JPH02306017A - Combustion method for burner - Google Patents

Combustion method for burner

Info

Publication number
JPH02306017A
JPH02306017A JP12673389A JP12673389A JPH02306017A JP H02306017 A JPH02306017 A JP H02306017A JP 12673389 A JP12673389 A JP 12673389A JP 12673389 A JP12673389 A JP 12673389A JP H02306017 A JPH02306017 A JP H02306017A
Authority
JP
Japan
Prior art keywords
burner
flow rate
area
combustion
combustion state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12673389A
Other languages
Japanese (ja)
Other versions
JP2634240B2 (en
Inventor
Mitsunobu Hoshino
星野 光伸
Kaneya Misonoo
御園生 金哉
Nobuya Watanabe
渡辺 暢弥
Yasuhiko Sato
康彦 佐藤
Shohei Noda
野田 松平
Kimiyo Tokuda
君代 徳田
Yuichi Ide
井出 雄一
Masami Iida
飯田 政己
Shiyouji Tsujitake
辻岳 正二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP1126733A priority Critical patent/JP2634240B2/en
Publication of JPH02306017A publication Critical patent/JPH02306017A/en
Application granted granted Critical
Publication of JP2634240B2 publication Critical patent/JP2634240B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Combustion (AREA)

Abstract

PURPOSE:To enable easy reregulation of a burner into an ideal combustion state by a method wherein when the burner is previously in a given combustion state, a ratio of the area of a given section to the area of all sections is determined, and an air flow rate, a fuel flow rate, and a recirculating gas amount are controlled so as to maintain the same ratio during operation. CONSTITUTION:Temperatures at points at the side of flame obtained by measurement are divided at intervals of a proper temperature step, for example, 10 deg.C to prepare a constant temperature line distribution diagram ranging from 1500 deg.C to 1200 deg.C. The area of each temperature section is determined, the areas are S1, S2, S3, and S4. In the case S0=S1+S2+S3+S4, regards a ratio between R1=S1/S0 and R2=(S1+S2)/S0, a value in the combustion state of each burner in a normal combustion state is previously experimentally determined. An air flow rate control damper 11, a primary air flow rate regulating damper 13, and a secondary air flow rate regulating damper 14, and a fuel injection valve 08, a recirculating gas flow rate control damper 10, and a burner recirculating gas regulating damper 12 are operated so that R1 and R2 are adjusted to respective values. The combustion state of each burner can be easily maintained in an excellent state.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はボイラ等のバーナの燃焼方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a combustion method for a burner such as a boiler.

〔従来の技術〕[Conventional technology]

従来のボイラについて、第7図ないし第9図により説明
する。第7図は全体の構成図(燃料供給ラインと空気ラ
イン省略)、第8図は燃料供給ラインを含む全体の構成
図、第9図は空気ラインを含む全体の構成図である。
A conventional boiler will be explained with reference to FIGS. 7 to 9. FIG. 7 is an overall configuration diagram (fuel supply line and air line omitted), FIG. 8 is an overall configuration diagram including the fuel supply line, and FIG. 9 is an overall configuration diagram including the air line.

従来のボイラの燃焼は第7図ないし第9図に示すように
ボイラ01に設けられた複数のバーナ02から噴霧され
た燃料が同時に混合される空気によって燃焼する。従来
の低NOx燃焼では、−火燃焼域03で完全に燃焼する
のではなく一部未燃分が残されたまま二次燃焼域04に
うつりここに別に吹込まれるOFAまたは二段燃焼用空
気05によって完全に燃焼する。その後、煙道06を経
由し、煙突07から排出される。第8図と第9図中、0
8は燃料噴射弁、09はバーナ単位の空気、再循環ガス
配管、15は再循環ガス流量制御ダンパ、11は空気流
量制御ダンパ、12は個別バーナ再循環ガス調整ダンパ
、13は個別バーナー次空気流量調整ダンパ、14は個
別ハーナニ次空気流看調整ダンパを示ず。
As shown in FIGS. 7 to 9, combustion in a conventional boiler is performed using air in which fuel is simultaneously mixed with fuel sprayed from a plurality of burners 02 provided in a boiler 01. In conventional low NOx combustion, combustion does not occur completely in the -flame combustion zone 03, but some unburned matter remains in the secondary combustion zone 04, where OFA or second-stage combustion air is separately blown. Complete combustion by 05. Thereafter, it passes through the flue 06 and is discharged from the chimney 07. In Figures 8 and 9, 0
8 is a fuel injection valve, 09 is air for each burner, recirculation gas piping, 15 is a recirculation gas flow rate control damper, 11 is an air flow rate control damper, 12 is an individual burner recirculation gas adjustment damper, 13 is individual burner secondary air Flow rate adjustment damper 14 does not indicate an individual secondary air flow adjustment damper.

一般に、排出ガスのNOxは煙突07出l」で規制され
るので最終的な排ガスIj+NOxが煙突基部で7Ii
11定される。このような燃焼過程をへて最終的に排ガ
ス中のNoxfi度が決定されるので、単一バーナのN
Ox発生状況が、そのまま最終NOxにつながるわけで
はない。しかし何本かのバーナの燃焼ガスの集合にたい
して二次燃焼域04で空気が供給されるので、個々のバ
ーナが安定かつ均一に燃焼し、−・定のNOxレベルに
あることは、二次燃焼域04において叶^または二段燃
焼用空気05の鼠を加減し最終NOxレベルを確保する
ためには不可欠であるが、従来個々のバーナのNOxレ
ベルをその燃焼結果で評価する技術はなかった。したが
って最終的なアウトプットを見て、多くのパラメータを
推定で調整するしかなく、それは、いわば名人芸の一種
であった。
In general, NOx in exhaust gas is regulated by 07 output l from the chimney, so the final exhaust gas Ij + NOx is 7Ii at the base of the chimney.
11 determined. The NOxfi degree in the exhaust gas is finally determined through this combustion process, so the NOxfi degree of a single burner
The Ox generation situation does not directly lead to the final NOx. However, since air is supplied to the collection of combustion gas from several burners in the secondary combustion zone 04, the fact that each burner burns stably and uniformly and has a constant NOx level means that the secondary combustion Although it is essential to secure the final NOx level by adjusting the amount of air 05 for second-stage combustion in area 04, there has been no technology to evaluate the NOx level of each burner based on its combustion results. Therefore, we had to look at the final output and adjust many parameters by estimation, which was a kind of virtuoso process.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の方法には次のような問題点および課題があっ
た。
The conventional method described above has the following problems and issues.

(a)  プラントの初期調整運転時に設定される、最
適燃焼条件は、プラントの運転経過によって変化する。
(a) The optimal combustion conditions set during the initial adjustment operation of the plant change depending on the progress of the plant operation.

しかし個々のバーナの燃焼状態を適確に把握する手法は
ない。
However, there is no method to accurately grasp the combustion state of each burner.

(bl  各バーナの燃焼状態の変化を適確に把握、調
整すれば燃焼系全体を良い状態、すなわち低NOxの状
態に保つことが容易になる。
(bl) If changes in the combustion state of each burner are accurately grasped and adjusted, it becomes easy to maintain the entire combustion system in a good state, that is, in a low NOx state.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記課題を解決するため次の手段を講する。 The present invention takes the following measures to solve the above problems.

(1)複数のバーナを持つ燃焼装置において、燃焼中の
バーナ火炎の表面温度分布を所定の温度範囲毎にl1j
l¥次区分し、予め同バーナが所定の燃焼状態であると
き、所定の区分の面積が全区分の面積に占る割合を求め
、運転時に同割合を維持するよう空気流量、燃料流量お
よび再循環ガス量を操作するようにした。
(1) In a combustion device with multiple burners, the surface temperature distribution of the burner flame during combustion is determined for each predetermined temperature range l1j
When the burner is in a predetermined combustion state, calculate the ratio of the area of the predetermined section to the area of all sections, and adjust the air flow rate, fuel flow rate, and recycle to maintain the same ratio during operation. The amount of circulating gas can now be controlled.

(2)バーナ発生NOx監視方法として、複数のバーナ
を持つ燃焼装置において、燃焼中のバーナ火炎の表面温
度分布を所定の温度範囲毎に順次区分し、各区分の面積
を求め、所定の区分の面積が全区分の面積に占る8り合
を求め、予め求めておいた上記割合と上記燃焼装置のN
Ox発生量との相関関係からNOx発生量を監視するよ
うにした。
(2) As a burner-generated NOx monitoring method, in a combustion device with multiple burners, the surface temperature distribution of the burner flame during combustion is sequentially divided into predetermined temperature ranges, the area of each division is determined, and the area of each division is determined. Determine the ratio of the area to the area of all sections, and calculate the ratio determined in advance and the N of the combustion device described above.
The amount of NOx generated is monitored from the correlation with the amount of Ox generated.

[作用] (1)上記・F段により、例えばサーマルカメラ等で燃
焼中のバーナ火炎の表面温度分布が計られ、高温度側か
ら低温度側へ所定の温度範囲毎に順次区分される。次に
例えば最高温度の区分の面積ならびに同最高温度区分と
その次の温度の区分を加えた面積が全区分の面積に占る
割合が求められる。予め求めておいた所定の燃焼状態の
ときの上記の割合を維持するよう空気流量、燃ギ4流量
および再循環ガス量が調整される。燃焼状態と上記割合
の間には強い相関関係があるので、このようにしてバー
ナの燃焼状態を良好な状態に維持できるようになる。
[Function] (1) With the above F stage, the surface temperature distribution of the burning burner flame is measured using, for example, a thermal camera, and is sequentially divided into predetermined temperature ranges from the high temperature side to the low temperature side. Next, for example, the ratio of the area of the maximum temperature section and the area of the maximum temperature section plus the next temperature section to the area of all the sections is determined. The air flow rate, the fuel fuel 4 flow rate, and the recirculation gas amount are adjusted so as to maintain the above-mentioned ratio in a predetermined combustion state determined in advance. Since there is a strong correlation between the combustion state and the above ratio, the combustion state of the burner can be maintained in a good state in this way.

(2)上記手段により、例えばサーマルカメラ等で燃焼
中のバーナ火炎の表面温度分布が計られ、高温度側から
低温度側へ所定の温度範囲毎に順次区分される。次に例
えば最高温度の区分の面積ならびに同最高温度区分とそ
の次の温度の区分を加えた面積が全区分の面積に占る割
合が求められる。予め求めておいた上記の割合と燃焼装
置のNOx発生量との相関関係と上記実際のδり合から
NOX発生量を求め、NOx発生量を監視する。
(2) By the means described above, the surface temperature distribution of the burner flame during combustion is measured using, for example, a thermal camera, and is sequentially divided into predetermined temperature ranges from the high temperature side to the low temperature side. Next, for example, the ratio of the area of the maximum temperature section and the area of the maximum temperature section plus the next temperature section to the area of all the sections is determined. The amount of NOx generated is determined from the correlation between the ratio determined in advance and the amount of NOx generated by the combustion device and the actual δ ratio, and the amount of NOx generated is monitored.

このようにして容易にバーナ発生NOxが監視される。In this way, burner-generated NOx can be easily monitored.

〔実施例〕〔Example〕

(1)請求項(1)記載の本発明の方法を適用した一実
施例を第1図ないし第4図、第8図、第9図により説明
する。
(1) An embodiment to which the method of the present invention described in claim (1) is applied will be described with reference to FIGS. 1 to 4, FIG. 8, and FIG. 9.

なお、従来例で説明した部分は、冗長さをさけるため説
明を省略し、この発明に関する部分を主体に説明する。
Note that the description of the portions described in the conventional example will be omitted to avoid redundancy, and the description will mainly focus on the portions related to the present invention.

まず第1図に示すようにバーナ02の燃焼中の火炎の表
面温度の分布を光学的手法で測定する。
First, as shown in FIG. 1, the surface temperature distribution of the flame during combustion in the burner 02 is measured by an optical method.

この場合火炎の表面温度の定義は、火炎の種類によって
透過度が変化するため、複雑であるが、同一燃料、同一
バーナでの燃焼比較によってNOx発生状況を推定しよ
うとする本実施例においては測定法と、測定される温度
の定義はそれほど厳密性を要しない。
In this case, the definition of the surface temperature of the flame is complicated because the transmittance changes depending on the type of flame, but in this example, the NOx generation status is estimated by comparing combustion using the same fuel and the same burner. The method and definition of the temperature to be measured are not very strict.

測定法としては、光学式(サーマルカメラ式、スペクト
ル式)、熱電対式など公知の手法のいづれも採用できる
。例えば、サーマルカメラで得られた画面では画面を適
当な寸法に区分し各温度範囲毎に面積を求めることがで
きる。測定によって得られた火炎側面各点の温度を適当
な温度ステップ例えば第1図に示すように100°Cご
とに区分し1,500°Cから1 、200°Cの等点
線分布図を作成する。火炎は、はぼ中心の最高温部15
から次第に外へ向って温度が下ってくるが、どの点まで
が火炎であるかを決めるために、周辺のガス温度との温
度差がなくなる点を火炎の全体(全面積)12と定義す
る。
As the measurement method, any of the known methods such as optical method (thermal camera method, spectral method), thermocouple method, etc. can be adopted. For example, for a screen obtained with a thermal camera, the screen can be divided into appropriate dimensions and the area can be determined for each temperature range. Divide the temperature at each point on the flame side obtained by measurement into appropriate temperature steps, for example, every 100°C as shown in Figure 1, and create an iso-dot line distribution map from 1,500°C to 1 and 200°C. . The flame is at its highest temperature in the center of the warp 15
The temperature gradually decreases outward from the point, but in order to determine which point is the flame, the point where there is no difference in temperature from the surrounding gas temperature is defined as the entire flame (total area) 12.

次に各温度区分の面積を求め、511Sz+S:++S
4とする。このとき、各区分の面積と温度範囲との関係
は表1の通りとなる。
Next, find the area of each temperature category and calculate 511Sz+S:++S
Set it to 4. At this time, the relationship between the area of each section and the temperature range is as shown in Table 1.

表1 したがって全区分の面積S0は(1)弐で与えられる。Table 1 Therefore, the area S0 of the entire section is given by (1) 2.

S o = S + + S z + S s + S
 a −・・・−・・・−(1)次に最高の温度区分N
、の面積S、の全区分の面積に占める割合R1を(2)
弐より求める。
S o = S + + S z + S s + S
a -...-...-(1) Next highest temperature category N
The area of , S, is the ratio R1 to the area of all sections of (2)
Ask from the second.

R+ ” S 、/ S o  ’−・・−・−・・−
・−・・・−(2)同様にSlおよびS2のSoに占る
割合R2を(3)式より求める。
R+ ” S , / S o '−・・−・−・・−
.--(2) Similarly, the ratio R2 of Sl and S2 to So is determined from equation (3).

Rz= (S++Sz)/So  −−ニー・(3)以
上の割合R+、Rzについて、ボイラの正常な燃焼状態
における各バーナの燃焼状態での値を予め実験的に求め
ておき、実際の運転時には、11、.11.がそれぞれ
その値になるよう空気流量の配分(第9図の空気流量制
御ダンパ11、−次空気流量調整ダンパ13、二次空気
流量調整ダンパ14の開閉)、燃料流量の調節(第8図
の燃料噴射弁08の開閉)、再循環ガス量の調節(第9
図の再循環ガス流量制御ダンパ10、バーナ再循環ガス
調整ダンパ12の開閉)等を行う。このようにして各バ
ーナの燃焼状態を容易に良好に維持できるようになる。
Rz= (S++Sz)/So --knee・(3) Regarding the above ratios R+ and Rz, the values for the combustion state of each burner in the normal combustion state of the boiler are experimentally determined in advance, and the values are determined in advance during actual operation. , 11, . 11. Distribution of air flow rate (opening/closing of air flow rate control damper 11, secondary air flow rate adjustment damper 13, and secondary air flow rate adjustment damper 14 in Fig. 9) and adjustment of fuel flow rate (in Fig. 8) so that (opening/closing of fuel injection valve 08), adjustment of recirculation gas amount (9th
Opening and closing of the recirculation gas flow rate control damper 10 and the burner recirculation gas adjustment damper 12 shown in the figure are performed. In this way, the combustion state of each burner can be easily maintained in good condition.

次にこの割合R2を指標として、実機プラントでバーナ
の燃焼状態の評価試験を行った結果を第2図に示す。ま
た第3図に上記試験時のバーナの配置図を示す。第2図
より分るように、最適な燃焼状態は条件4にて得られた
低NOX、低ばいじん状態である。試験では燃焼状態を
変化させる代表的要素であるO1量を変化させ広い範囲
の燃焼状態を模擬した。すなわち、空気流量制御ダンパ
11(第9図)を開閉し全空気量を増減させた。最適燃
焼の条件4ではR2は3本のバーナともに高い値を示し
、燃焼状態が、均一性が保たれ良好であることを示して
いる。条件1〜条件3では3本のバーナのR2値は低く
バラツキが大きい。これはバーナの燃焼状態が悪くなり
、かつ均一性が、なくなっていることを示している。そ
の結果NOx又はばいじん発生量が増加した。
Next, using this ratio R2 as an index, an evaluation test of the combustion state of the burner was conducted in an actual plant, and the results are shown in FIG. Furthermore, FIG. 3 shows a layout diagram of the burners during the above test. As can be seen from FIG. 2, the optimum combustion state is the low NOx and low dust state obtained under condition 4. In the test, a wide range of combustion conditions were simulated by changing the amount of O1, which is a typical element that changes combustion conditions. That is, the air flow rate control damper 11 (FIG. 9) was opened and closed to increase or decrease the total air amount. Under optimal combustion condition 4, R2 shows a high value for all three burners, indicating that the combustion state is good and uniform. Under conditions 1 to 3, the R2 values of the three burners are low and vary widely. This indicates that the combustion condition of the burner has deteriorated and that uniformity has disappeared. As a result, the amount of NOx or soot generated increased.

上記実験結果からも本実施例の指標R1および/または
R2にて燃焼状態が的確に評価できることが立証できる
ことを示している。
The above experimental results also demonstrate that the combustion state can be accurately evaluated using the indicators R1 and/or R2 of this example.

上記では表面温度分布の計測については概念的にしか述
べなかったが、以下にバーナ火炎の表面温度分布を求め
る装置について詳しく説明する。
Although the measurement of the surface temperature distribution has been described only conceptually above, the apparatus for determining the surface temperature distribution of the burner flame will be described in detail below.

第4図にてバーナ02の火炎2を観測する1台又は複数
台のイメ′−ジファイバ3を火炉lに設置し、同イメー
ジファイバ3にカラーテレビカメラ4が接続される。同
カメラ4の出力はダイナミックカラ映像ディスプレ20
に入力されるとともに、デコーダ5に接続され、その出
力は赤(R)、緑(G)、青(B)映像装置6を経てフ
レ−ムメモリ7に人力される。同フレームメモリ7の出
力はR信号とB信号から温度を計算する一次演算回路(
R/B)8、G信号の時間差を計算する一次演算回路(
G(t、)−G(h))9、及びスモークを計算する一
次演算回路(R−B)10に接続される。父上記−次演
算回路(R/B)8の出力は順次温度分布表示ディスプ
レイ16、二次演算回路17、評価回路1日に接続され
る。同様に、上記−次演算回路(G(t、)−G(t、
))9、及び演算回路(’R−B)10の出力はそれぞ
れル・1価回路18に直接接続される。さらに同評価回
路18の出力はディスプレイ19に接続される。
In FIG. 4, one or more image fibers 3 for observing the flame 2 of the burner 02 are installed in the furnace l, and a color television camera 4 is connected to the image fibers 3. The output of the camera 4 is a dynamic color video display 20.
It is also connected to a decoder 5, and its output is manually input to a frame memory 7 via a red (R), green (G), and blue (B) video device 6. The output of the same frame memory 7 is a primary calculation circuit (
R/B) 8. Primary calculation circuit that calculates the time difference between G signals (
G(t,)-G(h)) 9 and a primary arithmetic circuit (R-B) 10 that calculates smoke. The output of the primary arithmetic circuit (R/B) 8 is sequentially connected to a temperature distribution display 16, a secondary arithmetic circuit 17, and an evaluation circuit 1. Similarly, the above-mentioned -order arithmetic circuit (G(t,)-G(t,
)) 9 and the outputs of the arithmetic circuit ('R-B) 10 are each directly connected to the R-1 circuit 18. Furthermore, the output of the evaluation circuit 18 is connected to a display 19.

以上の装置において、イメージファイバ3を経てカラー
テレビカメラ4によって1騒影された映像は、直接ダイ
ナミックカラ映像ディスプレ20に送られて運転員等に
モニタ映像を提供すると同時に、デコーダ5に送られる
。一般にカラーテレビカメラ4の出力信号は伝送線の節
約のため、赤、緑、青の分解像を合成して一本の線で送
られるので、これを元の二色の映像6にこ分離する。こ
の三色(赤、緑、青)の映像は、火炎2が輻射するスペ
クトルのそれぞれの成分強度に比例した映像になる。こ
れらの3色に分解された映像は後で演算をするために−
Hフレームメモリ7に映像の形で記録される。この映像
記録をもとに、火炎を表現する温度分布が次のような原
理のもとに算出される。
In the above apparatus, an image captured by the color television camera 4 via the image fiber 3 is directly sent to the dynamic color image display 20 to provide a monitor image to the operator and the like, and at the same time is sent to the decoder 5. Generally, the output signal of the color television camera 4 is sent over a single line by combining red, green, and blue separated images in order to save on transmission lines, so this is separated into the original two-color image 6. . This three-color (red, green, blue) image is proportional to the intensity of each component of the spectrum radiated by the flame 2. The images separated into these three colors are used for later calculations.
It is recorded in the H frame memory 7 in the form of a video. Based on this video record, the temperature distribution representing the flame is calculated based on the following principle.

ある温度T′にである黒体からの輻射はブランクの放射
法則により、次の(4)弐のように表わされる。
The radiation from a black body at a certain temperature T' is expressed as the following (4) 2 according to Blank's radiation law.

E(λ・T)=C,/λ’flXp(Cz/λT−1)
−(4)ここで λ:波長(I!m) T:絶対温度(K) C1ニブランクの第一放射定数 3.74xlO’(W−一・cm−”)C,ブランクの
第二放射定数 1438B (−・k) 黒体以外の物質、すなわち火炎の放射エネルギ分布は(
4)式にその放射率ελを乗じたものとな第5図の放射
曲線は火炎の放射エネルギをある火炎の温度A (K)
の場合について示したもので、火炎の温度が変れば、温
度Tをパラメータにして同じ傾向の放射曲線群が得られ
る。なお、放射率ελが変化するとこの曲線が相似的に
変化する。しかし2つの波長の放射エネルギ比は放射率
が変化しても、その2つの波長における放射率εの比が
一定であれば温度のみの関数となることば良く知られ二
色温度部として製品化されている。第4図の放射曲線に
重ねて点線で示すようなR(赤)、G(緑)、B(青)
の相対感度曲線を有するカラーテレビカメラの例えばR
とB信号からR/Bを用いて二色温度部と同じようにし
て温度が算出される。この場合、色信号はその色の相対
感度曲線の中心波長回りの成分について、これを放射曲
線に沿って積分したものである。
E(λ・T)=C,/λ'flXp(Cz/λT-1)
-(4) where λ: wavelength (I!m) T: absolute temperature (K) C1 first radiation constant of blank 3.74xlO' (W-1 cm-") C, second radiation constant of blank 1438B (-・k) The radiant energy distribution of a substance other than a blackbody, that is, a flame, is (
4) The radiation curve in Figure 5 is obtained by multiplying the equation by its emissivity ελ.
In this case, if the flame temperature changes, a group of radiation curves with the same tendency can be obtained using the temperature T as a parameter. Note that this curve changes similarly when the emissivity ελ changes. However, it is well known that even if the emissivity changes, the radiant energy ratio of two wavelengths is a function only of temperature as long as the ratio of emissivity ε at the two wavelengths is constant, and it has been commercialized as a dichroic temperature section. ing. R (red), G (green), B (blue) as shown by the dotted lines superimposed on the radiation curve in Figure 4.
For example, for a color television camera with a relative sensitivity curve of R
The temperature is calculated from the and B signals using R/B in the same manner as the two-color temperature section. In this case, the color signal is obtained by integrating components around the center wavelength of the relative sensitivity curve of the color along the radiation curve.

このようにして火炎の温度分布が算出される。In this way, the temperature distribution of the flame is calculated.

(2)請求項(2)記載の本発明の方法を適用した一実
施例を第6図と第7図により説明する。
(2) An embodiment to which the method of the present invention described in claim (2) is applied will be described with reference to FIGS. 6 and 7.

なお、従来例および前記実施例で説明した部分は、冗長
さをさけるため説明を省略し、この発明に関する部分を
主体に説明する。
Note that the explanations of the parts explained in the conventional example and the above-mentioned embodiments will be omitted to avoid redundancy, and the parts related to the present invention will be mainly explained.

前記のようにして上記(1)ないしく3)式により、各
バーナの燃焼状態の指標となる割合R+、Rzを求め、
予め実験的に求めておいたボイラのNOx発生量とR1
+R1との相関々係から、NOx発生量を監視する。
As described above, the ratios R+ and Rz, which are indicators of the combustion state of each burner, are determined by the above formula (1) or 3),
The amount of NOx generated by the boiler and R1 determined experimentally in advance
The amount of NOx generated is monitored based on its correlation with +R1.

以上のことを具体的に示すために実験例を示す、一本の
バーナを試験炉で燃焼させ、その火炉出口NOX総量と
割合RI+lhとの相関を求めると第6図で示すような
関係が得られている。従って予め各バーナ02(第7図
)の上記割合R1,R2とボイラ01のNOx発生量と
の相関関係を求めておき、上記割合R1,RZを計測し
て求めれば、燃焼条件変化によるNOx発生量変化を監
視することができる。
In order to concretely demonstrate the above, an experimental example will be shown in which one burner is burned in a test furnace and the correlation between the total amount of NOx at the furnace outlet and the ratio RI + lh is determined, and the relationship shown in Figure 6 is obtained. It is being Therefore, if the correlation between the above ratios R1 and R2 of each burner 02 (Fig. 7) and the NOx generation amount of boiler 01 is determined in advance, and the above ratios R1 and RZ are measured and determined, NOx generation due to changes in combustion conditions can be determined. Volume changes can be monitored.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように本発明によれば、(1)個別バー
ナの燃焼状態の経時変化が的GTJに把握できるので、
より理想的な燃焼状態に容易に再調整することでかでき
、ボイラ全体として、バランスのよい燃焼状態に保つこ
とができるようになる。
As explained above, according to the present invention, (1) changes over time in the combustion state of individual burners can be grasped by a target GTJ;
This can be easily readjusted to a more ideal combustion state, and the boiler as a whole can be maintained in a well-balanced combustion state.

(2)個別バーナの燃焼状態の経時変化がNOX関連の
量として把握できるので、より理想的な燃焼状態に容易
に再調整することでかでき、ボイラ全体として、NOx
に関してバランスのよい燃焼状態に保つことができるよ
うになる。
(2) Since changes over time in the combustion state of individual burners can be understood as NOx-related amounts, it is possible to easily readjust to a more ideal combustion state, and reduce the NOx emissions of the boiler as a whole.
This allows for a well-balanced combustion state to be maintained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の請求項(1)に関する一実施例の作
用説明図としての火炎温度分布図、第2図は同実施例の
作用説明図、第3図は同実施例の第2図の実験のバーナ
配置図、第4図は同実施例の温度分布計測装置のブロッ
ク図、第5図は同実施例の温度分布計測装置の作用説明
図、第6図は本発明の請求項(2)に関する一実施例の
作用説明図、第7図は従来例のボイラの全体構成図(燃
料供給ライン、空気ラインを省略)、第8図は同従来例
の全体構成図(燃料供給ラインを含む)、第9図は同従
来例の全体構成図(空気ラインを含む)である。 0!・・・ボイラ本体、   02・・・バーナ、03
・・・−次燃焼域、   04・・・二次燃焼域、05
・・・二次的に吹きこまれる空気、06・・・煙道を示
す矢印、 07・・・煙突、08・・・燃料噴射弁、 09・・・バーナ単位の空気、再循環ガス配管、1、 
2・・・火炎全側面積、 11・・・空気fL量制御ダンパ、 12・・・個別バーナ再循環ガス調節ダンパ、13・・
・個別バーナー次空気流I#JR整ダンパ、14・・・
個別バーナ二次空気流量調整ダンパ、15・・・再循環
ガス流量制御ダンパ。 代理人 弁理士 坂 間    暁 外2名 第2図 仔   ft−f+   仔 第4図 □ 又長(M宜) 高)巨部面積卒(R1,R2) 第8図
FIG. 1 is a flame temperature distribution diagram as an explanatory diagram of the operation of an embodiment related to claim (1) of the present invention, FIG. 2 is an explanatory diagram of the operation of the same embodiment, and FIG. 4 is a block diagram of the temperature distribution measuring device of the same embodiment, FIG. 5 is an explanatory diagram of the operation of the temperature distribution measuring device of the same embodiment, and FIG. 6 is a claim of the present invention. Fig. 7 is an overall configuration diagram of a conventional boiler (fuel supply line and air line omitted), and Fig. 8 is an overall configuration diagram of the conventional boiler (fuel supply line and air line omitted). FIG. 9 is an overall configuration diagram (including air lines) of the conventional example. 0! ... Boiler body, 02 ... Burner, 03
...-Secondary combustion zone, 04...Secondary combustion zone, 05
...Secondary air blown in, 06...Arrow indicating flue, 07...Chimney, 08...Fuel injection valve, 09...Air in burner unit, recirculation gas piping, 1,
2...Flame total side area, 11...Air fL amount control damper, 12...Individual burner recirculation gas regulating damper, 13...
・Individual burner next air flow I#JR damper, 14...
Individual burner secondary air flow rate adjustment damper, 15... Recirculation gas flow rate control damper. Agent Patent attorney Akira Sakama 2 persons Fig. 2 ft-f + Fig. 4 □ Matanaga (M) High School) Graduated from large area (R1, R2) Fig. 8

Claims (2)

【特許請求の範囲】[Claims] (1)複数のバーナを持つ燃焼装置において、燃焼中の
バーナ火炎の表面温度分布を所定の温度範囲毎に順次区
分し、予め同バーナが所定の燃焼状態であるとき、所定
の区分の面積が全区分の面積に占る割合を求め、運転時
に同割合を維持するよう空気流量、燃料流量および再循
環ガス量を操作することを特徴とするバーナの燃焼方法
(1) In a combustion device with multiple burners, the surface temperature distribution of the burner flame during combustion is sequentially divided into predetermined temperature ranges, and when the burner is in a predetermined combustion state, the area of the predetermined division is A burner combustion method characterized by determining the ratio of all sections to the area and manipulating the air flow rate, fuel flow rate, and recirculation gas amount so as to maintain the same ratio during operation.
(2)複数のバーナを持つ燃焼装置において、燃焼中の
バーナ火炎の表面温度分布を所定の温度範囲毎に順次区
分し、各区分の面積を求め、所定の区分の面積が全区分
の面積に占る割合を求め、予め求めておいた上記割合と
上記燃焼装置のNOx発生量との相関関係からNOx発
生量を監視するバーナの燃焼方法。
(2) In a combustion device with multiple burners, the surface temperature distribution of the burner flame during combustion is sequentially divided into predetermined temperature ranges, the area of each division is determined, and the area of the predetermined division is the area of all divisions. A combustion method for a burner, in which the amount of NOx generated is monitored from the correlation between the predetermined ratio and the amount of NOx generated by the combustion device.
JP1126733A 1989-05-22 1989-05-22 Burner burning method Expired - Fee Related JP2634240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1126733A JP2634240B2 (en) 1989-05-22 1989-05-22 Burner burning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1126733A JP2634240B2 (en) 1989-05-22 1989-05-22 Burner burning method

Publications (2)

Publication Number Publication Date
JPH02306017A true JPH02306017A (en) 1990-12-19
JP2634240B2 JP2634240B2 (en) 1997-07-23

Family

ID=14942542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1126733A Expired - Fee Related JP2634240B2 (en) 1989-05-22 1989-05-22 Burner burning method

Country Status (1)

Country Link
JP (1) JP2634240B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997010473A1 (en) * 1995-09-04 1997-03-20 Heinz Spliethoff Method of monitoring a power firing process in a power station

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623630A (en) * 1979-08-02 1981-03-06 Babcock Hitachi Kk Diagnostic method for flame in combustion device
JPS5819608A (en) * 1981-07-29 1983-02-04 Hitachi Ltd Self-controller for boiler
JPS60238613A (en) * 1984-05-11 1985-11-27 Hitachi Ltd Monitoring method for combustion state

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623630A (en) * 1979-08-02 1981-03-06 Babcock Hitachi Kk Diagnostic method for flame in combustion device
JPS5819608A (en) * 1981-07-29 1983-02-04 Hitachi Ltd Self-controller for boiler
JPS60238613A (en) * 1984-05-11 1985-11-27 Hitachi Ltd Monitoring method for combustion state

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997010473A1 (en) * 1995-09-04 1997-03-20 Heinz Spliethoff Method of monitoring a power firing process in a power station

Also Published As

Publication number Publication date
JP2634240B2 (en) 1997-07-23

Similar Documents

Publication Publication Date Title
Lu et al. Concurrent measurement of temperature and soot concentration of pulverized coal flames
Lu et al. Temperature profiling of pulverized coal flames using multicolor pyrometric and digital imaging techniques
CN102859340B (en) Optical flame sensor
US20090017406A1 (en) Combustion control system of detection and analysis of gas or fuel oil flames using optical devices
US6317205B1 (en) Method for monitoring an optical system having a front lens disposed immediately at a combustion chamber, and a device for carrying out the method
JPH0316564B2 (en)
JPH0529810B2 (en)
CN102495473A (en) Visible light and infrared light splitting system
Salinero et al. Measurement of char surface temperature in a fluidized bed combustor using pyrometry with digital camera
JPS6225934B2 (en)
Sankaranarayanan et al. Investigation of sooting flames by color-ratio pyrometry with a consumer-grade DSLR camera
Chen et al. A particle-tracking image pyrometer for characterizing ignition of pulverized coal particles
JPH02306017A (en) Combustion method for burner
CN216524101U (en) System for simultaneously measuring temperature and volume fraction of soot particulate matter
Pu et al. An automatic spectral baseline estimation method and its application in industrial alkali-pulverized coal flames
Sładek et al. Procedure for in-fly particle temperature detection under combustion conditions
JPH07133927A (en) Combustion unit controller
JPS63306310A (en) Combustion control method and combustion control device using said method
CN114216509B (en) System and method for measuring temperature and volume fraction of soot particles based on LED light source
Draper Application of two-color pyrometry to characterize the two-dimensional temperature and emissivity of pulverized-coal oxy-flames
JPH01179815A (en) Boiler combustion status monitoring device
Lu et al. Concurrent measurements of temperature and soot concentration of pulverised coal flames
JP3035389B2 (en) Combustion system and combustion evaluation device
JPS61138022A (en) Diagnosis method for combustion condition
Keyvan Diagnostics and Control of Natural Gas-Fired furnaces via Flame Image Analysis using Machine Vision & Artificial Intelligence Techniques

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees