JP2808614B2 - Alkaline-manganese battery - Google Patents

Alkaline-manganese battery

Info

Publication number
JP2808614B2
JP2808614B2 JP26842388A JP26842388A JP2808614B2 JP 2808614 B2 JP2808614 B2 JP 2808614B2 JP 26842388 A JP26842388 A JP 26842388A JP 26842388 A JP26842388 A JP 26842388A JP 2808614 B2 JP2808614 B2 JP 2808614B2
Authority
JP
Japan
Prior art keywords
positive electrode
alkaline
manganese dioxide
electrode mixture
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26842388A
Other languages
Japanese (ja)
Other versions
JPH02114447A (en
Inventor
佐知子 末次
璋 太田
晃 三浦
芳明 新田
浩司 芳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26842388A priority Critical patent/JP2808614B2/en
Publication of JPH02114447A publication Critical patent/JPH02114447A/en
Application granted granted Critical
Publication of JP2808614B2 publication Critical patent/JP2808614B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は正極合剤の電解液分布状態を均一化したアル
カリ−マンガン電池に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline-manganese battery having a uniform distribution of an electrolyte in a positive electrode mixture.

従来の技術 近年、直流電動機を用いた電子機器の増加に伴ない、
高容量のアルカリ−マンガン電池が広く市場に所望され
ている。
2. Description of the Related Art In recent years, with the increase in electronic devices using DC motors,
High capacity alkaline-manganese batteries are widely desired in the market.

以下に従来のアルカリ−マンガン電池について説明す
る。
Hereinafter, a conventional alkaline-manganese battery will be described.

従来のアルカリ−マンガン電池は、金属ケース内に、
二酸化マンガンとカーボンを撹拌混合し筒型に加圧成形
して得た正極合剤、合成繊維不織布から成るセパレー
タ、汞化亜鉛粉末と高分子電解質の一種であるカルボキ
シメチルセルロースに水酸化カリウム溶液を添加してゲ
ル状とした、ゲル状負極を設置した後、金属ケースを内
側にかしめ、一体化した負極集電子、樹脂封口体、負極
底板を圧着することにより密閉している。金属ケースの
底部には正極キャップを設置し、熱収縮性塩化ビニルチ
ューブとさらに外装缶で被覆している。電解液としては
40%水酸化カリウム飽和酸化亜鉛溶液を用い、前記正極
合剤、セパレータ、ゲル状負極の各細孔中、及び各間の
接触界面中に保持されている。
Conventional alkaline-manganese batteries are stored in a metal case.
A potassium hydroxide solution is added to a positive electrode mixture obtained by mixing and mixing manganese dioxide and carbon and press-molding into a cylinder, a separator made of synthetic fiber non-woven fabric, zinc calomel powder and carboxymethyl cellulose, a type of polymer electrolyte. After the gelled negative electrode was installed, the metal case was crimped inside, and the integrated negative electrode current collector, resin sealing body, and negative electrode bottom plate were sealed by crimping. A positive electrode cap is installed at the bottom of the metal case, which is covered with a heat-shrinkable vinyl chloride tube and an outer can. As the electrolyte
A 40% potassium hydroxide saturated zinc oxide solution is used and held in the pores of the positive electrode mixture, the separator and the gelled negative electrode, and in the contact interface between them.

以上のように構成されたアルカリ−マンガン電池につ
いて、以下その動作を説明する。
The operation of the alkaline-manganese battery configured as described above will be described below.

前記のようにして得られたアルカリ−マンガン電池を
放電すると、正極合剤内では、主にカーボンを通じて電
子伝導が生じる。この時、二酸化マンガンと電解液の界
面では下記に示す(以下式という)ように、水素イオ
ンと電子の供給により二酸化マンガンが還元される。
When the alkaline-manganese battery obtained as described above is discharged, electron conduction occurs mainly through carbon in the positive electrode mixture. At this time, at the interface between manganese dioxide and the electrolyte, manganese dioxide is reduced by the supply of hydrogen ions and electrons as shown below (hereinafter referred to as the formula).

MnO2+H++e-→MnOOH …… 一方、ゲル状負極内では、下記に示す(以下式とい
う)ように亜鉛が酸化される。これら式、式の反応
がセパレータ Zn+4OH-→Zn(OH)4 2-+2e- …… を介して起こることにより電流が生じる。
MnO 2 + H + + e → MnOOH On the other hand, in the gelled negative electrode, zinc is oxidized as shown below (hereinafter referred to as a formula). A current is generated by the reaction of these formulas and formulas occurring through the separator Zn + 4OH → Zn (OH) 4 2− + 2e .

発明が解決しようとする課題 しかしながら前記従来の構成では、正極合剤の電子伝
導性を高めるためにカーボンを混合しているが、その際
にカーボンの疎水性のために、添加された電解液の正極
合剤中への浸透が阻害され、正極中の電解液は正極合剤
中の細孔内に不均一にしか分布せず、二酸化マンガンと
電解液との界面が少なくなる。この時二酸化マンガンが
電解液と接していない面では、水素イオンの二酸化マン
ガンへの供給は無く、放電の際の二酸化マンガンの還元
反応(式)は起こらず、未反応の二酸化マンガンが多
量に存在し、二酸化マンガンの利用率が低下し、放電容
量が小さくなる。
Problems to be Solved by the Invention However, in the above-described conventional configuration, carbon is mixed in order to enhance the electron conductivity of the positive electrode mixture. The permeation into the positive electrode mixture is hindered, and the electrolyte in the positive electrode is non-uniformly distributed only in the pores in the positive electrode mixture, and the interface between manganese dioxide and the electrolyte is reduced. At this time, on the surface where manganese dioxide is not in contact with the electrolytic solution, there is no supply of hydrogen ions to manganese dioxide, no reduction reaction (formula) of manganese dioxide occurs during discharge, and a large amount of unreacted manganese dioxide is present. As a result, the utilization rate of manganese dioxide decreases, and the discharge capacity decreases.

ここで、カーボン量を減らして正極合剤の親水性を高
める場合には、電子伝導性が悪くなることにより、電子
の二酸化マンガンへの供給が減少し、還元反応(式)
に関与しない二酸化マンガン量が増えるため、むしろ放
電容量は低下する。また、電解液の浸透性を高める目的
で中性付近で一般浸透剤として使用されている界面活性
剤(例えばエアロゾルOT,アメリカン サイアナミド
社製)で処理を施したカーボンを用いて正極合剤とする
場合には、電解液が強アルカリ性且つ塩の飽和溶液であ
るために、一般浸透剤はほとんど溶解せず、さらに化学
的に分解してしまい、浸透剤の効果が得られないという
課題を有していた。
Here, when increasing the hydrophilicity of the positive electrode mixture by reducing the amount of carbon, the supply of electrons to manganese dioxide is reduced due to poor electron conductivity, and the reduction reaction (formula)
Since the amount of manganese dioxide not involved in the increase increases, the discharge capacity decreases rather. In addition, a positive electrode mixture is formed using carbon treated with a surfactant (eg, Aerosol OT, manufactured by American Cyanamid Co.) that is used as a general penetrant in the vicinity of neutrality in order to enhance the permeability of the electrolyte. In this case, since the electrolytic solution is a strongly alkaline and saturated solution of a salt, the general penetrant hardly dissolves and further chemically decomposes, so that the effect of the penetrant cannot be obtained. I was

本発明は前記従来の課題を解決するもので、電解液の
正極合剤中への浸透性を高めることにより、二酸化マン
ガンの利用率を向上して高容量化を図ることを実現した
アルカリ−マンガン電池を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and realizes an alkali-manganese material capable of increasing the utilization rate of manganese dioxide and increasing the capacity by increasing the permeability of the electrolyte into the positive electrode mixture. It is intended to provide a battery.

課題を解決するための手段 この目的を達成するために、本発明のアルカリ−マン
ガン電池は、界面活性剤としてフッ素系界面活性剤、ポ
リエチレンオキサイド系界面活性剤、あるいはフッ素系
界面活性剤とポリエチレンオキサイド系界面活性剤を併
用したもののいずれかで処理を施したカーボンブラック
と、二酸化マンガンとから成る正極合剤、電解液として
酸化亜鉛を溶解した水酸化カリウム水溶液を、負極とし
てゲル化亜鉛粉末を、及び電解液保持体を兼ねるセパレ
ータから構成したものである。
Means for Solving the Problems In order to achieve this object, an alkali-manganese battery of the present invention comprises a fluorine-based surfactant, a polyethylene oxide-based surfactant, or a fluorine-based surfactant and a polyethylene oxide as a surfactant. A carbon black treated with either one of those combined with a surfactant, a positive electrode mixture comprising manganese dioxide, a potassium hydroxide aqueous solution in which zinc oxide is dissolved as an electrolytic solution, and a gelled zinc powder as a negative electrode, And a separator also serving as an electrolyte holder.

作用 この構成によって、正極合剤中において電解液が細孔
内に浸透し、均一に分布することにより、電解液と接す
る二酸化マンガン量が増加するため、二酸化マンガンの
利用率が向上し、放電容量は増加する。
Action With this configuration, the electrolyte solution penetrates into the pores in the positive electrode mixture and is uniformly distributed, thereby increasing the amount of manganese dioxide in contact with the electrolyte solution, thereby improving the utilization rate of manganese dioxide and improving the discharge capacity. Increases.

実 施 例 以下本発明の一実施例について、図面を参照しながら
説明する。
Embodiment An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例におけるアルカリ−マンガ
ン電池の断面図である。第1図において、1は金属ケー
ス、2は本発明の正極合剤で、フッ素系界面活性剤であ
るパーフルオロアルキルカルボン酸カリウム(以下PACK
という)単独の1%水溶液、またはポリエチレンオキサ
イド系界面活性剤であるポリオキシエチレンノニフェニ
ルエーテル(以下POE−NPEという)単独の1%水溶液、
あるいは、PACK0.5%POE−NPE0.5%水溶液である界面活
性剤の水溶液と、カーボンブラックとを重量比3:1で混
合した後、110℃の恒温乾燥器中で10時間乾燥して得た
カーボンブラック中に界面活性剤を3%含有する界面活
性剤処理を施したカーボンブラックを、二酸化マンガン
と重量比7.5:92.5で混合撹拌し、筒型に加圧成形して得
たものである。以下従来例と同様、3はセパレータ、4
はゲル状負極、5は負極集電子、6は樹脂封口体、7は
負極底板、8は正極キャップ、9は熱収縮性塩化ビニ
ル、10は外装缶である。電解液は40%水酸化カリウム飽
和酸化亜鉛溶液を用い、前記正極合剤2、セパレータ
3、ゲル状負極4の各細孔中、及び各間の接触界面上に
保持されるが、本発明の正極合剤中には界面活性剤処理
を施したカーボンブラックが備わっているため、カーボ
ンブラックと電解液との間の表面張力が低下し、正極合
剤の浸透性が向上し、細孔の内部まで電解液が入り込む
ことにより、正極合剤中の電解液の分布が均一になって
いる。
FIG. 1 is a sectional view of an alkaline-manganese battery according to one embodiment of the present invention. In FIG. 1, 1 is a metal case, 2 is a positive electrode mixture of the present invention, and potassium perfluoroalkylcarboxylate (hereinafter referred to as PACK) which is a fluorine-based surfactant.
1% aqueous solution of polyoxyethylene noniphenyl ether (hereinafter referred to as POE-NPE) alone which is a polyethylene oxide-based surfactant,
Alternatively, an aqueous solution of a surfactant, which is a PACK 0.5% POE-NPE 0.5% aqueous solution, and a carbon black are mixed at a weight ratio of 3: 1 and then dried in a thermostatic oven at 110 ° C. for 10 hours. It is obtained by mixing and stirring a surfactant-treated carbon black containing 3% of a surfactant in manganese dioxide at a weight ratio of 7.5: 92.5 and press-molding it into a cylindrical mold. . Hereinafter, similar to the conventional example, 3 is a separator, 4
Is a gelled negative electrode, 5 is a negative electrode current collector, 6 is a resin sealing body, 7 is a negative electrode bottom plate, 8 is a positive electrode cap, 9 is heat-shrinkable vinyl chloride, and 10 is an outer can. The electrolytic solution is a 40% potassium hydroxide saturated zinc oxide solution, and is held in the pores of the positive electrode mixture 2, the separator 3, and the gelled negative electrode 4 and on the contact interface between them. Since the positive electrode mixture contains carbon black treated with a surfactant, the surface tension between the carbon black and the electrolyte decreases, the permeability of the positive electrode mixture improves, and the inside of the pores increases. As the electrolyte solution penetrates into the positive electrode mixture, the distribution of the electrolyte solution in the positive electrode mixture becomes uniform.

以上のように構成された本実施例のアルカリ−マンガ
ン電池について、以下その動作を説明する。
The operation of the alkaline-manganese battery of the present embodiment configured as described above will be described below.

前記のようにして得られたアルカリ−マンガン電池を
放電すると、従来例と同様、正極合剤2内では主にカー
ボンを通じて電子伝導が生じ、二酸化マンガンと電解液
の界面ではプロトンの供給により前記式のような二酸
化マンガンの還元反応が起こる。またゲル状負極4中で
は前記式のような亜鉛の酸化が起こり、セパレータ3
を介して電流が生じる。
When the alkali-manganese battery obtained as described above is discharged, electron conduction occurs mainly through carbon in the positive electrode mixture 2 as in the conventional example, and protons are supplied at the interface between manganese dioxide and the electrolyte by the above formula. A reduction reaction of manganese dioxide occurs. In the gelled negative electrode 4, oxidation of zinc as in the above formula occurs, and the separator 3
A current is generated via

第2図はアルカリ−マンガン電池の放電特性を示す図
である。図中A,B,Cは本発明の界面活性剤処理を施した
カーボンを有する正極合剤を用いたアルカリ−マンガン
電池で、Aはカーボン中に界面活性剤としてフッ素系界
面活性剤であるPACKを3%含有したもの、Bはカーボン
ブラック中にポリエチレンオキサイド系界面活性剤であ
るPOE−NPEを3%含有したもの、Cはカーボンブラック
中にPACKとPOE−NPEを併せて各1.5%づつ含有したもの
である。Dは従来例の界面活性剤処理を施さないカーボ
ンブラックを有する正極合剤を用いたアルカリ−マンガ
ン電池である。各々、放電は全て負荷1Ω、温度20℃で
行い、放電時における二酸化マンガンの利用率と電池電
圧の関係を表わしている。第2図より、本発明のA,B,C
の方が従来例のDよりも二酸化マンガンの利用率が大き
いことがわかる。これはA,B,Cの場合、正極合剤中に含
有するPACK、POE−NPEが電解液に溶解した際、PACK、PO
E−NPEはアルカリ溶液中にあっても分解せず安定であ
り、電解液が高濃度塩溶液で溶解度が極めて小さいにも
かかわらず、電解液の表面張力を下げることが可能であ
るためで、これにより電解液の正極合剤中への浸透性が
高まり、細孔内での電解液の分布が均一化することが可
能となる。しかし、Dの場合は電解液の正極合剤中への
浸透が不十分で、細孔内に電解液が不均一にしか分布し
ない。このためA,B,CはDより二酸化マンガンと電解液
の接触面が多く存在し、反応界面が増加して、二酸化マ
ンガンの還元反応(前記式)が円滑に行われ、二酸化
マンガンの利用率が大きくなると考えられる。さらに、
Cの結果より、PACKとPOE−NPEを併用しても相互作用な
ど起こらないことも明らかである。
FIG. 2 is a diagram showing the discharge characteristics of an alkaline-manganese battery. In the figure, A, B and C are alkaline-manganese batteries using the positive electrode mixture having carbon treated with the surfactant of the present invention, and A is PACK which is a fluorine-based surfactant as a surfactant in carbon. B contains 3% of polyethylene oxide surfactant POE-NPE in carbon black, and C contains 1.5% of PACK and POE-NPE in carbon black in total. It was done. D is a conventional alkaline-manganese battery using a positive electrode mixture containing carbon black not subjected to a surfactant treatment. Each discharge was performed at a load of 1Ω and a temperature of 20 ° C., and shows the relationship between the manganese dioxide utilization rate and the battery voltage during discharge. FIG. 2 shows that A, B, C of the present invention.
It can be seen that the use of manganese dioxide is higher in the case of D than in the conventional example D. This is because, in the case of A, B and C, when PACK and POE-NPE contained in the positive electrode mixture are dissolved in the electrolyte, PACK and POE
E-NPE is stable without being decomposed even in an alkaline solution, and it is possible to lower the surface tension of the electrolytic solution even though the electrolytic solution has extremely low solubility in a high-concentration salt solution. Thereby, the permeability of the electrolyte into the positive electrode mixture is increased, and the distribution of the electrolyte in the pores can be made uniform. However, in the case of D, the permeation of the electrolyte into the positive electrode mixture is insufficient, and the electrolyte is only unevenly distributed in the pores. For this reason, A, B, and C have more contact surfaces between manganese dioxide and the electrolytic solution than D, the reaction interface increases, and the reduction reaction of manganese dioxide (the above formula) is performed smoothly, and the utilization rate of manganese dioxide is increased. Is thought to be larger. further,
From the results of C, it is clear that no interaction occurs even when PACK and POE-NPE are used together.

以上のように本実施例によれば、正極合剤中のカーボ
ンブラックに、フッ素系界面活性剤、ポリエチレンオキ
サイド系界面活性剤で処理を施したことにより、フッ素
系界面活性剤、ポリエチレンオキサイド系界面活性剤共
にアルカリ溶液中においても安定性に優れ分解を受けな
いこと、微量で表面張力を著しく下げる特性を持つこと
から、界面活性剤が電解液中に溶解すると、カーボンと
電解液の表面張力が下がり、電解液の正極合剤中への浸
透性が高まり、細孔内での電解液の分布が均一化する。
この結果、二酸化マンガンと電解液の接触界面の面積が
増加し、放電時における二酸化マンガンの還元反応(前
記式)が円滑に進み、二酸化マンガンの利用率を向上
することができる。
As described above, according to the present example, the carbon black in the positive electrode mixture was treated with the fluorine-based surfactant and the polyethylene oxide-based surfactant, whereby the fluorine-based surfactant and the polyethylene oxide-based interface were treated. Both surfactants have excellent stability even in alkaline solutions and do not undergo decomposition, and have the property of significantly lowering the surface tension by a small amount.When the surfactant is dissolved in the electrolyte, the surface tension of carbon and the electrolyte is reduced. As a result, the permeability of the electrolyte into the positive electrode mixture increases, and the distribution of the electrolyte in the pores becomes uniform.
As a result, the area of the contact interface between manganese dioxide and the electrolytic solution increases, the reduction reaction of manganese dioxide during discharge (the above formula) proceeds smoothly, and the utilization rate of manganese dioxide can be improved.

発明の効果 本発明は、二酸化マンガンと、フッ素系界面活性剤又
はポリエチレンオキサイド系界面活性剤単独か、あるい
は、それらを併用して界面活性剤処理を施したカーボン
ブラックとから成る正極合剤、水酸化カリウム水溶液に
酸化亜鉛を溶解した電解液、負極としてゲル化亜鉛粉末
を用い、セパレータを備えたアルカリ−マンガン電池で
あり、その放電性能は正極利用率の向上により、高容量
化が可能となるという効果が得られる。
Effect of the Invention The present invention is a positive electrode mixture comprising manganese dioxide and a carbon black treated with a surfactant, either a fluorine-based surfactant or a polyethylene oxide-based surfactant alone, or a combination thereof, and water. It is an alkaline-manganese battery with a separator using an electrolytic solution in which zinc oxide is dissolved in an aqueous solution of potassium oxide and a gelled zinc powder as a negative electrode. The discharge performance of the battery can be increased by improving the positive electrode utilization rate. The effect is obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例及び従来例のアルカリ−マン
ガン電池の断面図、第2図はアルカリ−マンガン電池の
放電特性を示す図である。 1……金属ケース、2……正極合剤、3……セパレー
タ、4……ゲル状負極。
FIG. 1 is a cross-sectional view of an alkaline-manganese battery according to one embodiment of the present invention and a conventional example, and FIG. 2 is a diagram showing discharge characteristics of the alkaline-manganese battery. 1 ... metal case, 2 ... positive electrode mixture, 3 ... separator, 4 ... gelled negative electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新田 芳明 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 芳澤 浩司 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭51−36540(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 6/06 - 6/12 H01M 4/62 H01M 4/06 - 4/08──────────────────────────────────────────────────の Continued on front page (72) Inventor Yoshiaki Nitta 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Koji Yoshizawa 1006 Kadoma Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. (56) References JP-A-51-36540 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 6/ 06-6/12 H01M 4/62 H01M 4/06 -4/08

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】二酸化マンガンとカーボンブラックとの混
合粉体からなる正極と、酸化亜鉛を含有するゲル化した
電解液と亜鉛粉末からなるゲル状負極を備えたアルカリ
−マンガン電池であって、前記正極中のカーボンブラッ
クをポリエチレンオキサイド系界面活性剤とフッ素系界
面活性剤のうちのいずれか、または両方を併用し、予め
処理して用いることを特徴とするアルカリ−マンガン電
池。
An alkaline-manganese battery comprising: a positive electrode comprising a mixed powder of manganese dioxide and carbon black; and a gelled negative electrode comprising a gelled electrolytic solution containing zinc oxide and zinc powder. An alkali-manganese battery, wherein carbon black in the positive electrode is pretreated before use using one or both of a polyethylene oxide-based surfactant and a fluorine-based surfactant.
JP26842388A 1988-10-25 1988-10-25 Alkaline-manganese battery Expired - Fee Related JP2808614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26842388A JP2808614B2 (en) 1988-10-25 1988-10-25 Alkaline-manganese battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26842388A JP2808614B2 (en) 1988-10-25 1988-10-25 Alkaline-manganese battery

Publications (2)

Publication Number Publication Date
JPH02114447A JPH02114447A (en) 1990-04-26
JP2808614B2 true JP2808614B2 (en) 1998-10-08

Family

ID=17458280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26842388A Expired - Fee Related JP2808614B2 (en) 1988-10-25 1988-10-25 Alkaline-manganese battery

Country Status (1)

Country Link
JP (1) JP2808614B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2793694B2 (en) * 1990-05-01 1998-09-03 富士電気化学株式会社 Method for producing positive electrode mixture for manganese dry battery
US5958623A (en) * 1996-12-13 1999-09-28 Kozawa; Akiya Electrochemical cell employing a fine carbon additive
JP6622976B2 (en) * 2015-03-18 2019-12-18 Fdk株式会社 Alkaline battery
JP2023127005A (en) * 2020-08-07 2023-09-13 パナソニックIpマネジメント株式会社 Alkaline dry cell

Also Published As

Publication number Publication date
JPH02114447A (en) 1990-04-26

Similar Documents

Publication Publication Date Title
CA1046137A (en) Rechargeable electrochemical cell
US5626988A (en) Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture
US3956018A (en) Primary electric current-producing dry cell using a (CFx)n cathode and an aqueous alkaline electrolyte
AU2003244343B2 (en) Alkali cell
Mainar et al. Systematic cycle life assessment of a secondary zinc–air battery as a function of the alkaline electrolyte composition
RU95119852A (en) Rechargeable Electrochemical Cell
JP2002526898A (en) High energy density boride battery
JP2001015106A (en) Alkaline battery
US5919588A (en) Cathode additive for alkaline primary cells
JP2808614B2 (en) Alkaline-manganese battery
US3288643A (en) Process for making charged cadmium electrodes
Herbert The alkaline manganese dioxide dry cell
US2692215A (en) Alkaline dry cell
US3783026A (en) Air-depolarized cells utilizing a cyanate or thiocyanate-containing electrolyte
JP2002093413A (en) Battery
Abrashev et al. Optimization of the bi-functional oxygen electrode (BOE) structure for application in a Zn-air accumulator
JP4253172B2 (en) Sealed nickel zinc primary battery
US2814663A (en) Primary cell
JP2000048827A (en) Alkaline battery
US20210408610A1 (en) High voltage rechargeable Zn-MnO2 battery
US2535742A (en) Primary cell with electrodes of magnesium and magnesium permanganate
JPH0338702B2 (en)
JPS6352747B2 (en)
JP2854926B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JPS6228548B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070731

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080731

LAPS Cancellation because of no payment of annual fees