JPS6023707A - Method of controlling pressure of deaerator - Google Patents

Method of controlling pressure of deaerator

Info

Publication number
JPS6023707A
JPS6023707A JP12941883A JP12941883A JPS6023707A JP S6023707 A JPS6023707 A JP S6023707A JP 12941883 A JP12941883 A JP 12941883A JP 12941883 A JP12941883 A JP 12941883A JP S6023707 A JPS6023707 A JP S6023707A
Authority
JP
Japan
Prior art keywords
deaerator
water
pressure
turbine
sent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12941883A
Other languages
Japanese (ja)
Inventor
宇津野 利一
野中 節雄
栗林 哲三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP12941883A priority Critical patent/JPS6023707A/en
Publication of JPS6023707A publication Critical patent/JPS6023707A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、火力、原子カプラントに於いて、タービンの
負荷の急減または遮断時に脱気器への復水流量制限、補
助蒸気導入によシ脱気器圧力低下量を抑制する脱気器圧
力制御方法に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention is applicable to thermal power plants and nuclear power plants, in which deaerators can be degassed by restricting the flow rate of condensate to a deaerator and introducing auxiliary steam when the load on a turbine suddenly decreases or is shut off. The present invention relates to a deaerator pressure control method for suppressing the amount of pressure drop in the deaerator.

〔発明の背景〕[Background of the invention]

火力、原子カプラントの脱気器は、復水器よ)送られて
来る復水をタービンよシの抽気によって加熱し、飽和水
にすることによって脱気し貯水しておく。この脱気水を
蒸気−止器(以下ボイラと呼ぶ)に送ることによシ、ボ
イラの酸化腐食を最小限に止めている。プラントを短期
間停止する場合には、補助蒸気で脱気器の器内圧力が大
気圧よシ若干高くなるよう加熱保持し、大気中の酸素が
脱気器に貯えられた水に溶解し、溶存酸素濃度を高めな
いようにして、次回プラント起動時にも溶存酸素の少な
い脱気水をボイラに送水できるように計画されることが
多い。
The deaerator of a thermal power or atomic couplant heats the condensate sent to it (like a condenser) using the extracted air from the turbine, turns it into saturated water, deaerates it, and stores it. By sending this degassed water to a steam stopper (hereinafter referred to as a boiler), oxidative corrosion of the boiler is minimized. When the plant is shut down for a short period of time, auxiliary steam is used to heat and maintain the pressure inside the deaerator slightly higher than atmospheric pressure, so that oxygen in the atmosphere dissolves in the water stored in the deaerator. Plans are often made to avoid increasing the dissolved oxygen concentration so that deaerated water with low dissolved oxygen can be sent to the boiler the next time the plant is started up.

一方、脱気器貯水タンクの水位を一定水位に保つように
するため、脱気器水位制御装置が設けられ、貯気器(貯
水タンク)水位を検出して復水流量を加減し、脱気器水
位調節弁を制御する一要素制御、または、脱気器水位信
号の他、給水流量(ボイラへの送水量)と復水量(脱気
器への流入量)の信号で脱気器水位調節弁を制御する三
要素制御等が採用されることが常である。ここでタービ
ンの負荷の急減、または、遮断によって、タービンよシ
の抽気が急Kja断された場合、脱気器へ流入する復水
け、脱気器貯水が7ラツシユすることにより加熱脱気さ
れるため、脱気器器内圧力は、急激に低下し、脱気器水
位が不安定となったシ、また過渡的にボイラ給水ポンプ
の正味押込圧力(以下NP8Hと呼ぶ)が不足し、ポン
プ入口でキャビテーションが発生することが懸念される
On the other hand, in order to maintain the water level in the deaerator water storage tank at a constant level, a deaerator water level control device is installed to detect the water level in the deaerator (water storage tank) and adjust the flow rate of condensate to deaerator. One-element control that controls the boiler water level control valve, or the deaerator water level can be adjusted using the deaerator water level signal as well as the feed water flow rate (amount of water sent to the boiler) and condensate amount (amount of water flowing into the deaerator). Three-element control or the like is usually employed to control the valves. If the extraction air from the turbine is suddenly cut off due to a sudden decrease in the load on the turbine or a shutdown, the condensate flowing into the deaerator and the water stored in the deaerator will be heated and degassed. As a result, the pressure inside the deaerator dropped rapidly, the deaerator water level became unstable, and the net pushing pressure (hereinafter referred to as NP8H) of the boiler feed water pump was temporarily insufficient, causing the pump to There is a concern that cavitation may occur at the inlet.

第1図は、従来の脱気器圧力制御方法によってタービン
の負荷の急減または遮断時の脱気器圧力及びボイラ給水
ポンプの有効NPSH,必要NP8H過渡特性を示し九
ものでアシ、脱気器圧力(カーブ■)は、タービンの負
荷の急減、または、遮断後急激に低下し、それに伴って
ボイラ給水ポンプの有効NPSH(カーブ■)も同様の
降下率で低下する。一方、必要NPSH(カーブ0)は
、脱気器器内の自己蒸発遅れ、並びに、脱気器降水管内
水の置換時間T、tで、タービンの負荷の急減、または
、遮断前の条件と同じ給水温度となっているため、ター
ビンの負荷の急減、または、遮断後ある一定時間は低下
しない。その結果、脱気器圧力低下量が大きい場合、あ
るいは、脱気器降水管内水の置換に多くの時間を要する
場合等には、有効NPSHが必要NP8Hよシ小さくな
り、ボイラ給水ポンプ入口で給水がフラッシュFし、キ
ャビテーションを発生する。
Figure 1 shows the transient characteristics of the deaerator pressure, the effective NPSH of the boiler feed pump, and the necessary NP8H when the turbine load suddenly decreases or is shut off using the conventional deaerator pressure control method. (curve ■) suddenly decreases after the turbine load is suddenly reduced or shut off, and the effective NPSH of the boiler feed pump (curve ■) also decreases at a similar rate of decline. On the other hand, the required NPSH (curve 0) is the same as the conditions before the turbine load suddenly decreases or is shut off, due to the self-evaporation delay in the deaerator and the replacement time T, t of water in the deaerator downcomer pipe. Since the supply water temperature is the same, it will not drop for a certain period of time after the turbine load suddenly decreases or after shutoff. As a result, if the deaerator pressure drop is large, or if it takes a long time to replace the water in the deaerator downcomer pipe, the effective NPSH will be smaller than the required NP8H, and water will be supplied at the boiler feed pump inlet. flashes F and causes cavitation.

この解決方法として負荷の急激または負荷遮断現象を検
出し、その信号によつ脱気器水位調節弁の開度を制限し
、脱気器へ流入する復水流量を抑制することによシ、脱
気器器内の圧力降下率を低減する手段はすでに提案され
ている。このことを図によって説明する。
A solution to this problem is to detect a sudden load change or a load shedding phenomenon, and use that signal to limit the opening of the deaerator water level control valve, thereby suppressing the flow rate of condensate flowing into the deaerator. Means have already been proposed to reduce the rate of pressure drop within the deaerator. This will be explained using a diagram.

第2図は、従来技術を示す脱気器廻シを主体とした配管
、計装系統図でアシ、第3図は負荷の急減または遮断時
の脱気器器内圧力降下率を低減した一実施例を示す同系
統図でるる。
Figure 2 shows a diagram of the piping and instrumentation system mainly consisting of a deaerator circuit, which shows the conventional technology. The same system diagram showing an example is shown.

第8図によシ詳細説明する。ボイラ1で発生した蒸気は
、主蒸気管2を通ってタービン3に送られ仕事をし、発
電機4によシ発電を行なう。仕事をした蒸気は、復水器
5で凝縮され、復水管6を通し復水ポンプ7で加圧され
、脱気器11に送水される。復水管6には、復水流量計
8、脱気器水位調節弁9、低圧ヒータlOの他、グラン
ド復水器、空気抽出器等が設けられる事が多いが、本図
では省略した。脱気器11は復水を加熱、脱気するため
の脱気室11aと脱気された飽和水を貯える貯水タンク
llbよ多構成される。脱気器降水管12を通してボイ
ラ給水ポンプ13に送られた水は、ここで加圧され、給
水管14に設けられた高圧ヒータ15を通してボイラl
への給水として送られる。脱気器11の水位は、貯水タ
ンク11bに取付けられた水位調節計19の出力信号を
信号ライン20を通して脱気器水位調節弁9に送シ、水
位を一定に保つよう制御される。本図は、脱気器水位の
みによる一要素制御の例を示すが、復水流量及び給水流
量信号を加味して三要素制御する場合もめる。脱気器1
1は、通常運転中、タービンよシの抽気を抽気管16を
通して受け入れ、復水を加熱、脱気する。脱気されたガ
ス類は大気中、もしくは復水器5に送られ、系外に放出
される。
This will be explained in detail with reference to FIG. Steam generated in the boiler 1 is sent to a turbine 3 through a main steam pipe 2 to do work, and a generator 4 generates electricity. The steam that has done work is condensed in a condenser 5, passed through a condensate pipe 6, pressurized by a condensate pump 7, and sent to a deaerator 11. The condensate pipe 6 is often provided with a condensate flow meter 8, a deaerator water level control valve 9, a low-pressure heater IO, a gland condenser, an air extractor, etc., but these are omitted in this figure. The deaerator 11 is composed of a deaeration chamber 11a for heating and deaeration of condensate, and a water storage tank llb for storing deaeration of saturated water. The water sent to the boiler feed water pump 13 through the deaerator downcomer pipe 12 is pressurized here, and is sent to the boiler l through the high pressure heater 15 provided in the water supply pipe 14.
It is sent as a water supply to The water level in the deaerator 11 is controlled by sending an output signal from a water level controller 19 attached to the water storage tank 11b to the deaerator water level control valve 9 through a signal line 20 to keep the water level constant. Although this figure shows an example of one-element control based only on the deaerator water level, it is also possible to perform three-element control in consideration of the condensate flow rate and the feed water flow rate signal. Deaerator 1
1 receives the bleed air from the turbine through the bleed air pipe 16 during normal operation, and heats and degasses the condensate. The degassed gases are sent to the atmosphere or to the condenser 5 and discharged outside the system.

短期間プラント停止時には、脱気器11をスチームシー
ルし、脱気器貯水の溶存酸素濃度を嵩めないようにする
ため、補助蒸気管17を通して加熱蒸気を送シ加圧保持
する。この時、脱気器11の圧力は、脱気室11aに取
付けられた脱気器圧力調節計21の出力信号を信号ライ
ン22を通して、補助蒸気管17に取付けられた脱気器
圧力調節弁18に送ル、規定圧力を保持するように制御
される。以上は、第2図の従来技術と同一であシ、第3
図に示す負荷の急減または遮断時に脱気器器内圧力降下
率を低減した一実施例では、負荷の急減または遮断時に
タービンよシの抽気が遮断された場合、負荷の急減また
は連断現象を検出し、その指令信号を復水流量セット器
23を通してセレクター24に送シ、セレクター24で
脱気器水位調節弁9に弁開度信号を送シ、強制的に弁開
度を制限し復水流量を制御することによシ、脱気器圧力
降下量を押えるものでるる。その結果、脱気器へ流入す
る復水が減少し、脱気器貯水のフラッシュ量も同様に減
少するため、当然の結果として、脱気器器内圧力降下量
は抑制される。第4図は、その抑制効果を示したもので
メジ、脱気器器内圧力降下率が第1図の従来技術に比較
し、かな)抑制され、脱気器降下管内水置換完了時T、
まで、ボイラ給水ポンプの有効NPSH(カーブ■)〉
必要NPSH(カーブO)を確保することができる。
When the plant is stopped for a short period of time, the deaerator 11 is steam-sealed and heated steam is sent through the auxiliary steam pipe 17 and kept under pressure in order to prevent the dissolved oxygen concentration of the water stored in the deaerator from increasing. At this time, the pressure in the deaerator 11 is determined by passing the output signal of the deaerator pressure regulator 21 installed in the deaerator chamber 11a through the signal line 22, and then using the deaerator pressure control valve 18 installed in the auxiliary steam pipe 17. The pressure is controlled to maintain the specified pressure. The above is the same as the prior art shown in FIG.
In the example shown in the figure, in which the pressure drop rate inside the deaerator is reduced when the load suddenly decreases or is cut off, if the bleed air from the turbine is cut off when the load is suddenly reduced or cut off, The command signal is sent to the selector 24 through the condensate flow rate setter 23, and the selector 24 sends a valve opening signal to the deaerator water level control valve 9, which forcibly limits the valve opening and controls the condensate flow. By controlling the flow rate, the deaerator pressure drop can be suppressed. As a result, the amount of condensate flowing into the deaerator is reduced, and the amount of flushed water stored in the deaerator is similarly reduced, so as a natural result, the amount of pressure drop within the deaerator is suppressed. Figure 4 shows the suppressing effect.The rate of pressure drop inside the deaerator is suppressed compared to the conventional technology shown in Figure 1, and when the water replacement in the deaerator downcomer pipe is completed, T.
Effective NPSH of boiler feed pump (curve ■)〉
The required NPSH (curve O) can be secured.

しかし、第4図に示すように、ボイラ給水ポンプNPS
H上最も厳しい点が、脱気器降水管内水置換完了後しば
らくした後となるケースが多く、この時点で、有効NP
8Hが必要NP8Hよル小さくとなシ、ボイラ給水ポン
プ入口で給水が7ラツシユしキャビテーション発生する
ことが懸念される。
However, as shown in Figure 4, the boiler feed water pump NPS
In many cases, the most severe point on H occurs some time after the completion of water replacement in the deaerator downcomer pipe, and at this point the effective NP
8H is required.If the NP8H is smaller, there is a concern that the water supply will swell at the boiler feed water pump inlet and cavitation will occur.

また、本問題を解消する方法として、負荷の急減または
遮断を検出し、その信号によシ脱気器へ強制的に補助蒸
気を導入する方法屯すでに提案されているが、この場合
、脱気器へ流入する復水け、補助蒸気によシ加熱、脱気
されるため、脱気器器内圧力に満たない分だけ、脱気器
貯水のフラッシュ蒸気によシ加熱、脱気される。従って
脱気器圧力の降下率は、大巾に抑制され、脱気器貯水の
フラッシュによる脱気器水位の不安定の面からは、非常
に有効となる。しかし、第5図に示す呈うk、ボイラ給
水ポンプのNPSH上はあま如有効でなく脱気器降水管
内水置換完了後に有効NPSHが必要NP8Hよシ小さ
くなシ、ボイラ給水ポンプ入口で給水がフラッシュしキ
ャビテーションを発生することが懸念される。
In addition, as a method to solve this problem, a method has already been proposed in which auxiliary steam is forcibly introduced into the deaerator by detecting a sudden load reduction or cutoff, and using that signal to forcefully introduce auxiliary steam into the deaerator. Since the condensate and auxiliary steam flowing into the deaerator are heated and degassed, the amount less than the internal pressure of the deaerator is heated and degassed by the flash steam of the water stored in the deaerator. Therefore, the rate of decrease in the deaerator pressure is greatly suppressed, which is very effective from the viewpoint of instability of the deaerator water level due to flushing of the deaerator storage water. However, as shown in Figure 5, the NPSH of the boiler feed pump is not very effective, and an effective NPSH is required after the water replacement in the deaerator downpipe is completed, which is smaller than NP8H. There is concern that flash may occur and cavitation may occur.

〔発明の目的〕[Purpose of the invention]

本発明は、タービンの負荷の急減または遮断時にタービ
ンよシの抽気が急に遮断された場合にも、上記の問題を
解消し、正常な運転を継続し得る脱気器圧力制御方法を
提供するにある。
The present invention provides a deaerator pressure control method that solves the above problems and allows normal operation to continue even when the turbine load is suddenly reduced or the turbine bleed air is suddenly shut off. It is in.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第6図によって説明する。負
荷の急減または遮断(タービン出力の変化率および変化
量がある一定値以上になったとき検出し判定する)を検
出し、脱気器圧力調節計21に送る。負荷の急減または
遮断指令と脱気器圧力調節計21との信号ラインには適
当なタイマー26.が設けられる。ここで、タイ−r−
26は、負荷の急減、または、遮断後置もフラッシュが
激しくなる時間に合わせ、また、脱気器圧力調節計21
は、その時点の脱気器内圧までステップ的に上昇させる
。さらに、脱気器圧力調節針21の出力信号を信号2イ
ン22を通して、脱気器圧力調節弁18に送シ、弁を急
開させ、脱気器に補助蒸気を導入する。脱気器圧力調節
計21のセントは、その時点の脱気器内圧までステップ
的に上昇させた後は、ある一定の変化率で通常の設定圧
力まで徐々に下げるカスケード方式とする。
An embodiment of the present invention will be described below with reference to FIG. A sudden decrease or cutoff of load (detected and determined when the rate and amount of change in turbine output exceeds a certain value) is detected and sent to the deaerator pressure regulator 21. An appropriate timer 26. is provided. Here, Thailand-r-
26 is adjusted to match the time when the load suddenly decreases or the flash becomes intense even after shutoff, and the deaerator pressure regulator 21
is increased stepwise to the deaerator internal pressure at that point. Furthermore, the output signal of the deaerator pressure regulating needle 21 is sent to the deaerator pressure regulating valve 18 through the signal 2 in 22, the valve is suddenly opened, and auxiliary steam is introduced into the deaerator. The cent of the deaerator pressure regulator 21 is set to a cascade system in which the deaerator internal pressure is increased stepwise to the current deaerator internal pressure and then gradually lowered to the normal set pressure at a certain rate of change.

また、脱気器への復水流人制限に関しては、第3図の実
施例に加え、負荷急減または遮断時において、ボイラへ
の給水が不要になった時点(ここではOT/H給水指令
とよぶ)で、そのOT/H給水指令を検出し、その指令
信号にょシ、復水流量を制限する。OT/H給水指令を
、ドラムボイラの場合を例にとシ説明する。負荷の急減
、または、遮断時に急激な燃料の絞シ込みが行なわれ、
燃料の絞ル込みに伴う火炉状熱の減少や過渡的な圧力上
昇等によシ炉壁管内の気泡がつぶれ、その結果、ドラム
レベルが低下する。それを防止するため、負荷の急減、
ま九は、遮断の現象を検出し、その信号によシ、ある一
定の給水指令が与えられる。次にドラムレベルが回復し
安定した条件になった時点で、給水指令を解除する。こ
の給水指令の解除条件がOT/H給水指令である。すな
わち、第6図で説明すると、負荷の急減または遮断時、
その条件を検出しである一定の給水指令が与えられるが
、一定時間経過後発生するOT/H給水指令を検出し、
その指令信号を復水流量セット器25を通してセレクタ
ー24に送ジ、セレクター24で脱気器水位調節弁9に
弁開度信号を送シ強制的に弁開度を制限し、復水流量の
制御を行なう。
Additionally, in addition to the example shown in Figure 3, restrictions on condensate flow to the deaerator will be applied at the point when water supply to the boiler is no longer required (herein referred to as OT/H water supply command) when the load suddenly decreases or is cut off. ) detects the OT/H water supply command and limits the condensate flow rate based on the command signal. The OT/H water supply command will be explained using the case of a drum boiler as an example. If the load suddenly decreases or the fuel is suddenly throttled when the engine is shut off,
Air bubbles in the furnace wall tubes collapse due to a decrease in furnace heat due to fuel throttling and a transient increase in pressure, resulting in a drop in drum level. To prevent this, sudden load reduction,
The machine detects the phenomenon of interruption, and according to the signal, a certain water supply command is given. Next, once the drum level has recovered and conditions are stable, the water supply command is canceled. The cancellation condition for this water supply command is the OT/H water supply command. In other words, as explained in Fig. 6, when the load suddenly decreases or is cut off,
A certain water supply command is given by detecting that condition, but an OT/H water supply command that occurs after a certain period of time is detected,
The command signal is sent to the selector 24 through the condensate flow rate setting device 25, and the selector 24 sends a valve opening signal to the deaerator water level control valve 9, which forcibly limits the valve opening and controls the condensate flow rate. Do the following.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、第7図に示すように、ボイラ給水ポン
プNPSHとしての有効ヘッドを充分余 −裕あるもの
に確保することができる。
According to the present invention, as shown in FIG. 7, it is possible to secure a sufficiently large effective head for the boiler feed water pump NPSH.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術による負荷の急減または遮断時の脱気
器圧力及びボイラ給水ポンプNP8H過渡特性図、第2
図は、従来技術による脱気器廻シを主体とした配管、計
装系統図、第3図は従来の改善実施例の系統図、第4図
は、第3図による実施例の効果を示す脱気器圧力及びボ
イラ給水ポンプNPSH過渡特性図、第5図は負荷の急
減または遮断時の条件で脱気器へ補助蒸気を導入した湯
気器圧力及びゲイ2給水ポンプNPSH過渡特性図でる
る。 24・・・セレクター、25・・・復水流量セット器、
2− γ 1IiU 第2m 第 3(21 第4(2) fr=+t 通M/r ′iI に図 FNIfil!zl!/r qit図 第70 ia+i産暫
Figure 1 shows the deaerator pressure and boiler feed pump NP8H transient characteristics diagram when the load suddenly decreases or is cut off according to the prior art.
The figure shows a piping and instrumentation system diagram based on the prior art deaerator circuit, Figure 3 shows a system diagram of a conventional improvement example, and Figure 4 shows the effect of the example shown in Figure 3. Deaerator pressure and boiler feed water pump NPSH transient characteristic diagram. Figure 5 shows the steam pressure and Gay 2 feed water pump NPSH transient characteristic diagram when auxiliary steam is introduced to the deaerator under the conditions of sudden load reduction or cutoff. 24...Selector, 25...Condensate flow rate setter,
2- γ 1IiU 2nd m 3rd (21 4th (2) fr=+t through M/r ′iI Figure FNIfil!zl!/r qit Figure 70 ia+i production interim

Claims (1)

【特許請求の範囲】 1、 タービンの排気を復水器で凝縮させ、凝縮された
復水を復水ポンプで抽出し脱気器へ送シ、通常運転時に
は、前記タービ/よシの抽気で加熱、脱気し、一旦貯溜
した後、ボイ゛う給水ポンプでボイラへ送水する方法に
おいて、 前記タービンの負荷の急減または遮断時、その条件を検
出し、その信号を前記脱気器の圧力調節計を介して脱気
器圧力調節弁に連絡し、その信号ラインに適当な時間遅
れ装−置を設け、前記脱気器の圧力降下率の大きい時期
に前記脱気器の圧力調節弁を強制間することを特徴とす
る脱気器圧力制御方法。
[Claims] 1. The exhaust gas of the turbine is condensed in a condenser, the condensed water is extracted with a condensate pump and sent to a deaerator, and during normal operation, the air extracted from the turbine/deaerator is used. In a method in which water is heated, degassed, stored, and then sent to a boiler using a boiler water pump, when the load on the turbine suddenly decreases or is cut off, that condition is detected and the signal is used to adjust the pressure in the deaerator. The pressure control valve of the deaerator is connected to the deaerator pressure control valve through a meter, and an appropriate time delay device is installed on the signal line to force the pressure control valve of the deaerator to operate at a time when the pressure drop rate of the deaerator is large. A deaerator pressure control method characterized by:
JP12941883A 1983-07-18 1983-07-18 Method of controlling pressure of deaerator Pending JPS6023707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12941883A JPS6023707A (en) 1983-07-18 1983-07-18 Method of controlling pressure of deaerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12941883A JPS6023707A (en) 1983-07-18 1983-07-18 Method of controlling pressure of deaerator

Publications (1)

Publication Number Publication Date
JPS6023707A true JPS6023707A (en) 1985-02-06

Family

ID=15009025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12941883A Pending JPS6023707A (en) 1983-07-18 1983-07-18 Method of controlling pressure of deaerator

Country Status (1)

Country Link
JP (1) JPS6023707A (en)

Similar Documents

Publication Publication Date Title
US4207842A (en) Mixed-flow feedwater heater having a regulating device
JPS6314004A (en) Feedwater-heater drain pressure controller for steam turbineplant
Ishiwatari et al. Improvements of feedwater controller for the super fast reactor
JP2001108201A (en) Multiple pressure waste heat boiler
JPS6023707A (en) Method of controlling pressure of deaerator
JP3285946B2 (en) Steam temperature controller for variable-pressure once-through boiler
JP2022129412A (en) Output control device and output control method for nuclear power plant
JP2737884B2 (en) Steam turbine generator
JPS60219404A (en) Stabilizing device of deaerator output
JPS6154121B2 (en)
JP2839195B2 (en) Waste heat recovery boiler water supply control device
JPS6152361B2 (en)
JPH0223929Y2 (en)
JPS59110810A (en) Water level control device for steam turbine degasifier
JP3221738B2 (en) Steam temperature controller for variable-pressure once-through boiler
JPS6124559B2 (en)
JPS59153003A (en) Method of stopping waste-heat recovery boiler
JPS63290303A (en) Steam generator
JPH0423161B2 (en)
JPS5999008A (en) Control method of steam generating plant
JPS63251703A (en) Feedwater-heater drain system oxygen-concentration controller
JPS6186689A (en) Nuclear reactor feedwater system
JPS5999396A (en) Atomic power plant
JPS5981402A (en) Controller for water level of deaerator
JPS6136123B2 (en)