JPS60237504A - Setting device for coordinate for operation of robot mounted on carriage - Google Patents

Setting device for coordinate for operation of robot mounted on carriage

Info

Publication number
JPS60237504A
JPS60237504A JP59093644A JP9364484A JPS60237504A JP S60237504 A JPS60237504 A JP S60237504A JP 59093644 A JP59093644 A JP 59093644A JP 9364484 A JP9364484 A JP 9364484A JP S60237504 A JPS60237504 A JP S60237504A
Authority
JP
Japan
Prior art keywords
robot
coordinate
cart
operating
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59093644A
Other languages
Japanese (ja)
Inventor
Isamu Yoshioka
勇 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59093644A priority Critical patent/JPS60237504A/en
Publication of JPS60237504A publication Critical patent/JPS60237504A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41815Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the cooperation between machine tools, manipulators and conveyor or other workpiece supply system, workcell
    • G05B19/4182Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the cooperation between machine tools, manipulators and conveyor or other workpiece supply system, workcell manipulators and conveyor only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36503Adapt program to real coordinates, software orientation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

PURPOSE:To operate the robot normally without correcting the position of a carriage by measuring the relative position to a reference plate provided at a specific position previously, and detecting the position shift of the carriage from the relative position and correcting the robot. CONSTITUTION:The NC robot body 6 is mounted on the carriage 1, run along the guide line of a run path, and stopped in front of objective facilities 12 such as a machine tool, and the hand 63, etc., of the robot body 6 are operated to perform specific operation. In this case, if the carriage 1 has a shift in position from a normal stop position, the robot fails in operating the objective facilities 12. For the purpose, the position shift of the carriage 1 is measured from the relative position relation between the reference rod 11a of the reference plate 11 and carriage 1 and the operation quantity of the operation program of the robot hand 63 stored in the memory of a numerical controller 70 is corrected according to the shift and the corrected operation quantity is commanded to the robot hand 63 to operate the objective facilities 12 normally.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

本発明は、数値制御ロボットを塔載した移動台車を該ロ
ボットが操作すべき対象設備のかたわらの所定位置近傍
に停止させた状態で前記対象設備をロボットにより操作
する際の数値制御のための座標を設定する装置に関する
The present invention provides coordinates for numerical control when operating target equipment by a robot with a movable trolley carrying a numerically controlled robot stopped near a predetermined position beside the target equipment to be operated by the robot. Regarding the device for setting.

【従来技術とその問題点】[Prior art and its problems]

一般にこの種の台車は9部品置場と工作機械との間、な
いしは対象設備間を走行し、塔載ロボットは工作機械へ
部品を供給したり、対象設備を操作したりするのに使わ
れる。ところが、台車の通常の停止状態においては、対
象設備との間に数1ないしは数度の位置ずれが生じ、こ
の位置ずれをロボットに補正してやらないとロボットは
正常動作ができなくなるなどの問題があった。
Generally, this type of trolley travels between a parts storage area and a machine tool, or between target equipment, and a tower-mounted robot is used to supply parts to the machine tool or operate the target equipment. However, when the cart is in a normal stopped state, there is a positional deviation of several degrees or more between it and the target equipment, and unless the robot corrects this positional deviation, the robot will not be able to operate normally. Ta.

【発明の目的】[Purpose of the invention]

本発明は上記のような点に鑑み、台車があたかも正常位
置停止した如く、ロボットにハンドリング動作させるこ
とができる台車塔載ロボットの操作用座標設定装置を提
供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, it is an object of the present invention to provide a coordinate setting device for operating a cart-mounted robot, which allows the robot to perform handling operations as if the cart had stopped at a normal position.

【発明の要点】[Key points of the invention]

本発明によれば上記の目的は、数値制御ロボットを搭載
した移動台車を該ロボットが操作すべき対象設備のかた
わらの所定位置近傍に停止させた状態で前記対象設備を
ロボットにより操作する際の数値制御のための座標を設
定する装置であって、はぼ垂直方向に配された基準面と
、該基準面内の水平方向の所定位置に定められたほぼ垂
直な基準線を有し、対象設備に対して固定された基準板
と、台車に対して固定された水平面内の二つの座標軸の
内の一方の方向において互いに隔てられた測定点から前
記基準板の基準面までの他方の座標方向の距離を台車の
停止状態でそれぞれ測定する第1および第2の測定器と
、前記両座標軸の原点に対する前記基準板の基準線の前
記一方の座標軸方向の位置座標を台車の停止状態で測定
する第3の測定器と、前記第1.第2および第3の測定
器による測定結果から台車の停止位置座標およびその前
記基準板の基準面からの傾きを算して数値制御装置にロ
ボットの操作用の設定座標として与える座標算出手段と
を備えたことによって達せられる。
According to the present invention, the above object is to obtain a numerical value when operating target equipment by the robot while a movable cart equipped with a numerically controlled robot is stopped near a predetermined position beside the target equipment to be operated by the robot. A device for setting coordinates for control, which has a nearly vertical reference plane and a nearly perpendicular reference line set at a predetermined position in the horizontal direction within the reference plane. and a reference plate fixed to the trolley, and a coordinate direction of the other from measurement points separated from each other in one direction of two coordinate axes in a horizontal plane fixed to the trolley to the reference plane of the reference plate. a first and a second measuring device each measuring a distance with the cart in a stopped state; and a first measuring device measuring a distance in the direction of the one coordinate axis of the reference line of the reference plate with respect to the origin of both coordinate axes with the cart in a stopped state. No. 3 measuring device; coordinate calculating means that calculates the stop position coordinates of the cart and its inclination from the reference plane of the reference plate from the measurement results by the second and third measuring instruments, and provides the calculated coordinates to the numerical control device as set coordinates for operating the robot; This can be achieved by being prepared.

【発明の実施例】[Embodiments of the invention]

以下この発明の一実施例を図面に基づいて説明する。N
Cロボット塔載台車の構成を第1図に示し、台車走行と
停止位置との関係を第2図に示す。 第1図および第2図において、NCロボットの本体6は
、胴体部61と旋回軸64および数値制御装置70の3
つの要部に大別されている。胴体部にはハンドリング機
構62を備えたロボットハンド63が伸縮自在に設けら
れ、数値制御装置70からの指令によってロボットハン
ド63は旋回軸64上を旋回、ないしは上下動し、所定
位置に整列された部品を取ることも、また対象設備を操
作することもできるようになっている。 台車1はこのNCロボット本体6を塔載し、4隅にキャ
スタ4を、中央部分に2個の駆動輪3を備えるとともに
、対向する2組の方向検出センサ13を備え、走行路に
配設された誘導M65に沿って66矢視方向に走行し、
スイッチ67から減速指令を受けて走行速度を減速し、
続いてスイッチ68から停止指令を受けて工作機械など
の対象設備12の前で停止するようになっている。 第3図は台車停止位置の要部を示す図で、台車1は停止
する“と、4本踏張足2を出して地面に水平に定着され
るようになっている。そして、対象設備12の前には対
象設備12と一定の距離Sをおいた位置に走行路と垂直
に基準板11が設けられており、基準板11の地面に対
して垂直側の基準面には第4図に示すような突条の基準
線11aが設けられている。X−X’ 、 Y4’ は
正常な停止位置に設定された互いに直交する座標軸(以
下仮想軸と呼ぶ)で、この仮想軸と基準板11とは次の
ような関係になっている。すなわち、基準板11は仮想
軸のY−Y’軸とは平行で、y−y’軸からmの距離に
ある。また基準線11aは仮想軸のχ−X゛軸からEの
距離にある。X−χ+、、−y+軸は台車1に設定され
た互いに直交する座標軸(以下基準軸と呼ぶ)で、零点
7はロボットの旋回軸64の軸心上にあり、この基準軸
のX−X’ 。 y−y軸と、仮想軸のX−X’ 、 Y−Y’軸とにお
いて、×−×°軸とX−X”軸、 y−y’軸とY−Y
’軸とがともに一致すれば台車1の停止位置ずれは零と
なる関係になる。 ところが、台車1の通常の停止状態においては、正常な
停止位置との間において、例えば第3図のx−x’、 
y−y’、 X−X’+Y−Y’ との関係で示すよう
な位置ずれが生ずる。従って、この位置ずれを測定し、
NCロボット6に補正してやらないと、ロボットハンド
63は所定位置に整列された部品を取ることも、また対
象設備を操作することもできなくなる。 この位置ずれを測定する手段の具体的構成を第5図に示
し、これを説明する。20は基準軸のX−11’軸から
y−y’軸方向にLの距離をおいた位置で、y−y°軸
から基準板11までの距離をx−x“軸に平行に測定す
る第1の測定器である。30は基準軸のy−y”軸から
基準板11までの距離をに−X”軸方向に測定する第2
の測定器である。この第1.第2の測定器20および3
0は、それぞれ基準板11に突き当てる突当部材8.9
と、突当部材を駆動する駆動手段21゜31と、突当部
材の進退を測定するエンコーダ22a。 32aとからなり駆動手段21.31は突当部材8.9
に設けられたラック23.33と噛み合う歯車機構とモ
ータ22.32であり、エンコーダはモータ22.32
それぞれ付属している。40は基準軸のx−x’軸から
基準線11aまでの距離をy−y″軸に平行に測定する
第3の測定器で、この第3の測定器は、突当部材10と
、突当部材を基準@11に向けて突き当てるようにx−
x’軸に平行に進退させる第1の駆動手段45と、突当
部材の先端が基準板に突き当ったことを検出する検出手
段44と、突当部材をy−y”軸に平行に基準板の基準
線11aまでの距離を測定する第2の駆動手段41と、
エンコーダ42aとからなり、第1の駆動手段45がエ
アシリンダであり、第2の駆動手段41がエアシリンダ
45の支持体に設けられたラック43と噛み合う歯車機
構とモータ42であり、エンコーダはモータ42に付属
している。また、突当部材の検出手段44はタッチセン
サである。モータ22.32および42は外部抵抗を入
れた小型モータで、突当部材が基準板の基準面ないしは
突条の基準線11aに突き当って停止しても過大電流が
流れることなく、外力を加えれば突当部材を押し戻すこ
とができる程度の出力のものである。 座標設定装置のブロック図を第6図に、フローチャート
を第7図に示し、台車lが正常な停止位置に停止した状
態を第8図に、台車1が正常な停止位置から外ずれて停
止した状態を第9図に示し、ロボットの操作用座標の設
定方法を説明する。座標設定装置には、制御の中枢であ
るコンピュータ41と、ROM42.RAM43および
入出力インクフエース44a 、 44bなどの制御機
能が格納されている。また、RAM43には、一時記憶
メモリ、座標を測定するための測定用プログラム領域の
メモリが格納され、台車1が正常位置に停止した状態に
おいて、2つの突当部材8および9が基準板に突き当て
られたときのy−y’軸から基準板11までの距離m、
nと、突当部材10が基準線11aに突き当てられたと
きのχ−X゛軸から基準線11aまでの距l1111が
記憶されている。従って、台車1が正常な位置に停止し
た際には、ロボットは数値制御装置70領域のメモリに
記憶されたプログラムに従って動作すれば、所定位置に
整列された部品を取ることも、対象設備を操作すること
もできるようになっている。 ところが、上述したように台車1の通常の停止状態にお
いては、正常な停止位置との間に位置ずれが生ずる。従
って、台車lが停止すると、モータ22.32およびエ
アシリンダ45が操作され、モータ22.32に付属す
るエンコーダ22a、 32aからのパルス信号がカウ
ンタ22b、 32bによってカウントされる。カウン
トが終わると突当部材8.9の当接が確認されモータ2
2.32が停止する。同時に麟゛。 noが測定される。一方、突当部材10の基準板11の
当接がタッチセンサ44によって確認されると、モータ
42が操作されて突当部材10が再び基準板の基準線1
1aに突き当てられ、モータ42に付属するエンコーダ
42aからのパルス信号がカウンタ42bによってカウ
ントされる。このカウントが終わると突当部材10の当
接が確認されてモータ42が停止し、loが測定される
。そして、突当部材8,9およびlOは元の位置に復帰
する。また、計測値+s’、 n’。 loは一坦一時記憶メモリーに記憶され、コンピュータ
41は計測用プログラム領域のメモリーに記憶されたプ
ログラムから位置ずれΔX ΔYおよび傾斜角θを計算
する。すなわち、m’、 n’、Lとの間からθがめら
れ、θがめられるとΔX。 Δx”’n’cosθ−n ! ΔY=n’5lnsθ+1−− COSθ 上述のようにΔX、ΔYおよびθがめられると、コンピ
ュータ41は数値制御袋W70sJl域のメモリーに記
憶されたロボットハンド63の動作プログラムにその動
作量を補正し、補正後の動作量がロボットに指令される
。これにより、ロボットハンド63は、台車1が正常に
停止したごとく所定位置に整列された部品を取ることも
、対象設備を操作することもできる。 第10図に本発明の他の実地例を示し1、第1図ないし
第9図に示すものと同じ構成要素には同し符号を付して
その説明を省略する。この方法は、上述の第2の測定器
30と第3の測定器40とを合併したもので、50がそ
の測定器である。測定器50は、基準板11に突き当て
られる突当部材59と、突当部材59に設けられたラッ
ク53と噛み合う歯車機構と、歯車機構を駆動するモー
タ32と、突当部材59を支持する支持体の突出部に設
けられたラック55と噛み合う歯車機構と、歯車機構を
駆動するモータ42とからなり、エンコーダ32a、4
2aがモータ32.42にそれぞれ付属している。従っ
て、台車1が停止すると、突当部材8および9が基準板
11に突き当てられ、それぞれy−y’軸から基準板1
1までの距離11Zfl’が測定される。次いで、モー
タ42が操作され、突当部材59が突条の基準線11a
に当接される。 X−X’軸から基準線11aまでの距離l°が測定され
る。このw’、 n’、1°の測定値から台車1の位置
ずれΔX、ΔY、θを検出するようにしたものである。 また、測定器50を用い、順次3点を測定して台車1の
位置ずれΔX、ΔY、θを検出してもよい。 尚、上述した実施例においては、突当部材8゜9および
10が基準板11に当接する測定器につき述べたが、本
発明はこれに限らず光学的測定器を用いてもよい。また
、台車に設定された座標軸は極座標であってもよい。
An embodiment of the present invention will be described below based on the drawings. N
The configuration of the C-robot tower-mounted cart is shown in FIG. 1, and the relationship between the cart traveling and the stop position is shown in FIG. In FIGS. 1 and 2, the main body 6 of the NC robot includes a body 61, a rotating shaft 64, and a numerical control device 70.
It is divided into two main parts. A robot hand 63 equipped with a handling mechanism 62 is extendably provided in the body, and according to commands from a numerical control device 70, the robot hand 63 rotates or moves up and down on a rotation axis 64 and is aligned at a predetermined position. It is now possible to take parts and operate the target equipment. The trolley 1 carries the NC robot main body 6, has casters 4 at four corners, two drive wheels 3 at the center, and is equipped with two sets of direction detection sensors 13 facing each other, and is arranged on the running path. The vehicle travels in the direction of arrow 66 along the guided guidance M65,
Upon receiving a deceleration command from the switch 67, the traveling speed is decelerated.
Subsequently, upon receiving a stop command from the switch 68, the machine stops in front of the target equipment 12, such as a machine tool. FIG. 3 is a diagram showing the main part of the trolley stopping position. When the trolley 1 stops, it is fixed horizontally on the ground by extending four tread legs 2. Then, the target equipment 12 In front of the target equipment 12, a reference plate 11 is installed perpendicular to the running path at a position a certain distance S away from the target equipment 12. A reference line 11a of the protrusion as shown is provided. 11 has the following relationship. That is, the reference plate 11 is parallel to the virtual axis Y-Y' axis and is at a distance of m from the y-y' axis. Also, the reference line 11a is parallel to the virtual axis Y-Y' axis. It is located at a distance of E from the χ-X′ axis of the axis. on the axis of this reference axis, X-X', and the virtual axis X-X', Y-Y', y-y' axis and Y-Y
'If the axes coincide, the deviation of the stop position of the truck 1 will be zero. However, when the trolley 1 is in a normal stopped state, for example, x-x' in FIG. 3,
A positional shift occurs as shown by the relationship y-y', X-X'+Y-Y'. Therefore, by measuring this positional deviation,
Unless the NC robot 6 is corrected, the robot hand 63 will not be able to pick up parts aligned at predetermined positions or operate the target equipment. A specific configuration of the means for measuring this positional deviation is shown in FIG. 5, and will be explained. 20 is a position a distance L from the reference axis X-11' axis in the y-y' axis direction, and the distance from the y-y° axis to the reference plate 11 is measured in parallel to the x-x'' axis. The first measuring device 30 is a second measuring device that measures the distance from the reference axis y-y" axis to the reference plate 11 in the -X" axis direction.
It is a measuring instrument. This first. Second measuring instruments 20 and 3
0 are abutment members 8 and 9 that abut against the reference plate 11, respectively.
, a drive means 21 31 for driving the abutment member, and an encoder 22a for measuring the forward and backward movement of the abutment member. 32a, the driving means 21.31 is an abutment member 8.9
The encoder is a gear mechanism and a motor 22.32 that mesh with a rack 23.33 provided in the motor 22.32.
Each is included. A third measuring device 40 measures the distance from the reference axis x-x' axis to the reference line 11a in parallel to the y-y'' axis. x- so that the member is butted against the reference @11
A first driving means 45 for moving the abutment member forward and backward parallel to the x' axis, a detection means 44 for detecting that the tip of the abutment member abuts against a reference plate, and a first driving means 45 for moving the abutment member forward and backward in parallel to the y-y'' axis. a second driving means 41 for measuring the distance to the reference line 11a of the plate;
The first driving means 45 is an air cylinder, the second driving means 41 is a gear mechanism and a motor 42 that mesh with a rack 43 provided on the support of the air cylinder 45, and the encoder is a motor 42a. It is attached to 42. Further, the detection means 44 of the abutment member is a touch sensor. The motors 22, 32 and 42 are small motors equipped with an external resistor, and even if the abutment member hits the reference surface of the reference plate or the reference line 11a of the protrusion and stops, no excessive current will flow and external force can be applied. The output is enough to push back the abutting member. A block diagram of the coordinate setting device is shown in Fig. 6, a flowchart is shown in Fig. 7, and Fig. 8 shows a state in which the trolley 1 has stopped at its normal stopping position, and a state in which the trolley 1 has stopped at a position deviated from its normal stopping position. The state is shown in FIG. 9, and a method of setting the operating coordinates of the robot will be explained. The coordinate setting device includes a computer 41, which is a control center, and a ROM 42. Control functions such as a RAM 43 and input/output ink faces 44a and 44b are stored. In addition, the RAM 43 stores a temporary memory and a memory for a measurement program area for measuring coordinates, and when the trolley 1 is stopped at the normal position, the two abutment members 8 and 9 abut against the reference plate. The distance m from the y-y' axis to the reference plate 11 when applied,
n and a distance l1111 from the χ-X′ axis to the reference line 11a when the abutment member 10 abuts against the reference line 11a. Therefore, when the trolley 1 stops at a normal position, the robot can pick up parts aligned at a predetermined position or operate the target equipment by operating according to the program stored in the memory of the numerical control device 70 area. It is also now possible to do so. However, as described above, when the trolley 1 is in a normal stopped state, a positional deviation occurs between it and the normal stopped position. Therefore, when the truck I stops, the motor 22.32 and the air cylinder 45 are operated, and the pulse signals from the encoders 22a, 32a attached to the motor 22.32 are counted by the counters 22b, 32b. When the count ends, the contact of the abutment member 8.9 is confirmed and the motor 2
2.32 stops. At the same time. no is measured. On the other hand, when the contact of the abutment member 10 with the reference plate 11 is confirmed by the touch sensor 44, the motor 42 is operated and the abutment member 10 is moved again to the reference line of the reference plate.
1a and a pulse signal from an encoder 42a attached to the motor 42 is counted by a counter 42b. When this count ends, contact of the abutting member 10 is confirmed, the motor 42 is stopped, and lo is measured. Then, the abutment members 8, 9 and lO return to their original positions. Also, the measured value +s', n'. lo is stored in a temporary storage memory, and the computer 41 calculates the positional deviation ΔX ΔY and the inclination angle θ from the program stored in the memory of the measurement program area. That is, θ is determined between m', n', and L, and when θ is determined, ΔX is obtained. Δx'''n' cos θ-n! ΔY=n'5lns θ+1-- COS θ When ΔX, ΔY, and θ are determined as described above, the computer 41 executes the operation program of the robot hand 63 stored in the memory of the numerical control bag W70sJl area. The amount of movement is corrected, and the corrected amount of movement is commanded to the robot.As a result, the robot hand 63 can pick up the parts aligned at the predetermined position as if the trolley 1 had stopped normally, or pick up the parts aligned at the predetermined position as if the cart 1 had stopped normally. Fig. 10 shows another practical example of the present invention.1 The same components as shown in Figs. 1 to 9 are given the same reference numerals and their explanations are omitted. In this method, the second measuring device 30 and the third measuring device 40 described above are combined, and 50 is the measuring device. 59, a gear mechanism that meshes with the rack 53 provided on the abutment member 59, a motor 32 that drives the gear mechanism, and a gear mechanism that meshes with the rack 55 provided on the protrusion of the support that supports the abutment member 59. and a motor 42 that drives a gear mechanism, and encoders 32a, 4
2a are attached to the motors 32 and 42, respectively. Therefore, when the truck 1 stops, the abutting members 8 and 9 abut against the reference plate 11, and each
A distance 11Zfl' to 1 is measured. Next, the motor 42 is operated, and the abutment member 59 aligns with the reference line 11a of the protrusion.
is brought into contact with. A distance l° from the XX' axis to the reference line 11a is measured. The positional deviations ΔX, ΔY, and θ of the cart 1 are detected from the measured values of w', n', and 1°. Alternatively, the positional deviations ΔX, ΔY, and θ of the trolley 1 may be detected by sequentially measuring three points using the measuring device 50. In the above-mentioned embodiment, a measuring device in which the abutment members 8° 9 and 10 are in contact with the reference plate 11 has been described, but the present invention is not limited to this, and an optical measuring device may be used. Further, the coordinate axes set on the cart may be polar coordinates.

【発明の効果】【Effect of the invention】

本発明は上記のように、予め所定位置に設けられた基準
板との相対位置を測定し、該測定値から正常な停止位置
との間の台車の位置ずれを検出してロボットに補正する
ようにしたことにより、部品置場と工作機械間、ないし
は設備間を走行させ、台車が停止した際台車の位置を修
正することなくロボ7)が正常動作できる能率的で経済
的な台車搭載ロボットの操作用座標設定装置を提供する
ことができる。
As described above, the present invention measures the relative position with respect to a reference plate provided in advance at a predetermined position, detects the positional deviation of the trolley between the normal stop position from the measured value, and corrects it in the robot. This enables efficient and economical operation of the trolley-mounted robot, which allows the robot to travel between parts storage areas and machine tools or equipment, and allows the robot to operate normally without having to correct the position of the trolley when the trolley stops. A coordinate setting device for use can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第9図は本発明の実施例を示し、第1図は
NCロボット塔載台車の構成を示す正面図、第2図は台
車歩行と停止位置との関係を示す平面図、第3図は台車
停止位置要部の平面図、第4図は基準板の平面図、第5
図は台車要部の平面図、第6図は座標設定装置のブロッ
ク図、第7図は座標設定方法を示すフローチャート、第
8図は台車を正常な停止位置に停止して示す構成図、第
9図は台車を正常な停止位置から外ずして示す構成図、
第10図は本発明の他の実施例を示す台車要部の平面図
である。 1:台車、 8,9.10:突当部材、 11:基準板
、 11a:基準線、20:第1の測定器、21゜31
8駆動手段、22a、32a、42a :エンコーダ、
30+第2の測定器、40:第3の測定器、41:第2
の駆動手段、44:検出手段、 45:第1の駆動手段
1、−xl、 y−yl 、座標軸。 第1図 2 第2図 第3図 第4図 ゾ 第5図 第6図 第7図 y゛ y′ 第8図
1 to 9 show embodiments of the present invention, FIG. 1 is a front view showing the configuration of the NC robot tower-mounted cart, FIG. 2 is a plan view showing the relationship between the cart walking and the stop position, and FIG. Figure 3 is a plan view of the main part of the bogie stop position, Figure 4 is a plan view of the reference plate, and Figure 5
6 is a block diagram of the coordinate setting device, FIG. 7 is a flowchart showing the coordinate setting method, FIG. 8 is a configuration diagram showing the cart stopped at the normal stop position, and FIG. Figure 9 is a configuration diagram showing the trolley when it is removed from its normal stopping position.
FIG. 10 is a plan view of the main parts of a truck showing another embodiment of the present invention. 1: Trolley, 8, 9. 10: Abutting member, 11: Reference plate, 11a: Reference line, 20: First measuring device, 21°31
8 driving means, 22a, 32a, 42a: encoder;
30 + second measuring device, 40: third measuring device, 41: second
driving means, 44: detection means, 45: first driving means 1, -xl, y-yl, coordinate axes. Figure 1 2 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 y゛y' Figure 8

Claims (1)

【特許請求の範囲】 1)数値制御ロボットを塔載した移動台車を該ロボット
が操作すべき対象設備のかたわらの所定位置近傍に停止
させた状態で前記対象設備をロボットにより操作する際
の数値制御のための座標を設定する装置であって、はぼ
垂直方向に配された基準面と、該基準面内の水平方向の
所定位置に定められたほぼ垂直な基準線とを有し、対象
設備に対して固定された基準板と、台車に対して固定さ
れた水平面内の二つの座標軸の内の一方の方向において
互いに隔てられた測定点から前記基準板の基準面までの
他方の座票軸方向の距離を台車の停止状態でそれぞれ測
定する第1および第2の測定器と、前記真座標軸の原点
に対する前記基準板の基準線の前記一方の座票軸方向の
位置座標を台車の停止状態で測定する第3の測定器と、
前記第1、第2および第3の測定器による測定結果から
台車の停止位置座標およびその前記基準板の基準面から
の傾きを算出して数値制御装置にロボットの操作用の設
定座標として与える座標算出手段とを備えてなる台車塔
載ロボットの操作用座標設定装置。 2、特許請求の範囲第1項記載の装置において、座標算
出手段が台車の停止位置を表す座標と基準板に対し台車
を停止させるべき基準位置を表す基準座標との差を数値
制御装置に与えることを特徴をする台車塔載ロボットの
操作用座標設定装置。 3)特許請求の範囲第1項記載の装置において、台車に
固定された座標軸が直交座標軸であることを特徴とする
台車塔載ロボットの操作用座標設定装置。 4)特許請求の範囲第1項記載の装置において、第1お
よび第2の測定器が棒状の突当部材と、該突当部材の先
端を基準板に向けて突当てるよう他方の座標軸方向に沿
って進退させる駆動手段と、突当部材の進退を測定する
エンコーダとを備えてなることを特徴とする台車塔載ロ
ボットの操作用座標種設定装置。 5)特許請求の範囲第1項記載の装置において、基準板
の基準線が基準面から突出された突条の側面により形成
され第3の測定器が棒状の突当部材と、該突当部材の先
端を基準板に向けて突き当てるよう他方の座標軸方向に
沿って進退させる第1の駆動手段と、突当部材の先端が
基準板に突当ったことを検出する突当検出手段と、該突
当検出手段の検出信号に基づき突当部材を一方の座標軸
に沿って駆動する第2の駆動手段と、突当部材の一方の
座標軸方向の進退距離を測定するエンコーダとを備えて
なることを特徴とする台車塔載ロボットの操作用座標設
定装置。 6)特許請求の範囲第5項記載の装置において、第3の
測定器がさらに突当部材の他方の座標軸方向の進退距離
を測定する別のエンコーダを備え、該別のエンコーダか
らの進退距離信号が第1ないしは第2の測定器の測定値
信号として用いられることを特徴とする台車塔載ロボッ
トの操作用座標設定装置。 7)特許請求の範囲第1項記載の装置において、第1.
第2ないしは第3の測定器として光学的測定器が用いら
れることを特徴とする台車塔載ロボットの操作用座標設
定装置。 8)特許請求の範囲第1項記載装置において、台車に固
定された座標軸として極座標軸が用いられることを特徴
とする台車塔載ロボットの操作用座標設定装置。 9)特許請求の範囲第1項記載の装置において、ロボッ
トが回動操作形ロボットであり、該回動操作軸としての
ポスト軸が座標軸の原点を通るように選ばれたことを特
徴とする台車塔載ロボットの操作用座標設定装置。
[Scope of Claims] 1) Numerical control when the target equipment is operated by the robot in a state where a movable trolley carrying the numerically controlled robot is stopped near a predetermined position beside the target equipment to be operated by the robot. A device for setting coordinates for a target facility, which has a reference plane arranged in a nearly vertical direction and a nearly vertical reference line set at a predetermined position in the horizontal direction within the reference plane. a reference plate fixed to the carriage, and the other seat axis from measurement points separated from each other in one direction to the reference plane of the reference plate among two coordinate axes in a horizontal plane fixed to the trolley. first and second measuring instruments each measuring the distance in the direction when the trolley is in a stopped state; and the positional coordinates of the reference line of the reference plate in the one seat axis direction relative to the origin of the true coordinate axis are measured in the stopped state of the trolley. a third measuring device that measures with;
The coordinates of the stop position of the cart and its inclination from the reference plane of the reference plate are calculated from the measurement results by the first, second and third measuring instruments, and the coordinates are provided to the numerical control device as set coordinates for operating the robot. A coordinate setting device for operating a cart-mounted robot, comprising calculation means. 2. In the apparatus according to claim 1, the coordinate calculation means provides the numerical control device with the difference between the coordinates representing the stop position of the cart and the reference coordinates representing the reference position at which the cart should be stopped with respect to the reference plate. A coordinate setting device for operating a cart-mounted robot. 3) A coordinate setting device for operating a cart-mounted robot according to claim 1, wherein the coordinate axes fixed to the cart are orthogonal coordinate axes. 4) In the device according to claim 1, the first and second measuring instruments are arranged in the coordinate axis direction of the other so as to abut the rod-shaped abutment member with the tip of the abutment member toward the reference plate. 1. A coordinate type setting device for operating a cart-mounted robot, comprising: a drive means for moving the abutting member forward and backward along the same direction; and an encoder for measuring the movement of the abutting member. 5) In the device according to claim 1, the reference line of the reference plate is formed by the side surface of the protrusion protruding from the reference surface, and the third measuring device includes a rod-shaped abutment member and the abutment member. a first driving means for moving the abutment member forward and backward along the other coordinate axis direction so as to butt the tip of the abutment member toward the reference plate; a butt detection means for detecting that the tip of the abutting member has abutted against the reference plate; The second driving means drives the abutment member along one coordinate axis based on the detection signal of the abutment detection means, and the encoder measures the advance/retreat distance of the abutment member in the direction of one of the coordinate axes. Features: A coordinate setting device for operating a trolley-mounted robot. 6) In the device according to claim 5, the third measuring device further includes another encoder for measuring the advance and retreat distance of the abutment member in the direction of the other coordinate axis, and receives the advance and retreat distance signal from the another encoder. 1. A coordinate setting device for operating a cart-mounted robot, characterized in that: is used as a measurement value signal of a first or second measuring device. 7) In the device according to claim 1, the first.
A coordinate setting device for operating a cart-mounted robot, characterized in that an optical measuring device is used as the second or third measuring device. 8) A coordinate setting device for operating a cart-mounted robot according to claim 1, characterized in that a polar coordinate axis is used as the coordinate axis fixed to the cart. 9) The device according to claim 1, wherein the robot is a rotating operation type robot, and the post axis as the rotation operation axis is selected to pass through the origin of the coordinate axes. Coordinate setting device for operating tower-mounted robots.
JP59093644A 1984-05-10 1984-05-10 Setting device for coordinate for operation of robot mounted on carriage Pending JPS60237504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59093644A JPS60237504A (en) 1984-05-10 1984-05-10 Setting device for coordinate for operation of robot mounted on carriage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59093644A JPS60237504A (en) 1984-05-10 1984-05-10 Setting device for coordinate for operation of robot mounted on carriage

Publications (1)

Publication Number Publication Date
JPS60237504A true JPS60237504A (en) 1985-11-26

Family

ID=14088072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59093644A Pending JPS60237504A (en) 1984-05-10 1984-05-10 Setting device for coordinate for operation of robot mounted on carriage

Country Status (1)

Country Link
JP (1) JPS60237504A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191904A (en) * 1986-02-19 1987-08-22 Shinko Electric Co Ltd Position correction method for robot loaded on unmanned carrier
JPS62292376A (en) * 1986-06-11 1987-12-19 東京エレクトロン株式会社 Unmanned cart
JPH0341505A (en) * 1989-07-10 1991-02-22 Amada Co Ltd Method and device for correcting squareness of teaching program
KR980013583A (en) * 1996-07-31 1998-04-30 원본미기재 Robot Mounter and Core Slider Installation Method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191904A (en) * 1986-02-19 1987-08-22 Shinko Electric Co Ltd Position correction method for robot loaded on unmanned carrier
JPS62292376A (en) * 1986-06-11 1987-12-19 東京エレクトロン株式会社 Unmanned cart
JPH0341505A (en) * 1989-07-10 1991-02-22 Amada Co Ltd Method and device for correcting squareness of teaching program
KR980013583A (en) * 1996-07-31 1998-04-30 원본미기재 Robot Mounter and Core Slider Installation Method

Similar Documents

Publication Publication Date Title
US4423998A (en) Gripping device
CN111278610A (en) Method and system for operating a mobile robot
WO1989006174A1 (en) Laser device for three-dimensional machining
JPH0379157B2 (en)
US5576947A (en) Robot hallway traveler
JP2787891B2 (en) Automatic teaching device for laser robot
US4179602A (en) Method and system of velocity control for automatic welding apparatus
JPH0895638A (en) Travel controller for mobile working robot
JPS60237504A (en) Setting device for coordinate for operation of robot mounted on carriage
JP2704266B2 (en) Travel control device for automatic guided vehicles
JPH0146276B2 (en)
JP2000132229A (en) Travel controlling method for movable body
JPH03189805A (en) Method and device for automatic steering vehicle
JPH01245108A (en) Calibrating method for work positioning device
JPH052455B2 (en)
JPH0437736Y2 (en)
JP2602065B2 (en) Travel position control device for self-propelled vehicles
JPS58145368A (en) Fillet copying welding device
JP2741411B2 (en) Precise stopping method for omnidirectional vehicles
KR20010099139A (en) Locomotion Control and Torch Slider Control of Mobile Robot using High Speed Rotating Arc Sensor for Lattice Type Weld Line
JPH077303B2 (en) Robot teaching method
JPS63191552A (en) Numerically controlled (nc) machine tool equipped with measurement probe error compensation function
JP2602064B2 (en) Travel position control device for self-propelled vehicles
JP3022445B2 (en) Positioning robot system and robot positioning method
JPH0439711A (en) Automatic marking device