
 Ox −lNOx 特性及びスロート径を用いて、l
NOx 値をNOx値へ換算する。
Using this flame image take, the processor 16 executes (8)
INo, 'il- defined by the formula is calculated, and the NOx value generated from the burner is estimated using the NOx to INox characteristics shown in FIG. The processing procedure in this Brissor 16 is shown in FIG. In FIG. 5(a), ■In the flame image take input 200, the flame image data of the designated channel is taken into the frame memory, and ■In the flame shape feature extraction 201, the centroid coordinates and perimeter of the oxidation flame are
Start by following the procedure shown in Figure (13). (15ox) Calculation 202 is performed according to equation (8). ■NOx estimation 2
In 03, N stored in advance as a data table
Using the Ox -lNOx characteristics and the throat diameter, l
Convert NOx value to NOx value.

■表示204ではフレームメモリの火炎画像テーク、チ
ャネル番号、N’ Ox値、lN0IT 値、Xl−X
3を表示装置205を表示する。
■The display 204 shows the frame memory flame image take, channel number, N'Ox value, lN0IT value, Xl-X
3 is displayed on the display device 205.

以上■〜■の動作を全チャネル終了するまで繰返す。Repeat the operations from ■ to ■ above until all channels are completed.

本実施例によりボイラの各バーナにおけるNOx値をめ
ることができる。
According to this embodiment, the NOx value in each burner of the boiler can be determined.

以上の実施例によれば、微粉炭燃焼により生成されるN
Ox値をバーナ単位で計測することができるので、(1
)バーナにおける燃焼条件、たとえば1次燃焼領域と2
次燃焼領域の空気配分や空気を噴出する際の旋回強度な
ど、を適切に保つことができる、(2)バーナ間の燃焼
状態のアンバランスを把握することができる、(3)負
荷、燃料性状、設備の経時変化による燃焼状態の変化を
検知することができるなどの効果がある。
According to the above embodiment, N generated by pulverized coal combustion
Ox value can be measured for each burner, so (1
) Combustion conditions in the burner, e.g. primary combustion zone and 2
It is possible to maintain appropriate air distribution in the next combustion area and swirl strength when blowing out air, (2) it is possible to understand imbalances in combustion conditions between burners, (3) load and fuel properties. This has the advantage of being able to detect changes in combustion conditions due to changes in equipment over time.

〔発明の効果〕〔Effect of the invention〕

本発明によると微粉炭燃焼によるNOx生成量をバーナ
単位で推定することができる。
According to the present invention, the amount of NOx produced by pulverized coal combustion can be estimated for each burner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本となる火炎パターンを比較する図
である。第2図は本発明になる火炎形状の監視方法を示
す図である。第3図は燃焼により生成されるN Ox値
(濃度)とIN oxの関係を示す図である。第4図は
本発明の一笑施例を示す装置eゴ、の構成を、第5図(
A)(2)はその演算フローを示す。 l・・・ホイラ、2・・・微分炭バーナ、11・・・イ
メージガイド、12・・・撮像装置、13・・・チャネ
ル切替装置、14・・・A/D変換装置、15・・・フ
レームメモリ、16・・・プロセッサ、1′7・・・表
示装置、100籠 1の (−2<)(二2〈) 箭 2日 INOx(−1 躬 S (,4)
FIG. 1 is a diagram comparing flame patterns that are the basis of the present invention. FIG. 2 is a diagram showing a flame shape monitoring method according to the present invention. FIG. 3 is a diagram showing the relationship between the NOx value (concentration) generated by combustion and INox. FIG. 4 shows the configuration of a device ego showing a simple embodiment of the present invention, and FIG.
A) (2) shows the calculation flow. l... Wheeler, 2... Differential coal burner, 11... Image guide, 12... Imaging device, 13... Channel switching device, 14... A/D converter, 15... Frame memory, 16...Processor, 1'7...Display device, 100 baskets 1 (-2<) (22<) 箭 2nd INOx (-1 躬 S (,4)

Claims (1)

【特許請求の範囲】 1、微粉炭燃料と気体あるいは水との混合体を噴出する
燃料噴射ノズルとその周囲に設けられた燃焼用空気ノズ
ルから構成されたノゝ−すによる燃焼の燃焼状態を監視
する方法において、 バーナ出口近傍における火炎画像を計測して高廊朋領域
としての酸化炎を抽出し、 前記抽出された酸化炎からNOxの還元の程度に関する
パラメータを演算し、 前記演算されたパラメータを用いてN 、Ox生成量を
推定し、 火炉のN Ox生成量を監視することを特徴とする燃焼
状態監視方法。 2、前記特許請求の範囲第1項記載のN Oxの還元の
程度に関するパラメータとして少なくとも前記酸化炎の
重心位置を用いることを特徴とする燃焼状態監視方法。 元の程度に関するパラメータとして少なくとも火炎監視
平面上に2つ形成される酸化炎の重心間距離を用いるこ
とを特徴とする燃焼状態監視方法。 4、 前記特許請求の範囲第1項記載のNO8の還元の
程度に関するパラメータとして少なくとも前記酸化炎の
細長さを表わす指標とじて酸化炎の周長と面積の比を用
いることを特徴とする燃焼状態監視方法。
[Scope of Claims] 1. The combustion state of combustion by a noise composed of a fuel injection nozzle that injects a mixture of pulverized coal fuel and gas or water and a combustion air nozzle provided around the fuel injection nozzle. In the monitoring method, a flame image near the burner outlet is measured to extract an oxidation flame as a high-speed region, a parameter related to the degree of NOx reduction is calculated from the extracted oxidation flame, and the calculated parameter is A combustion state monitoring method characterized by: estimating the amount of N and Ox produced using the method, and monitoring the amount of NOx produced in a furnace. 2. A combustion state monitoring method characterized in that at least the position of the center of gravity of the oxidizing flame is used as a parameter regarding the degree of reduction of NOx as set forth in claim 1. A combustion state monitoring method characterized in that the distance between the centers of gravity of at least two oxidation flames formed on a flame monitoring plane is used as a parameter regarding the original degree. 4. A combustion state characterized in that the ratio of the circumferential length and area of the oxidizing flame is used at least as an index representing the slenderness of the oxidizing flame as a parameter regarding the degree of reduction of NO8 as set forth in claim 1. Monitoring method.
JP9287284A 1984-04-27 1984-05-11 Monitoring method for combustion state Granted JPS60238613A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9287284A JPS60238613A (en) 1984-05-11 1984-05-11 Monitoring method for combustion state
US06/726,392 US4620491A (en) 1984-04-27 1985-04-23 Method and apparatus for supervising combustion state
DE19853515209 DE3515209A1 (en) 1984-04-27 1985-04-26 METHOD AND DEVICE FOR MONITORING A COMBUSTION STATE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9287284A JPS60238613A (en) 1984-05-11 1984-05-11 Monitoring method for combustion state

Publications (2)

Publication Number Publication Date
JPS60238613A true JPS60238613A (en) 1985-11-27
JPH05612B2 JPH05612B2 (en) 1993-01-06

Family

ID=14066523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9287284A Granted JPS60238613A (en) 1984-04-27 1984-05-11 Monitoring method for combustion state

Country Status (1)

Country Link
JP (1) JPS60238613A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306017A (en) * 1989-05-22 1990-12-19 Tokyo Electric Power Co Inc:The Combustion method for burner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848315A (en) * 1994-08-03 1996-02-20 General Packer Kk Detection of powder, etc., adhered on heat-sealing surface of bag in packaging machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306017A (en) * 1989-05-22 1990-12-19 Tokyo Electric Power Co Inc:The Combustion method for burner

Also Published As

Publication number Publication date
JPH05612B2 (en) 1993-01-06

Similar Documents

Publication Publication Date Title
Yuan et al. Reaction zone visualisation in swirling spray n-heptane flames
JPH07253210A (en) Combustion method, which do not depend upon super-stoichiometry
TW222018B (en)
CN107255277A (en) A kind of water cooling finned tube fire row premixes low NO entirely
Riahi et al. Experimental study of natural gas flame enriched by hydrogen and oxygen in a coaxial burner
Petersen et al. Equivalence ratio distributions in a light-duty diesel engine operating under partially premixed conditions
Zhen et al. Combustion characteristics of a swirling inverse diffusion flame upon oxygen content variation
Yamamoto et al. Lifted flame structure of coannular jet flames in a triple port burner
JPS60238613A (en) Monitoring method for combustion state
CN105546521B (en) The W flame boiler of vortex burner primary and secondary air arranged off-centre
Geigle et al. Soot formation and flame characterization of an aero-engine model combustor burning ethylene at elevated pressure
Huang et al. Variation of hydrocarbon compositions and ignition locations on the radiative flame initiation characteristics through multi-dimensional DFCD incorporated image analysis
JPS5486823A (en) Combustion with reduction of nitrogen oxide
Sayre et al. Effect of radiation on nitrogen oxide emissions from nonsooty swirling flames of natural gas
Du et al. Influence of the parallel oil‐secondary air and F‐layer secondary air distribution on the flow, combustion, and NOx generation characteristics of FW down‐fired boilers retrofitted with a stable combustion technology
Wang et al. Characteristics of oxy-methane flame in an axial/tangential swirl jet burner
JPS60228818A (en) Monitoring method of combustion condition
CN206973551U (en) A kind of water cooling finned tube fire row premixes low NO entirely
Mikofski et al. Effect of varied air flow on flame structure of laminar inverse diffusion flames
JP3638170B2 (en) High temperature furnace oxygen gas burner
Ha et al. Cross-sectional characteristics of visible emission spectra in partially premixed flames
Muruganandam et al. Optical sensing of Lean blowout precursors in a premixed swirl stabilized dump combustor
JPH0719425A (en) Low nitrogen oxide burner
JPH0216101Y2 (en)
Abu Saleh et al. NO emission charateristics of iso-pentanol swirl spray flames using NO-PLIF