JPS60237339A - Apparatus for evaluating optical circuit - Google Patents

Apparatus for evaluating optical circuit

Info

Publication number
JPS60237339A
JPS60237339A JP9401084A JP9401084A JPS60237339A JP S60237339 A JPS60237339 A JP S60237339A JP 9401084 A JP9401084 A JP 9401084A JP 9401084 A JP9401084 A JP 9401084A JP S60237339 A JPS60237339 A JP S60237339A
Authority
JP
Japan
Prior art keywords
light
optical circuit
optical
wavelength
scattered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9401084A
Other languages
Japanese (ja)
Inventor
Akira Mita
三田 陽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP9401084A priority Critical patent/JPS60237339A/en
Publication of JPS60237339A publication Critical patent/JPS60237339A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/335Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using two or more input wavelengths

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To effectively perform the evaluation of an optical circuit including a light wave guide, by mounting a means for effectively connecting oscillation light to the optical circuit, a means for detecting the transmitted light of the optical circuit and a means for detecting light laterally scattered in the optical circuit. CONSTITUTION:Oscillation light 2 with a wavelength of 1.06mum from a Nd:YAG laser 1 is guided to a single mode silica fiber 4 through an optical coupling system 3 and induction Raman scattered light 5 obtained from the other end of the fiber is guided to an optical circuit 7 having a light wave guide through the other one light coupling system 6. The transmitted light 8 emitted from said optical circuit 7 is spectrally divided by a spectrometer 9 and detected by a Ge light detector 10. The scattered light 11 generated in the optical circuit 7 is divided spectrally by an interference filter 12 and detected by the other one Ge light detector 13. By synthesizing the result in each wavelength by this method, the characteristic of the light wave guide can be evaluated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は新規な構成を有する光回路評価装置に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an optical circuit evaluation device having a novel configuration.

(従来技術とその問題点) 最近にいたシ、光通信をはじめとする光応用システム技
術の急速な進展に伴い、受動光導波路を含む光回路に対
する関心が高まっている。かかる光回路にはガラスを材
料にしたもの、あるいはGaAs p InGaAsP
などすΦ4.−v族化合物半導体あるいはその混晶を利
用したものがあるが、いずれも1次元あるいは2次元の
光閉じ込め構造を有していて、分岐・結合など受動的な
目的、あるいはスイッチング・交換など制御的な目的に
利用されている。各種システムにおける性能および信頼
性に対する要請が高度化するに及んでかかる光回路に対
しても同様な要請が強まシつつある。
(Prior Art and its Problems) With the recent rapid progress in optical application system technology including optical communications, interest in optical circuits including passive optical waveguides is increasing. Such optical circuits include those made of glass or GaAs p InGaAsP.
etc.Φ4. -There are products using group V compound semiconductors or their mixed crystals, but all of them have a one-dimensional or two-dimensional optical confinement structure, and are used for passive purposes such as branching and coupling, or for control purposes such as switching and exchange. It is used for a purpose. As demands for performance and reliability in various systems become more sophisticated, similar demands are also becoming stronger for optical circuits.

光回路なかんずく光導波路においては、損失?モード特
性9介散特性など多様なものが存在するが、特に最近で
は制御的な目的に使用するのに適合した単一モードでモ
ード変換などの問題がすくなく、損失の低い光導波路に
対する要請が強まっている。
Loss in optical circuits, especially in optical waveguides? There are various types of optical waveguides, such as mode characteristics 9 and interstitial characteristics, but recently there has been an increasing demand for optical waveguides with low loss due to the fact that problems such as mode conversion are less likely to occur in a single mode suitable for use for control purposes. ing.

かかる光回路の評価方法としては、従来V−ザ光を用い
るか、あるいはタングステン・ランプなど非干渉性の光
源を用いて行われていたが、前者の場合単一の波長の測
定しか可能でなく、後者の場合は光回路に対する結1合
が極めて困難である欠点が避けられなかった。しかるに
光導波路を含むして測定する必要がしばしば生じ、かか
る目的のためには、光導波路との結合が容易でしかもス
ペクトル幅の広い光源ならびに測定装置の出現が要望さ
れていた。従来から存在するダイ・レーザはこの目的に
対してスペクトル幅ならびに取シ扱いの上充分とはいえ
なかった。
Conventionally, such optical circuits have been evaluated using V-za light or incoherent light sources such as tungsten lamps, but in the former case, only a single wavelength can be measured. However, in the latter case, the drawback that coupling to an optical circuit is extremely difficult cannot be avoided. However, it is often necessary to carry out measurements by including an optical waveguide, and for this purpose, there has been a demand for a light source and measurement device that can be easily coupled to an optical waveguide and has a wide spectrum width. Conventionally existing dye lasers have not been sufficient for this purpose in terms of spectral width and handling.

(発明の目的) 本発明は、従来の光回路評価装置におけるこのような欠
点を除去せしめて、きわめて広いスペクトル幅の光源を
用いて、各種の測定評価を行う事を可能ならしめ、これ
によって光導波路を含む光回路の有効な評価を行わしめ
る光回路評価装置を提供することにある。
(Objective of the Invention) The present invention eliminates such drawbacks in conventional optical circuit evaluation devices, makes it possible to perform various measurements and evaluations using a light source with an extremely wide spectral width, and thereby makes it possible to An object of the present invention is to provide an optical circuit evaluation device that can effectively evaluate an optical circuit including a wavepath.

(発明の構成) 本発明は、光源が該光回路の被測定波長領域に発振光を
有する誘導ラマン発振器であり、該発振光を該光回路に
有効に結合する手段と、該光回路の透過光を直接または
分光の玉検出しうる手段と、該光回路中において側方に
散乱された光を直接または分光の玉検出しうる手段とを
少なくとも具備した構成になっている。
(Structure of the Invention) The present invention is a stimulated Raman oscillator in which the light source has oscillation light in the wavelength range to be measured of the optical circuit, a means for effectively coupling the oscillation light to the optical circuit, and a means for effectively coupling the oscillation light to the optical circuit, and The structure includes at least means capable of directly or spectrally detecting light and means capable of directly or spectrally detecting light scattered laterally in the optical circuit.

(発明の作用・原理) さきに述べたように、光導波路の精密な評価においては
単に1波長における透過特性を見るだけでなく、散乱・
モード変換等に起因する光損失とその波長による相互依
存性を知ることが必要である。従来は一般にスペクトル
幅の広い光源は面積が犬で特に単一モード・ファイバと
有効に結合せしめることは困難であった。しかるに最近
にいたって開発されたシリカ・ファイバを用いた誘導ラ
マン発振器によれば、きわめて広いスペクトル幅の光を
きわめて小さい面積から取り出すことが可能である。さ
らに従来性われていた透過特性の測定に加えて散乱光の
測定を行うことにより光回路のより詳細な評価を行うこ
とが可能となる。
(Operation/Principle of the Invention) As mentioned earlier, in precise evaluation of optical waveguides, it is not enough to simply look at the transmission characteristics at one wavelength, but also to examine the scattering and
It is necessary to know the optical loss caused by mode conversion etc. and its interdependence with wavelength. Conventionally, a light source with a wide spectral width generally has a small area, so it has been difficult to couple it effectively with a single mode fiber. However, recently developed stimulated Raman oscillators using silica fibers make it possible to extract light with an extremely wide spectrum width from an extremely small area. Furthermore, by measuring scattered light in addition to the conventional measurement of transmission characteristics, it becomes possible to perform a more detailed evaluation of the optical circuit.

(実施例) 本発明の利点ならびに主袂々特徴をより一層間らかにす
るため、以下一実施例について説明をおこなう。
(Example) In order to further clarify the advantages and main features of the present invention, an example will be described below.

図面の第1図に示すごと<、Nd:YAGレーザ(旬Z
・らの波長1.06μmの発振光(2)を光結合系(3
)を通して単一モードのシリカ・ファイバ(4)に導き
、ファイバの他端から得られた誘導ラマン散乱光(5)
を今ひとつの光結合系(6)を通じて光導波路を有する
光回路(力に導く。該光回路から出射した透過光(8)
は分光器(9)によって分光ののち、Ge光検出器(l
O)によって検出される。一方、該光回路において発生
した散乱光(11)は干渉フィルタ(121によって分
光され、今ひとつのGe光検出器側によって検出される
As shown in Figure 1 of the drawings, Nd:YAG laser (Shun Z
・The oscillation light (2) with a wavelength of 1.06 μm is connected to the optical coupling system (3).
) into a single mode silica fiber (4) and the stimulated Raman scattered light (5) obtained from the other end of the fiber.
is guided to an optical circuit (power) having an optical waveguide through another optical coupling system (6).The transmitted light (8) emitted from the optical circuit
is subjected to spectroscopy by a spectrometer (9) and then detected by a Ge photodetector (l
O). On the other hand, the scattered light (11) generated in the optical circuit is separated by an interference filter (121) and detected by another Ge photodetector.

第2図にInP結晶基板上に形成したInGaAsP混
晶から構成された光導波路をもつ光回路における入射光
(21+=透過光(2榎ならびに散乱光(ハ)の波長的
関係を示した。入射光は、はぼ1.2μmよシ長い波長
においては、はぼ連続的なスペクトルを有している。一
方透過光はInGaAsP混晶の吸収端に対応する明瞭
な短波長側のエツジ(2(イ)を持ち、長波長側にはモ
ード・カット・オフに対応する減少(251が現われる
。これに対して、散乱光はレーリー散乱クミー散乱を光
導波路壁面の不完全性す過渡的なモードによるものなど
各種存在し一般に複雑であるが、各波長における結果を
総合することによシ、光導波路特性の評価を行うことが
可能に々る。
Figure 2 shows the wavelength relationship between incident light (21+ = transmitted light (2) and scattered light (c) in an optical circuit having an optical waveguide made of InGaAsP mixed crystal formed on an InP crystal substrate. Light has a nearly continuous spectrum at wavelengths longer than 1.2 μm.On the other hand, transmitted light has a distinct short-wavelength edge (2( A), and a decrease (251) corresponding to the mode cut-off appears on the long wavelength side.On the other hand, the scattered light is caused by Rayleigh scattering and Cummie scattering due to transient modes caused by imperfections in the optical waveguide wall. Although it is generally complicated as there are various types of wavelengths, it is possible to evaluate the optical waveguide characteristics by integrating the results at each wavelength.

第1図の実施例にお込て、6の結合系を使用する代わシ
に単一モード・ファイバの出射孔を被測定光回路に極端
に接近させる手段によってもほぼ同様の効果が得られる
In the embodiment shown in FIG. 1, substantially the same effect can be obtained by using means for bringing the output hole of the single mode fiber extremely close to the optical circuit under test instead of using the coupling system 6.

さらに、散乱光の2次元的分布を知るため、赤外ビジコ
ンを採用し、干渉フィルタとあわせ用いることによって
、散乱による光損失の原因をよシ明確に知ることができ
る。また光分岐のごとく、複数のボートを有する素子の
評価にあたっては、各出射ボートの出力光を測定するか
あるいは各ボートの出入を交換することにより、一層効
果的な測定が可能となる。
Furthermore, by employing an infrared vidicon and using it together with an interference filter to know the two-dimensional distribution of scattered light, it is possible to more clearly know the cause of light loss due to scattering. Furthermore, when evaluating a device having multiple boats, such as an optical branch, more effective measurements can be made by measuring the output light of each output boat or by exchanging the entry and exit of each boat.

光源としては、スペクトル幅が広く、面積が小であれば
よいが、現状では低損失の単一モード・シリカ・ファイ
バの誘導ラマン発振を用いたものがもっともすぐれてい
る。また実用上重要性の大きいI n G a A s
 P混晶からなる光導波路の測定のだめには、Nd:Y
AGレーザの採用がもつとも有利である。
The light source only needs to have a wide spectrum width and a small area, but currently the best one is one using stimulated Raman oscillation of a low-loss single-mode silica fiber. In addition, InGaAs, which is of great practical importance,
For measurement of optical waveguides made of P mixed crystal, Nd:Y
Adoption of an AG laser is also advantageous.

(発明の効果) 果、従来のタングステン・ランプを光源に用いた場合に
おいては、不能であった回路特性ならびに材料特性が、
迅速かつ正確に行い得ることが明かになった。特にかか
る評価方法は光分岐り光スィッチなど複雑な構造をもつ
か、あるいはダイナミックな特性をもつ素子の評価に適
合している。
(Effects of the invention) As a result, circuit characteristics and material characteristics that were impossible when using a conventional tungsten lamp as a light source have been improved.
It has become clear that this can be done quickly and accurately. In particular, this evaluation method is suitable for evaluating devices with complex structures such as optical branching switches or devices with dynamic characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかわるかに光回路評価装置の一実施
例の模式的々構成図。 1、Nd : YAGレーザ 2.1.06μm発振光 3、光結合系 4、単一モード・シリカ・ファイバ 5 誘導ラマン光 6、光結合系 7、光導波路を含む光回路 8、透過光 9、分光器 10、 0e光検出器 11、散乱光 12、干渉フィルタ 13、 0e光検出器 第2図は光回路の入射ツ透過ツ散乱各光のスペクトル分
布を示す図である。 21、入射誘導ラマン光 22、透過光 23、散乱光 24、透過光の吸収端によるエツジ
FIG. 1 is a schematic diagram of an embodiment of an optical circuit evaluation device according to the present invention. 1, Nd: YAG laser 2. 1.06 μm oscillation light 3, optical coupling system 4, single mode silica fiber 5, stimulated Raman light 6, optical coupling system 7, optical circuit including optical waveguide 8, transmitted light 9, Spectrometer 10, Oe photodetector 11, scattered light 12, interference filter 13, Oe photodetector FIG. 2 is a diagram showing the spectral distribution of each of the incident light, transmitted light, and scattered light of the optical circuit. 21, incident stimulated Raman light 22, transmitted light 23, scattered light 24, edge due to absorption edge of transmitted light

Claims (1)

【特許請求の範囲】[Claims] 1、光回路の被測定波長領域に発振光を有する誘導ラマ
ン発振器から成る光源と、該発振光を該光回路に有効に
結合する手段と、該光回路の透過光を直接または分光の
上検出しうる手段と、該光回路中において側方に散乱さ
れた光を直接または分光の上検出しうる手段とを少くと
も具備した光回路評価装置。
1. A light source consisting of a stimulated Raman oscillator that emits oscillation light in the measured wavelength region of an optical circuit, means for effectively coupling the oscillation light to the optical circuit, and direct or spectroscopic detection of the transmitted light of the optical circuit. What is claimed is: 1. An optical circuit evaluation device comprising at least means capable of detecting light scattered laterally in the optical circuit, and means capable of directly or spectrally detecting light scattered laterally in the optical circuit.
JP9401084A 1984-05-11 1984-05-11 Apparatus for evaluating optical circuit Pending JPS60237339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9401084A JPS60237339A (en) 1984-05-11 1984-05-11 Apparatus for evaluating optical circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9401084A JPS60237339A (en) 1984-05-11 1984-05-11 Apparatus for evaluating optical circuit

Publications (1)

Publication Number Publication Date
JPS60237339A true JPS60237339A (en) 1985-11-26

Family

ID=14098487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9401084A Pending JPS60237339A (en) 1984-05-11 1984-05-11 Apparatus for evaluating optical circuit

Country Status (1)

Country Link
JP (1) JPS60237339A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04274724A (en) * 1991-03-02 1992-09-30 Fujikura Ltd Otdr apparatus
CN107631862A (en) * 2017-09-04 2018-01-26 中国电子科技集团公司第四十四研究所 Band optical fiber type Y waveguide device centrifugal test fixture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04274724A (en) * 1991-03-02 1992-09-30 Fujikura Ltd Otdr apparatus
CN107631862A (en) * 2017-09-04 2018-01-26 中国电子科技集团公司第四十四研究所 Band optical fiber type Y waveguide device centrifugal test fixture
CN107631862B (en) * 2017-09-04 2021-03-12 中国电子科技集团公司第四十四研究所 Centrifugal test fixture for Y-waveguide device with optical fiber

Similar Documents

Publication Publication Date Title
US4703175A (en) Fiber-optic sensor with two different wavelengths of light traveling together through the sensor head
US4758087A (en) Fiber optic transducer
EP0245085B1 (en) Optical amplifiers
US4790655A (en) System for measuring laser spectrum
JPS60237339A (en) Apparatus for evaluating optical circuit
JP2540670B2 (en) Multi-type gas detector using optical fiber
Bente et al. Widely tunable monolithically integrated lasers using intracavity Mach-Zehnder interferometers
Zhang et al. Optical fiber recirculating delay line incorporating a fiber grating array
CN115165762B (en) Chip with spectrum resolution function
JPH0354292B2 (en)
CN211147700U (en) Brillouin optical time domain analyzer capable of simultaneously measuring multiple channels
JP2014077712A (en) Optical resonator measuring method and measuring apparatus
Wang et al. Four‐port guided‐wave nonsymmetric Mach–Zehnder interferometer
JP2022544522A (en) Method and system for interrogating a fiber Bragg grating type fiber optic sensor using a tunable optical bandpass filter
JP2701191B2 (en) Infrared spectrometer
JPH05172657A (en) Optical fiber distributed temperature sensor
JP3798658B2 (en) High frequency electromagnetic wave detection method and apparatus
JPS5957136A (en) Method for evaluating characteristics of am-fm noise of light source
JPS6147534A (en) Method and apparatus for measuring light loss characteristic of optical fiber
CN113567379A (en) Gas molecule fingerprint identification system
CN114323586A (en) Waveguide loss measurement method based on dual-channel detection
JPS5872027A (en) Measuring device for loss wavelength characteristic of optical fiber
JPS646834A (en) Instrument for measuring light emission spectrum
JPH02123777A (en) Inspection method for distributed feedback type semiconductor laser
JPS58139038A (en) Temperature measuring device using optical fiber