JPS60235466A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60235466A
JPS60235466A JP9226284A JP9226284A JPS60235466A JP S60235466 A JPS60235466 A JP S60235466A JP 9226284 A JP9226284 A JP 9226284A JP 9226284 A JP9226284 A JP 9226284A JP S60235466 A JPS60235466 A JP S60235466A
Authority
JP
Japan
Prior art keywords
film
mask
oxidation
region
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9226284A
Other languages
Japanese (ja)
Inventor
Hideaki Sadamatsu
定松 英明
Akihiro Kanda
神田 彰弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9226284A priority Critical patent/JPS60235466A/en
Publication of JPS60235466A publication Critical patent/JPS60235466A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To eliminate the need for an alignment margin, and to manufacture a semiconductor device having high density by forming a selective oxide film by an oxidation-resistant film, removing the oxidation-resistant film while using a film on the oxidation-resistant film as a mask and shaping an inactive base. CONSTITUTION:Oxide films 106a, 106b are formed in approximately 1,000Angstrom through selective oxidation while employing a nitride film 102 as a mask. The nitride film 102 is removed while using a CVD SiO2 film 103 as a mask, and P type inactive base regions 108a, 108b are shaped through thermal diffusion by a BSG film 17. Ions are implanted through the nitride film 102 to form an active base region 110 and an emitter 111. Consequently, the inactive base region 108b is shaped while employing the selective oxide film 106b and the over- etched CVD SiO2 film 103 as masks, thus eliminating the need for a mask alignment margin as seen in conventional devices. Accordingly, the area of a base is also reduced, and the degree of integration can be improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高密度・高速・高精度な半導体装置の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a semiconductor device with high density, high speed, and high precision.

従来例の構成とその問題点 半導体装置は最近ますます高密度化、高精度化される傾
向にあシ、セルファライン化して、かつ、電流増幅率h
Fx のバラツキが少ないトランジスタを必要としてき
ている。この要求を満足するため、絶縁膜及び耐酸化性
膜をマスクに不活性ベースを形成11、選釈酸什を行f
r’−r)−、L一本に遷枦醜什膜をマスクとして活性
ベース及びエミッタをイオン注入によ多形成する方法と
して特願昭68−20662号に示されたものがあシ、
第1図に各工程における断面図を示す。
Conventional configurations and their problems Semiconductor devices have recently become more and more densely packed and highly accurate.
There is a growing need for transistors with less variation in Fx. In order to meet this requirement, an inert base was formed using an insulating film and an oxidation-resistant film as a mask, and a selective acid was applied.
r'-r)-, a method of forming multiple active bases and emitters by ion implantation using a transitional ugly film as a mask for one L is shown in Japanese Patent Application No. 68-20662.
FIG. 1 shows cross-sectional views at each step.

以下第1図によシ説明する。n形Si基板1の主表面に
例えば熱酸化法によ!1lS102膜2を約4000人
形成し、ベース領域となる部分に開孔部を設け、エミッ
タ領域となる部分にSi 、N 4膜3を形成した後、
たとえはボロンを含むガラヌ(以下BSGとする)から
の熱拡散法によシ、p形の不活性ベース領域4a 、4
bを形成する(第1図A)。次に熱酸化法により窒化膜
3をマスクとして選択的に酸化膜6を約30oO人形成
する(第1図B)。その後、酸化膜2及び酸化膜6をマ
スクとして窒化膜3を通してイオン注入によfiBを4
0KeYで1〜3 X 10 ” 1ons/、1 、
 Asを180KeVで7 X 10” 1ons/ 
(yl 程度の打込みを行なう。この後、1000’C
程度の温度、N2雰囲気中で30〜60分の熱処理を施
して活性ベース領域6.エミッタ領域7を形成する。こ
の時イオン注入による誘起欠陥は破線108の如く、エ
ミッタ領域7内にとり込まれる(第1図C)。
This will be explained below with reference to FIG. For example, by thermal oxidation method on the main surface of the n-type Si substrate 1! After forming about 4,000 1lS102 films 2, providing an opening in the part that will become the base region, and forming the Si, N 4 film 3 in the part that will become the emitter region,
For example, p-type inactive base regions 4a, 4 are formed by a thermal diffusion method from galanic (hereinafter referred to as BSG) containing boron.
b (Fig. 1A). Next, by thermal oxidation, an oxide film 6 of approximately 3000 m thick is selectively formed using the nitride film 3 as a mask (FIG. 1B). Then, using the oxide films 2 and 6 as masks, the fiB 4 is implanted through the nitride film 3 by ion implantation.
1 to 3 x 10” 1ons/, 1 at 0KeY
As at 180KeV 7 x 10” 1oz/
(Do a drive of about yl. After this, 100'C
The active base region 6. is heat-treated for 30 to 60 minutes in a N2 atmosphere at a temperature of 6. An emitter region 7 is formed. At this time, defects induced by the ion implantation are incorporated into the emitter region 7 as indicated by a broken line 108 (FIG. 1C).

この後、窒化膜3を除去するとともに酸化膜6にベース
コンタクト窓ヲ開孔し、エミッタ電極9゜ベース電極1
0を形成する(第1図D)。なおここでは、コレクタ窓
及びコレクタ電極は省略している。この様に製作したト
ランジスタにおいては次の様な利点がある。
After that, the nitride film 3 is removed and a base contact window is opened in the oxide film 6, and the emitter electrode 9 and the base electrode 1 are opened.
0 (FIG. 1D). Note that the collector window and collector electrode are omitted here. The transistor manufactured in this manner has the following advantages.

(1) エミッタとエミッタコンタクトのセルファライ
ン化による高密度化及び高速化。・・・・・窒化膜3下
部にエミッタを形成するとともに窒化膜3の除去でエミ
ッタコンタクト窓が開孔できるため。
(1) High density and high speed by self-aligning the emitter and emitter contact. ...This is because an emitter is formed under the nitride film 3 and an emitter contact window can be opened by removing the nitride film 3.

コンタクトマージンが不要となり、高密度化が出来て、
さらにエミッタの瞭細化によシ高速化できる。
Contact margin is no longer required, allowing for higher density,
Furthermore, by making the emitter clearer, the speed can be increased.

(21高精度化・・・・イオン注入により活性ベース6
、エミ ツタ7を形成するため、ベース幅が精度よくコ
ントロールできること、及びイオン注入時に誘起される
欠陥がエミッタとなる領域T内にのみ形成され、pn接
合部をイオン注入時の誘起欠陥が横切らないため、リー
ク電流が少ないことの2点からベアトランジスタのベー
ス〜エミッタ間電圧の差(△〜BE)の小さいトランジ
スタ。
(21 High precision... Active base 6 is improved by ion implantation)
, to form emitter vines 7, the base width can be controlled with precision, and defects induced during ion implantation are formed only within the region T that will become the emitter, and defects induced during ion implantation do not cross the pn junction. Therefore, the bare transistor has a small base-emitter voltage difference (Δ~BE) from two points of view: low leakage current.

すなわち高精度トランジスタが製造可能である。In other words, high precision transistors can be manufactured.

しかしながら、上記の例では酸化膜2の開孔部分の内部
に窒化膜3を形成しなければならず、合せマージンが必
要となる。この点は今後、ますます高密度化する中で、
大きな課題となる。また。
However, in the above example, the nitride film 3 must be formed inside the opening portion of the oxide film 2, and an alignment margin is required. This point will become more and more dense in the future,
This will be a big challenge. Also.

非常に高集積化された集積回路においてはチップは両端
で1合せマージンをとることは困難を極めてくる。
In extremely highly integrated integrated circuits, it is extremely difficult to maintain a margin of 1 at both ends of the chip.

発明の目的 本発明はこの様な従来の問題に鑑み、高密度で高精度、
高速度に適した半導体装置の製造方法を提供することを
目的とするものである。
Purpose of the Invention In view of these conventional problems, the present invention provides a high-density, high-precision,
The object of the present invention is to provide a method for manufacturing a semiconductor device suitable for high speed.

発明の構成 本発明は耐酸化性膜によシ選択酸化膜を形成するととも
に耐酸化性膜上に形成された膜をマスクとして耐酸化性
膜を除去し、熱拡散によシネ活性ベースを形成すること
によシ、合せマージンを不要とし、ベース抵抗を増加さ
せることなく、高密度の半導体装置が製造出来る方法で
ある。
Structure of the Invention The present invention forms a selective oxidation film on an oxidation-resistant film, removes the oxidation-resistant film using the film formed on the oxidation-resistant film as a mask, and forms a cine-active base by thermal diffusion. This method eliminates the need for alignment margins and allows high-density semiconductor devices to be manufactured without increasing base resistance.

実施例の説明 本発明の一実施例の方法を図面を用いて説明する。Description of examples A method according to an embodiment of the present invention will be explained using the drawings.

第2図は本発明の一実施例の工程断面図を示すものであ
シ、以下第2図に従って説明する。n形基板1o1の主
表面に窒化膜102を約600人。
FIG. 2 shows a process sectional view of an embodiment of the present invention, and the following description will be made according to FIG. Approximately 600 layers of nitride film 102 are formed on the main surface of the n-type substrate 1o1.

に V D 5102膜を約3000人堆積した後、レ
ジスト104をフォトリングラフィによ多形成し、レジ
スト104を77、りにCVDSiO2膜1o3゜窒化
膜102をドライエソチク法等によシ垂直にエッチ ン
グする(第2図A)。次にレジスト104をマスクにウ
エソトエ、チング法等によシG V’ D 5in2 
膜103のサイドエッチを行なう(第2図B)。
After depositing approximately 3000 VD 5102 films, a resist 104 is formed by photolithography, and then the CVDSiO2 film 103° nitride film 102 is etched vertically by dry etching or the like. (Figure 2A). Next, using the resist 104 as a mask, apply a process such as etching or etching.G V' D 5in2
Side etching of the film 103 is performed (FIG. 2B).

レジスト104を除去するとともに、フォトリソグラフ
ィにより、レジスト106を形成し、レジスト105を
マスクにCV D 5in2膜103を除去スる(第2
図C)。レジスト105を除去するとともに、窒化膜1
02をマスクとして選択酸化し酸化膜1061a 、 
106bを約1000人形成する(第2図D)。しVD
3i02膜103をマスクとして窒化膜102を除去し
、BSG膜107により熱拡散を行ないp形不活性ベー
ス領域10B&、1081)を形成する(第2図E)。
While removing the resist 104, a resist 106 is formed by photolithography, and the CVD 5in2 film 103 is removed using the resist 105 as a mask (second step).
Figure C). While removing the resist 105, the nitride film 1
Selectively oxidize using 02 as a mask to form an oxide film 1061a,
Approximately 1000 people will form 106b (Figure 2D). Shi VD
The nitride film 102 is removed using the 3i02 film 103 as a mask, and thermal diffusion is performed using the BSG film 107 to form p-type inactive base regions 10B&, 1081) (FIG. 2E).

BSG膜107 、 CVDSiO2膜103を除去す
る。この時106a、106bは除去される(場合によ
り残ることもあるが残ってもさしつかえない)。
The BSG film 107 and CVDSiO2 film 103 are removed. At this time, 106a and 106b are removed (although they may remain depending on the case).

この後、窒化膜102をマスクにして熱酸化により、酸
化膜109&、109bを約3000A形成し、酸化膜
109&、109bをマスクとして、窒化膜102を通
してイオン注入によりBを40にθVで1〜3 X 1
0” 1ons/7 、 Asを180KeVで7 X
 10 ”1ons/d程度の打込みを行なう。
After this, oxide films 109&, 109b are formed with a thickness of approximately 3000A by thermal oxidation using the nitride film 102 as a mask, and B is ion-implanted through the nitride film 102 using the oxide films 109&, 109b as a mask at θV of 1 to 3. X 1
0” 1ons/7, As at 180KeV 7X
10” Perform implantation at approximately 1 ounce/d.

この後、1000℃程度の温度、N2雰囲気中で30〜
60分の熱処理を施して活性ベース領域110、エミッ
タ111を形成する。この時イオン注入による誘起欠陥
は破線112の如く、エミッタ領域111内にとり込ま
れる(第2図F)。
After this, at a temperature of about 1000℃, in a N2 atmosphere,
A heat treatment is performed for 60 minutes to form an active base region 110 and an emitter 111. At this time, defects induced by the ion implantation are incorporated into the emitter region 111 as indicated by a broken line 112 (FIG. 2F).

窒化膜102を除去するとともに酸化膜109aにベー
スコンタクト窓を開孔し、ベース電極113゜エミッタ
電極114を形成する(第2図G)。
At the same time as removing the nitride film 102, a base contact window is opened in the oxide film 109a, and a base electrode 113 and an emitter electrode 114 are formed (FIG. 2G).

なおここでもコレクタ窓及びコレクタ電極は省略してい
る。
Note that the collector window and collector electrode are also omitted here.

本実施例によれば選択酸化膜106bとオーバーエッチ
を行なったC V D 5in2膜103をマスクにし
て不活性ベース領域108bを形成するため、従来の様
なマスク合せマージンを必要としない。従ってベース面
積も小さくなり高集積化が可能である。エミッタマスク
を6μ7y1×3μmの大きさにした時、従来法ではベ
ース面積が9μm×11μm であるのに対し、本実施
例ではベース面積が6μ771 X 9.5μmとなシ
、ベーヌ面積で約59%である。又、マスク合せマージ
ンを必要としないため次の2つの利点を有する。第1は
従来の方法では合せずれによシ4Δの幅が方向により異
なってくるため、ベース抵抗が配置によシ変化するのに
対し、本発明の例では一定であるため配置によるベース
抵抗の変動は非常になく、トランジスタのスイッチング
時間を一定に出来る。このことは例えば並列型ム/D変
換器等における各比較器間のスピードを一定にする必要
がある場合には有効である。第2は大面積の高集積回路
においてチップの両端における高精度なマスク合せが不
要となる点である。さらに加えて1表面の平担化が出来
る点がある。従来法ではフィールド酸化膜2と不活性ベ
ーク上の酸化膜5の膜厚が異なるため、その間で段差が
あるのに対し、本発明の例ではフィールド酸化膜も不活
性ベース上の酸化膜も同じ膜厚に寿っており、平坦化さ
れている。
According to this embodiment, the inactive base region 108b is formed using the C V D 5in2 film 103 that has been over-etched with the selective oxide film 106b as a mask, so a mask alignment margin unlike the conventional method is not required. Therefore, the base area can be reduced and high integration is possible. When the emitter mask has a size of 6μ7x1x3μm, the base area is 9μmx11μm in the conventional method, whereas in this example the base area is 6μ771x9.5μm, which is approximately 59% of the beine area. It is. Furthermore, since no mask alignment margin is required, the following two advantages are provided. First, in the conventional method, the width of 4Δ differs depending on the direction due to misalignment, so the base resistance changes depending on the arrangement, whereas in the example of the present invention, it is constant, so the base resistance changes depending on the arrangement. There is very little variation, and the switching time of the transistor can be kept constant. This is effective, for example, when it is necessary to keep the speed between each comparator constant, such as in a parallel M/D converter. Second, in a large-area, highly integrated circuit, there is no need for highly accurate mask alignment at both ends of the chip. In addition, one surface can be flattened. In the conventional method, the thickness of the field oxide film 2 and the oxide film 5 on the inactive base are different, so there is a step difference between them, whereas in the example of the present invention, the field oxide film and the oxide film on the inert base are the same. The film is thick and flat.

発明の効果 以上の様に1本発明は耐酸化性膜によシ選択酸化膜を形
成し、耐酸化膜上の膜をマヌ゛りに耐酸化膜を除去して
不活性ベースを形成することによシベース面積を小さく
して高密度化するとともに配置によるベース抵抗の変動
が非常に小さく、高集化に適合し、かつ1表面平坦化し
た。高精度の半導体装置の製造方法を提供できるという
ものであ
Effects of the Invention As described above, one aspect of the present invention is to form a selective oxidation film on an oxidation-resistant film, and then manually remove the oxidation-resistant film from the film on the oxidation-resistant film to form an inert base. In addition to reducing the base area and increasing the density, variations in base resistance due to placement are extremely small, making it suitable for high integration, and one surface is flattened. The idea is to provide a method for manufacturing high-precision semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ム〜Dは従来の半導体装置の工程断面図、第2図
ム〜Gは本発明による半導体装置の工程断面図である。 106a、106b、109&、109b−−−・・・
酸化膜、103・・・・・・CV D 5in2膜、1
02・・・・・窒化膜、1o7−−18G膜、108&
、1osb ・=−・不活性ベース、110・・・・・
活性ベース、111・ ・・エミッタ、112・・・・
・・イオン注入誘起欠陥。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 第2図
1-D are process sectional views of a conventional semiconductor device, and FIGS. 2-2G are process sectional views of a semiconductor device according to the present invention. 106a, 106b, 109&, 109b---...
Oxide film, 103...CV D 5in2 film, 1
02...Nitride film, 1o7--18G film, 108&
, 1osb ・=-・Inert base, 110...
Active base, 111... Emitter, 112...
...Ion implantation induced defects. Name of agent: Patent attorney Toshio Nakao (1st person)
Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)一方導電形の半導体基板上に耐酸化性膜の第1の
膜を形成し、所望領域にレジストを形成するどともに、
レジストをマスクに上記第1の被膜及び上記耐酸化性膜
を除去し、その際、上記耐酸化膜のパターンよυも上記
第1の被膜の方が内側に形成される様にサイドエッチを
行なう工程、上記レジストを除去し、上記耐酸化性膜を
マスクとして、第1の酸化膜を形成する工程、上記第1
の被膜及び上記第1の酸化膜をマスクとして、上記耐酸
化性膜を除去し、熱拡散によシ他方導電形の第1領域を
形成する工程、上記第1の膜を除去し、上記耐酸化膜を
マスクに第2の酸化膜を形成する工程、上記第2の酸化
膜をマスクとしてイオン注入によシ他方導電形の第2領
域、一方導電形の第3領域を、上記第1領域と上記第2
領域が電気的Iy kit m−r七1m177m命、
−J−Z > L4d>4 / L d A−J−特徴
とする半導体装置の製造方法。
(1) Forming a first oxidation-resistant film on a semiconductor substrate of one conductivity type, forming a resist in a desired region, and
The first film and the oxidation-resistant film are removed using the resist as a mask, and at this time, side etching is performed so that the first film is formed on the inside of the pattern of the oxidation-resistant film. a step of removing the resist and forming a first oxide film using the oxidation-resistant film as a mask;
using the film and the first oxide film as a mask, removing the oxidation-resistant film and forming a first region of the other conductivity type by thermal diffusion; a step of forming a second oxide film using the oxide film as a mask; using the second oxide film as a mask, ion implantation is performed to form a second region of the other conductivity type, a third region of the one conductivity type, and the first region; and the second above
The area is electric Iy kit m-r 71m177m life,
-J-Z>L4d>4/Ld A-J- A method for manufacturing a semiconductor device.
(2)半導体基板をコレクタ、第1領域を不活性ベース
、第2領域を活性ベーク、第3領域をエミッタとするバ
イポーラトランジスタを含む特許請求の範囲第1項記載
の半導体装置の製造方法。
(2) A method for manufacturing a semiconductor device according to claim 1, comprising a bipolar transistor having a semiconductor substrate as a collector, a first region as an inactive base, a second region as an active bake, and a third region as an emitter.
(3)第1の膜のサイドエッチを行なった後、上記第1
の膜の周辺を含む一部を除去する工程を含む特許請求の
範囲第1項または第2項記載の半導体装置の製造方法。
(3) After performing side etching of the first film, the first
3. The method of manufacturing a semiconductor device according to claim 1, further comprising the step of removing a portion including the periphery of the film.
JP9226284A 1984-05-08 1984-05-08 Manufacture of semiconductor device Pending JPS60235466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9226284A JPS60235466A (en) 1984-05-08 1984-05-08 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9226284A JPS60235466A (en) 1984-05-08 1984-05-08 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60235466A true JPS60235466A (en) 1985-11-22

Family

ID=14049489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9226284A Pending JPS60235466A (en) 1984-05-08 1984-05-08 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60235466A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190153A (en) * 2019-05-31 2019-08-30 江苏顺风光电科技有限公司 Efficient selective emitter solar battery diffusion technique

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190153A (en) * 2019-05-31 2019-08-30 江苏顺风光电科技有限公司 Efficient selective emitter solar battery diffusion technique
CN110190153B (en) * 2019-05-31 2021-05-04 江苏顺风光电科技有限公司 High-efficiency selective emitter solar cell diffusion process

Similar Documents

Publication Publication Date Title
US4445268A (en) Method of manufacturing a semiconductor integrated circuit BI-MOS device
JPH05347383A (en) Manufacture of integrated circuit
JPS62290173A (en) Manufacture of semiconductor integrated circuit device
KR910000020B1 (en) Manufacture of semiconductor device
JPS60235466A (en) Manufacture of semiconductor device
JPH0366815B2 (en)
JPS641063B2 (en)
JPH1140573A (en) Manufacture of semiconductor device
JPS61251165A (en) Manufacture of bi-mis integrated circuit
JP2745946B2 (en) Method for manufacturing semiconductor integrated circuit
JPS6037614B2 (en) Manufacturing method of semiconductor device
JPS5987858A (en) Manufacture of semiconductor device
JPH01140667A (en) Semiconductor device
JPS60140757A (en) Manufacture of semiconductor device
JPH0579186B2 (en)
JPH03231431A (en) Manufacture of semiconductor device and semiconductor device
JPS5846674A (en) Preparation of semiconductor device
JPS61154073A (en) Manufacture of semiconductor device
JPS63228753A (en) Manufacture of semiconductor device
JPS61166072A (en) Manufacture of semiconductor device
JPH0443663A (en) Semiconductor device and its manufacture
JPH01181465A (en) Manufacture of ultra-high speed semiconductor device
JPS62108570A (en) Manufacture of semiconductor device
JPH0313746B2 (en)
JPS6149469A (en) Manufacture of semiconductor device