JPS60236458A - Battery containing no mercury - Google Patents

Battery containing no mercury

Info

Publication number
JPS60236458A
JPS60236458A JP59093178A JP9317884A JPS60236458A JP S60236458 A JPS60236458 A JP S60236458A JP 59093178 A JP59093178 A JP 59093178A JP 9317884 A JP9317884 A JP 9317884A JP S60236458 A JPS60236458 A JP S60236458A
Authority
JP
Japan
Prior art keywords
manganese dioxide
mercury
zinc
battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59093178A
Other languages
Japanese (ja)
Other versions
JPH0256775B2 (en
Inventor
Kazumasa Yoshida
和正 吉田
Kojiro Miyasaka
宮坂 幸次郎
Nobuaki Chiba
千葉 信昭
Mutsuhiro Maeda
睦宏 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP59093178A priority Critical patent/JPS60236458A/en
Publication of JPS60236458A publication Critical patent/JPS60236458A/en
Publication of JPH0256775B2 publication Critical patent/JPH0256775B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve discharge performance and electrolyte leakage resistance of a battery containing no mercury by using manganese dioxide prepared by roasting natural manganese dioxide as a positive active material and using a zinc anode containing no mercury. CONSTITUTION:Manganese dioxide prepared by roasting ore or powder of natural manganese dioxide and treating it with acid is used as a positive active material. No mercuric chloride is added to a positive mix 3 containing this manganese dioxide. Mercury is not contained in a separator and also in a zinc can 1. Electrolytic manganese dioxide may be mixed to the positive active material if required. Discharge performance and electrolyte leakage resistance of the battery containing no mercury are improved compared with the battery containing mercury.

Description

【発明の詳細な説明】 この発明は電池の無公害化に関するものである。 正電合剤に二酸化マンガンを用い、負極に亜鉛を用いる
電池は、汎用性を有した電池として長い歴史がおる〇 従来は負極の亜鉛の自己放−を防止する目的で鴫解液f
C昇fCを添加してなる未化亜鉛を用いてい番−i 箇
#禰d古447禰lハ96凄搭ホd喰、L L 暑禰妊
料の低れん化倉目標として、水銀側添加の亜鉛負極の検
討が種々1!室さfして轡たが、電池の貯蔵性と、長期
にわたる放電においてまだ問題がめった。 すなわち、種々の嚢験と研究がちったが、水銀無添加の
亜鉛負極を用いた電池は実用的レベルには至らなかった
。その最大の原因は正極活物質でらることが判明した。 すなわち、特8Fl昭49−129830のように正極
活物質に天然二酸化マンガンを用いた場合は、天然二酸
化マンガン中に含まれている鉄等の重金属が電池貯蔵中
電解液に溶解し、亜鉛極側に析出し、亜鉛極側で局部的
自己放電音引き起こし1、峨池貯蔵中に電池内部でガス
を発生し1、漏液が発生し、たシ亜鉛缶に孔があいたす
することが起こり、実用になっていなかった。 電解二酸化マンガンを用いた水銀無添加電池は、天然二
酸化マンガンに含まnるような重金属不純物が含まれず
、二酸化マンガンの純度も良いことから、改善の効果は
認められるが、汞化し、た亜鉛負極を用いたものに比較
L1■作動電圧が像い、JJ長時間にわたる軽負荷放電
の持続時開が短くなる、という二つの内きな欠点があり
、実用に至つこの発明は正極活物質に、天然マンガン鉱
石を焙焼したのち酸と接触させて生成した二酸化マンガ
ンを用いることによプ、従来の水銀無添加電池の改善(
!−鉱かるものである。 この発明を図面によシ説明する。 lは負極で、負極活物質として水銀を含有していない筒
状亜鉛缶を用いている。2はクラフト紙に保液性の良い
デンプンを主とした糊料を塗布したセパレータで、塩化
頃鉛水溶液を電解質とした正極合剤3と接している。  4は正極合剤30業電体で導電性の良い炭素棒を用いて
いる。 5は?P3緑性の封口部材であり、負極lの亜鉛缶開口
端部と集電体4とを気密VC封口している。 6は正極端子、7は亜鉛缶底部と接している負極端子で
、正・負極端子6,7を絶縁チューブ8で覆ったのち、
メタルジャケット9で固定し、たものである。 この発明の水銀無添加電池の正極合剤3の構成は、天然
マンガン鉱石を焙焼したのち酸と接触させて韮成し、た
二酸化マンガフ 11.5重量部、アセテンンブラック
2.0重量部、酸化亜鉛0..112重量部、塩化亜鉛
2.6重量部、水6.7重量部よりなるもので、IF1
極合剤3の電解質内には昇汞を全く含んでいない。また
他の電池構成体、たとえばセパレータ、亜鉛缶にも水銀
を添加していない。采銀は水・ 素通電圧が高いため亜
鉛表面に存在すると、表面で水素ガスの発生が起こルに
くくなる。そのため微量の不純物があっても自己腐食は
起らない。したがって水銀無添加電池は製造工程中で鉄
やニッケル等水素過電圧のはい不純物の混入と、例えば
モリブデンのように水素過電圧の低vh物質の湛入を防
止し、材料精製も当然充分な配慮が必要でおる。 電解二酸化マンガンは炭酸マンガン鉱もしくは1戊級の
二酸化マンガンを硫酸1cm解し、電池r(有害な鉄分
等を士分精JA除去し、硫酸マンガン溶液vcしたのち
、チタンもしくは縦索からなる不溶性正極に電解酸化析
出したものを@極から剥離し、中オロ、洗浄し微粉化し
たものでらる6しかしこのように正極での酸化析出によ
り製造するため、電解液中のマイナスイオンであるS0
4 が二酸化マンガン固体内に入シ込み共存することに
なシ、いったん析出した5o42−はその後の洗浄、中
和では簡゛ 単に除くことができない。 したがって、微粉化した電餌二酸化マンガンは、PHを
中性近く調装して電池正極材料に供されるが、水化亜鉛
を用いた従来電池とは異なり一電解二酸化マンガン固体
内に取り込まれたS04 の挙動が、電池性能に影響を
与えるものと考えられる。 すなわち電池の放電において、正極の二酸化マンガ/は
MnO2+H+e −)MnOOHの反応によりH+を
取り込み結晶構造が変化する。この時正極合剤はMnO
2の密度5.03g/ccから反応生成物であるMfi
OOHの密度の4.3g/’ccに膨潤変化する。 この際、二酸化マンガフ固体中vc4り込まれていj−
Q X 2− □+ −、−J−+++ オ 、、−1
、4、。2− 、ユ 、4.7している亜鉛極に電気泳
−酌に吸着する。その結果吸着したso、”、により亜
鉛表面は局部的な亜鉛の溶解と、溶解した亜鉛イオンの
So、”Kよる捕そくが行なわれる。すなわち亜鉛極の
界面には電池放電反応で生じた亜鉛イオンと804 に
よシ溶解した亜鉛イオ/層が蓄積され、界面抵抗を増大
させるため、亜鉛の反応分極を大とする結果になり、電
池放電作動電圧の低下になると考えられる。 このような現象は軽負荷放電、特に長期間に亘る電池の
放電時に抵抗層の成長が起こり、作動電圧の低下が顕著
に起こるものと考えられる。 一方天然のマンガン鉱石たとえば天然二酸化マンガンを
焙焼すると、鳩の原子価が4価のものが3価あるいはそ
れ以下には下する。このように原子価が低下したマンガ
ン酸化物は硫酸溶液に接触すると、該マンガン酸化物が
マンガン特有の不均化反応により2種類の反応を起す。 すなわち、一部はすみやかに溶解してイオンとなって溶
液中に拡散する反応であり、他の反応は再びは原子価か
ら萬原子価−すhわち4価のマンガン酸化物に戻つて沈
澱する反応との両方の反応が起る。なお、鉱石中に含ま
れて、いる不純物すなわち他の重金属たとえば鉄、ニッ
ケル、モリプデ/も焙焼過程で酸化物となり、該酸化物
は硫酸溶液と接触し、た時点で溶解し、マノガン酸化物
°より溶液中へ拡散する。この反応を化学式を用いて模
式的に示すと次の様になる。 ζ mn5O4溶液 不純物 この方法で生成したMnO2を粒度間[?i−行なった
のち、NaOH溶液等で中和しかつ充分洗浄したのち、
乾燥したものを正極活物質として利用したものである。 また、天然二酸化マンガンのみを正極に用いた場合は、
二酸化マンガン中に含まれる特に鉄、ニッケル等の重金
属の不純物濃度が高く、電池貯蔵中の無水化亜鉛極の自
己放電が非常に大きなため、全く兼用vCti供さない
。 表1は装造方法を異にし、た各種二酸化マンガンの分析
値を示し、たものでらる。この発明に用いる焙焼、酸処
理二酸化マンガンの硫酸イオンso、”は、洗浄、中5
FI]I/cよシ充分除去することができ固体中に取シ
込まれることが少なく、その量は電解二酸化マンガンの
場合に昆較して%以下の値である。 (以下余白) 表1 各種二酸化マ/ガ/の分析表 このため、本発明の水Ii!焦株加電池は亜鉛の局S腐
食がt’tとんどなく、長期間に亘る放電においきる。 このように、水、銀無添加電池を目的とした電池構成と
して、従来の電解二蒙化マ/ガ/の欠点を究明しζその
結果改善対策としてマンガン鉱石を焙焼したのち酸に接
触させ不均化反応により生成し、た二酸化マ/ガ/が適
することを発明したものであり、安価な二酸化マンガン
を供することかでき、水銀無添加電池の正極として、従
来全く考え 得なかったことでらる。 また、電解二酸化マンガンとの配合を種々検討した結果
、焙焼複酸処理して得た二酸化マンガンの割合が25チ
以上になれば、その効果が現われることが明らかになっ
た。以下この実験を述べる。 表2は正極合剤の配合表でるり、この配合合剤を用いて
R20型の電池を組み立て、特性を評価”し、た結果を
第2図および表3に示した。なおこの発明の実施例とし
てマ/ガン乾電池について述べたが、アルカリマンガン
乾゛イ池、アルカリボタン型マ/ガ/電池においても全
く同じ二酸化マ/ガン第2図中、AlB、Cはこの発明
の嚢施例電池であり、それぞれ0表2のロットA、B、
Oに相当する。同様にり、Eは電解二酸化マンガンおよ
び天然二酸化マンガンを正極合剤とした水銀無添加電池
の比較例、FI−を従来品として昇汞により亜鉛負極を
氷化した電池で、40Ωの負荷抵抗で20°OKおける
1日4時間放電における放電特性を示した。 (以下余白) 以上のように、焙焼酸処理された二酸化マンノンを正極
合剤に用いた水銀無添加電池は、昇水−用いた電池と比
較して、優れた放電特性と耐漏t
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to making batteries pollution-free. Batteries that use manganese dioxide as the positive electrode mixture and zinc as the negative electrode have a long history as versatile batteries. In the past, aerosol solution f was used to prevent the self-release of zinc in the negative electrode.
Addition of mercury on the mercury side as a goal of low sulfurization of heat-fertilizing materials. There are various studies on zinc negative electrodes! Although the batteries were tested, problems still occurred with battery storage and long-term discharge. In other words, despite various experiments and research, a battery using a mercury-free zinc negative electrode has not reached a practical level. It turned out that the main cause was the positive electrode active material. In other words, when natural manganese dioxide is used as the positive electrode active material as in Toku 8Fl 1983-129830, heavy metals such as iron contained in the natural manganese dioxide dissolve in the electrolyte during battery storage, and the zinc electrode side It precipitates, causing local self-discharge noise on the zinc electrode side1, gas is generated inside the battery during storage in the pond1, leakage occurs, and holes form in the zinc can. It had not been put into practical use. Mercury-free batteries using electrolytic manganese dioxide do not contain heavy metal impurities like those found in natural manganese dioxide, and the purity of the manganese dioxide is good, so an improvement can be seen; There are two major drawbacks to the one using the positive electrode active material: the L1 operation voltage is higher than the one using the JJ, and the opening time becomes shorter during long-term light load discharge. , improved conventional mercury-free batteries by using manganese dioxide produced by roasting natural manganese ore and then contacting it with acid.
! -It is something that can be mined. This invention will be explained with reference to the drawings. 1 is a negative electrode, and a cylindrical zinc can containing no mercury is used as a negative electrode active material. 2 is a separator made of kraft paper coated with a starch-based glue having good liquid retention properties, and is in contact with a positive electrode mixture 3 containing an aqueous lead chloride solution as an electrolyte. 4 uses a carbon rod with good conductivity as a positive electrode mixture. What about 5? P3 is a green sealing member, which airtightly seals the open end of the zinc can of the negative electrode l and the current collector 4. 6 is a positive terminal, 7 is a negative terminal in contact with the bottom of the zinc can, and after covering the positive and negative terminals 6 and 7 with an insulating tube 8,
It was fixed with a metal jacket 9. The composition of the positive electrode mixture 3 of the mercury-free battery of the present invention is 11.5 parts by weight of manganese dioxide and 2.0 parts by weight of acetene black, which is obtained by roasting natural manganese ore and then contacting it with acid to form a carbon dioxide. , zinc oxide 0. .. 112 parts by weight, 2.6 parts by weight of zinc chloride, and 6.7 parts by weight of water.
The electrolyte of the polar mixture 3 does not contain any elutriate at all. Also, no mercury is added to other battery components, such as the separator and the zinc can. Since kamagin has a high water conduction voltage, its presence on the zinc surface makes it difficult for hydrogen gas to occur on the surface. Therefore, self-corrosion does not occur even if there is a small amount of impurity. Therefore, mercury-free batteries require sufficient consideration during the manufacturing process to prevent the contamination of impurities with high hydrogen overvoltage, such as iron and nickel, and to prevent the intrusion of low VH substances with low hydrogen overvoltage, such as molybdenum. I'll go. Electrolytic manganese dioxide is produced by dissolving manganese carbonate or 1-grade manganese dioxide in 1 cm of sulfuric acid, removing harmful iron, etc. with a manganese sulfate solution, and then forming an insoluble positive electrode made of titanium or vertical wire. The electrolytically oxidized precipitated product is peeled off from the @ electrode, cleaned and pulverized.6 However, because it is manufactured by oxidative precipitation at the positive electrode, the negative ions S0 in the electrolyte are
Since 4 infiltrates into the manganese dioxide solid and coexists with it, 5o42-, once precipitated, cannot be easily removed by subsequent washing and neutralization. Therefore, the pulverized electrolyte manganese dioxide is used as a battery positive electrode material after adjusting the pH to near neutrality, but unlike conventional batteries using zinc hydrate, it is incorporated into the monoelectrolytic manganese dioxide solid. It is thought that the behavior of S04 influences battery performance. That is, during battery discharge, manga dioxide at the positive electrode takes in H+ through a reaction of MnO2+H+e-)MnOOH and the crystal structure changes. At this time, the positive electrode mixture is MnO
From the density of 2, 5.03 g/cc, the reaction product Mfi
Swelling changes to OOH density of 4.3 g/'cc. At this time, vc4 is incorporated into the manganese dioxide solid.
Q X 2- □+ -, -J-+++ O,, -1
,4. 2-, U, 4.7 The zinc electrode is adsorbed to the electrophoretic cup. As a result, the adsorbed So,'' causes local dissolution of zinc on the zinc surface, and capture of the dissolved zinc ions by So,''K. In other words, zinc ions generated in the battery discharge reaction and zinc ions/layers dissolved by 804 are accumulated at the interface of the zinc electrode, increasing the interfacial resistance and increasing the reaction polarization of zinc, which causes the battery to deteriorate. This is thought to result in a decrease in the discharge operating voltage. This phenomenon is thought to be due to the growth of the resistance layer during light load discharge, particularly during long-term battery discharge, resulting in a significant drop in operating voltage. On the other hand, when natural manganese ore, such as natural manganese dioxide, is roasted, its valence drops from 4 to 3 or lower. When the manganese oxide whose valence has been reduced in this way comes into contact with a sulfuric acid solution, two types of reactions occur in the manganese oxide due to a disproportionation reaction peculiar to manganese. In other words, some of the reactions quickly dissolve into ions and diffuse into the solution, while other reactions change from valence to manganese oxide with a valence of 10,000 - that is, 4 - and precipitate. Both reactions occur. In addition, impurities contained in the ore, such as other heavy metals such as iron, nickel, and molybdenum, also become oxides during the roasting process, and these oxides come into contact with the sulfuric acid solution and dissolve at the point of time, forming manogan oxide. Diffusion into the solution from °. This reaction is schematically illustrated using a chemical formula as follows. [? After performing i-, neutralize with NaOH solution etc. and wash thoroughly,
The dried material is used as a positive electrode active material. In addition, when only natural manganese dioxide is used for the positive electrode,
Since the concentration of impurities in manganese dioxide, especially heavy metals such as iron and nickel, is high, and the self-discharge of the anhydrous zinc electrode during battery storage is extremely large, it cannot be used for dual purpose vCti at all. Table 1 shows the analytical values of various manganese dioxide produced using different packaging methods. The sulfate ions of the roasted and acid-treated manganese dioxide used in this invention are
[FI]I/c can be removed sufficiently, and it is less likely to be incorporated into solids, and the amount thereof is less than % compared to that of electrolytic manganese dioxide. (Margins below) Table 1 Analysis table of various types of carbon dioxide. Therefore, the water Ii of the present invention! In a pyrotechnic battery, there is almost no localized S corrosion of zinc, and the discharge lasts for a long period of time. In this way, we investigated the shortcomings of the conventional electrolytic dimonoxide magnet as a battery configuration aimed at a water- and silver-free battery, and as a result, as a countermeasure to improve it, we roasted manganese ore and then brought it into contact with acid. It was invented that manganese dioxide produced by a disproportionation reaction is suitable, and it is possible to provide inexpensive manganese dioxide, which was previously unthinkable as a positive electrode for mercury-free batteries. Ruru. Further, as a result of various studies on the combination with electrolytic manganese dioxide, it was found that the effect appears when the ratio of manganese dioxide obtained by roasting double acid treatment is 25 or more. This experiment will be described below. Table 2 shows the composition of the positive electrode mixture. Using this mixture, we assembled an R20 type battery and evaluated its characteristics. The results are shown in Figure 2 and Table 3. As an example, M/G dry cells have been described, but alkaline manganese dry batteries and alkaline button type M/G batteries are exactly the same M/G batteries. Lots A, B, and 0 in Table 2, respectively.
Corresponds to O. Similarly, E is a comparative example of a mercury-free battery using electrolytic manganese dioxide and natural manganese dioxide as the positive electrode mixture, and FI- is a conventional battery with a zinc negative electrode frozen by heating. The discharge characteristics during discharge for 4 hours a day at °OK are shown. (Left below) As described above, a mercury-free battery using roasted acid-treated mannon dioxide as the positive electrode mixture has superior discharge characteristics and leakage resistance compared to a battery using water-boosting.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例の1320型マンガン乾・電
池の断面図、第2図はこの発明の水銀無添加電池と従来
品との放電曲線比較図である。 1・・・負[2・・・セパレータ 3・・・正極合剤 4・・炭素棒 特許出願人の名称
FIG. 1 is a sectional view of a 1320 type manganese dry battery according to an embodiment of the present invention, and FIG. 2 is a comparison diagram of discharge curves between the mercury-free battery of the present invention and a conventional product. 1... Negative [2... Separator 3... Positive electrode mixture 4... Name of carbon rod patent applicant

Claims (2)

【特許請求の範囲】[Claims] (1)天然マンガン鉱石もしくは同粉禾を焙焼したのち
、酸に接触させて生成し、た二酸化マ/ガ/を用いた正
極活物質と、水III會さ有し、ていない亜鉛負極とを
用いたことを特徴とする水−無添加電池。賢
(1) A positive electrode active material using magnesium dioxide produced by roasting natural manganese ore or the same powder and then contacting it with acid, and a zinc negative electrode that has a water III content but not. A water-additive-free battery characterized by using. wise
(2) 該正極活物質に、電解二酸化マンガンが混合さ
れていることを特徴とする特許請求の範囲第1項記載の
水銀無添加電池。
(2) The mercury-free battery according to claim 1, wherein the positive electrode active material is mixed with electrolytic manganese dioxide.
JP59093178A 1984-05-10 1984-05-10 Battery containing no mercury Granted JPS60236458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59093178A JPS60236458A (en) 1984-05-10 1984-05-10 Battery containing no mercury

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59093178A JPS60236458A (en) 1984-05-10 1984-05-10 Battery containing no mercury

Publications (2)

Publication Number Publication Date
JPS60236458A true JPS60236458A (en) 1985-11-25
JPH0256775B2 JPH0256775B2 (en) 1990-12-03

Family

ID=14075320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59093178A Granted JPS60236458A (en) 1984-05-10 1984-05-10 Battery containing no mercury

Country Status (1)

Country Link
JP (1) JPS60236458A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101892384B (en) * 2010-07-15 2011-09-21 广西有色金属集团汇元锰业有限公司 Method for producing mercury-free alkaline manganese electrolytic manganese dioxide

Also Published As

Publication number Publication date
JPH0256775B2 (en) 1990-12-03

Similar Documents

Publication Publication Date Title
US4258109A (en) Solid state cells
Donne et al. Redox processes at the manganese dioxide electrode: I. constant‐current intermittent discharge
AU2003244343A1 (en) Alkali cell
JPS6211460B2 (en)
Kang et al. The anodic oxidation of manganese oxides in alkaline electrolytes
Ruetschi Discharge mechanism of MnO2 electrodes as influenced by the solubility of the reaction products
JPH0750606B2 (en) Non-aqueous electrolyte battery and method for producing positive electrode active material thereof
JPS60236458A (en) Battery containing no mercury
EP0863561A1 (en) Manganese-oxide alkaline batteries
JP3353588B2 (en) Method for producing manganese oxide for battery and battery
JP2002298862A (en) Aluminum battery
JP2808614B2 (en) Alkaline-manganese battery
JPH0256774B2 (en)
JPS58158856A (en) Nonaqueous electrolytic battery
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JPS59175557A (en) Alkali cell
JPS6164083A (en) Method of producing battery of lithium molybdenum disulfide
JPH028420B2 (en)
KR20050054870A (en) Active substance of positive electrode for battery, process for producing the same and battery therefrom
JP2000048828A (en) Nonaqueous electrolyte battery
JP4431736B2 (en) Positive electrode active material for batteries
JPH0619997B2 (en) Non-aqueous secondary battery
JP2002304990A (en) Manganese dioxide and alkaline manganese battery using the same
JPH044252B2 (en)
JPH07335227A (en) Alkaline battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term