JPS6023505B2 - semiconductor storage device - Google Patents
semiconductor storage deviceInfo
- Publication number
- JPS6023505B2 JPS6023505B2 JP58217716A JP21771683A JPS6023505B2 JP S6023505 B2 JPS6023505 B2 JP S6023505B2 JP 58217716 A JP58217716 A JP 58217716A JP 21771683 A JP21771683 A JP 21771683A JP S6023505 B2 JPS6023505 B2 JP S6023505B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- etching
- capacitor
- source
- insulating film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004065 semiconductor Substances 0.000 title claims description 11
- 239000003990 capacitor Substances 0.000 claims description 23
- 239000011148 porous material Substances 0.000 claims description 19
- 239000000758 substrate Substances 0.000 claims description 19
- 230000005669 field effect Effects 0.000 claims description 3
- 238000005530 etching Methods 0.000 description 36
- 238000000034 method Methods 0.000 description 21
- 238000009792 diffusion process Methods 0.000 description 7
- 238000005468 ion implantation Methods 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 5
- 230000010354 integration Effects 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001259 photo etching Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- UOACKFBJUYNSLK-XRKIENNPSA-N Estradiol Cypionate Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H](C4=CC=C(O)C=C4CC3)CC[C@@]21C)C(=O)CCC1CCCC1 UOACKFBJUYNSLK-XRKIENNPSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
- H10B12/02—Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
- H10B12/03—Making the capacitor or connections thereto
- H10B12/038—Making the capacitor or connections thereto the capacitor being in a trench in the substrate
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は半導体記憶装置に関し、詳しくは、絶縁ゲート
型電界効果トランジスタと、情報蓄積部である容量を含
む半導体記憶装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor memory device, and more particularly to a semiconductor memory device including an insulated gate field effect transistor and a capacitor serving as an information storage section.
〔発明の背景〕周知のように、絶縁ゲート型電界効果ト
ランジスタと情報蓄積部である容量をそなえた半導体記
憶装置は、広く使用されているが、近年における集積密
度の著しい向上にともない、所要面積の減少が強く要望
されている。[Background of the Invention] As is well known, semiconductor memory devices equipped with an insulated gate field effect transistor and a capacitor serving as an information storage section are widely used, but with the remarkable increase in integration density in recent years, the required area has There is a strong demand for a reduction in
本発明の目的は、所望面積が著しく小さく、従来よりも
はるかに集積密度の高い半導体記憶装置を提供すること
である。An object of the present invention is to provide a semiconductor memory device with a significantly smaller desired area and with a much higher integration density than conventional ones.
上記目的を達成するため、本発明は、半導体基板の主表
面から内部に向けて形成された紬孔を容量に利用し、上
記細孔の表面上に絶縁膜を介して一方の電極を形成する
とともに、他方の電極を上記細孔の表面に沿って形成す
るものである。In order to achieve the above object, the present invention utilizes pongee pores formed inward from the main surface of a semiconductor substrate as a capacitor, and forms one electrode on the surface of the pore with an insulating film interposed therebetween. At the same time, the other electrode is formed along the surface of the pore.
〔発明の実施例〕第1図aおよびbもこ本発明の概念図
を示した。[Embodiments of the Invention] Figures 1a and 1b also show conceptual diagrams of the present invention.
aにドレィン容量の場合、bに反転容量の場合を示した
。本発明の骨子は、半導体基板4中に細孔16を堀り、
この細孔の内壁の表面を容量として用いることにあり、
基板表面関口部の面積に対し著しく細孔内壁面積を拡大
することができることを特徴とする。こうすれば平面面
積を増加することなく記憶容量を拡大することができ従
釆法の欠点であった多段接続の不利を飛躍的に減少させ
ることができる。従釆例によると100山m□の容量で
約lpFとなるが第1図の細孔は開□部2ムm×100
rmで50仏mの深さを容易に形成できるから容量の面
積は同じで基板表面の面積は1/50に縮小できる。The case of drain capacitance is shown in a, and the case of inversion capacitance is shown in b. The gist of the present invention is to drill pores 16 in the semiconductor substrate 4,
The purpose is to use the surface of the inner wall of this pore as a capacitor.
It is characterized in that the area of the inner wall of the pore can be significantly expanded relative to the area of the entrance part on the substrate surface. In this way, the storage capacity can be expanded without increasing the planar area, and the disadvantages of multi-stage connection, which were the disadvantages of the conventional method, can be dramatically reduced. According to the related example, the capacitance of 100 mm is about 1 pF, but the pore in Figure 1 has an opening of 2 mm x 100 mm.
Since a depth of 50 mm can be easily formed in rm, the area of the substrate surface can be reduced to 1/50 while the area of the capacitor remains the same.
この例では少くとも5の音の集積度が従来と同じ基板面
積で実現される。また同じ規模であれば1/50に面積
を縮小でき、本発明の実施例効果は測り知れないものが
ある。次に紬孔の形成法を述べる。In this example, an integration degree of at least 5 tones is achieved with the same board area as in the prior art. Moreover, if the scale is the same, the area can be reduced to 1/50, and the effects of the embodiment of the present invention are immeasurable. Next, the method for forming the pongee hole will be described.
従来からKOHの本溶液を用いたエッチング法が知られ
ており、これはシリコンの{111}面のエッチング速
度が特に遅く、適当な条件を選べば{111}面以外の
面の1/400の速度にすることも可能である。すなわ
ち方位依存エッチング(mien側iondepend
entetching)を用いて最もエッチング速度の
遅い{111}面を精度よく形成することができる。こ
の説明を第2図に示す。本発明の主旨上細孔を縦方向に
深く形成するので基板表面は{110}面あるいはその
近傍(以下{110}面と記す場合、特に断わらない限
りその近傍も含むことにする。その近傍とは{110}
面から20o以内とする{110}面の場合20o以内
に他の低指数面はない)である必要がある。第2図に示
すごとく{110}面上に形成したエッチングマスク孔
側線17を形成する。An etching method using this solution of KOH has been known for a long time, and the etching rate of the {111} plane of silicon is particularly slow. It is also possible to increase the speed. In other words, orientation-dependent etching (mien side ion depend
The {111} plane, which has the slowest etching rate, can be formed with high precision using the etching method. This explanation is shown in FIG. Because the purpose of the present invention is to form pores deep in the vertical direction, the surface of the substrate is in the {110} plane or its vicinity (hereinafter, when the {110} plane is referred to as the {110} plane, unless otherwise specified, the vicinity thereof is also included. is {110}
In the case of a {110} plane, there must be no other low index plane within 20o. As shown in FIG. 2, etching mask hole side lines 17 are formed on the {110} plane.
エッチングのマスクとしてはシリコンのエッチング速度
より十分遅い物質ならなんでもよいが、通常よくSi0
2が用いられる。このSi02膜に幅いのエッチングマ
スク孔を形成し、しかる後にKOHの水溶液でエッチン
グする。{110}面のエッチング速度とKOH濃度の
測定値を第3図に示す。エッチング速度のKOH濃度依
存性は4・さし、が、エッチング面の平滑さを考慮する
と20%以上の濃度が適当である。たとえば液温80q
OKOH濃度40%の液を用いればエッチング速度は1
.25仏m/minとなる。この液を用いてたとえば6
0分エッチングすると、エッチング孔の深さDは75A
mとなる。As an etching mask, any material can be used as long as it is sufficiently slower than the etching rate of silicon;
2 is used. A wide etching mask hole is formed in this Si02 film, and then etched with a KOH aqueous solution. FIG. 3 shows the measured values of the etching rate and KOH concentration of the {110} plane. The dependence of the etching rate on the KOH concentration is 4.0%, but in consideration of the smoothness of the etched surface, a concentration of 20% or more is appropriate. For example, liquid temperature 80q
If a solution with an OKOH concentration of 40% is used, the etching rate is 1.
.. The speed is 25 m/min. For example, 6
When etched for 0 minutes, the depth D of the etching hole is 75A.
m.
第2図に示すごとくそのエッチング孔内壁面18は{1
11}面で構成され、エッチングマスク孔側線17が{
111}面と{110)面の交線である〔112〕方向
から8煩いたとすると、0が大きくなればなる程内壁面
の微小な{111}面が多くなる。図ではステップの多
い凹凸のある面を描いたが、これは原子的に拡大したも
のであり、実際の内壁面は鏡面であり、図の模式的な凹
凸面は見ることができない。またエッチングマスク孔の
幅山に比して一般に最終的なエッチング孔の幅LFは拡
大し、その拡大量は強く8‘こ依存する。As shown in FIG. 2, the inner wall surface 18 of the etching hole is {1
11} plane, and the etching mask hole side line 17 is {
111} plane and the {110) plane from the [112] direction, the larger 0 is, the more minute {111} planes will be on the inner wall surface. The figure depicts a surface with many steps and concave and convex portions, but this is an atomically enlarged version, and the actual inner wall surface is a mirror surface, so the schematic concave and convex surface shown in the figure cannot be seen. Furthermore, the final width LF of the etching hole is generally expanded compared to the width peak of the etching mask hole, and the amount of expansion strongly depends on 8'.
今拡大量をmとし、次式で定義する。m:三;三
‐‐‐…【1’
このmはエッチングマスク側線からエッチング孔内壁面
までの距離である。Let the amount of enlargement be m and define it by the following equation. m: three; three
---... [1' This m is the distance from the side line of the etching mask to the inner wall surface of the etching hole.
このmをエッチング孔深さDで規格化した値0との関係
を第4図に示す。ひとm/Dはほぼ直線的な関係を示し
、8=0ではmが非常に小さくなると予想される。言い
かえればエッチングマスク孔側線が正確に〔112〕方
向であればほとんどエッチングマスク孔幅と同じ幅のエ
ッチング孔が形成できることを示している。現実にはa
=0という条件を用いることはできない。たとえば8:
10の場合、上記のごとく7.5仏mの深さのエッチン
グ孔を形成するとm=2.6仏mとなる。すなわちエッ
チングマスク孔の幅Loが1仏mであっても、両端に2
.6仏mずつ拡大し、最終的には6.6仏mのエッチン
グ孔幅となる。以上本発明を実施する際の細孔形成エッ
チング法の説明を行ったが、本発明はヱッチング方法を
限定するものではなく、エッチング法の種類を問わない
。The relationship between m and the value 0 normalized by the etching hole depth D is shown in FIG. Human m/D shows a nearly linear relationship, and m is expected to be very small when 8=0. In other words, it is shown that if the side line of the etching mask hole is exactly in the [112] direction, an etching hole with almost the same width as the etching mask hole width can be formed. In reality a
=0 cannot be used. For example 8:
In the case of No. 10, if an etching hole with a depth of 7.5 meters is formed as described above, m=2.6 meters. In other words, even if the width Lo of the etching mask hole is 1 m, there are 2
.. The width of the etching hole is increased by 6 meters, and the final etching hole width is 6.6 meters. Although the pore-forming etching method used to carry out the present invention has been described above, the present invention does not limit the etching method and does not limit the type of etching method.
以下詳細な実施例を用いて本発明を説明する。The present invention will be explained below using detailed examples.
また本発明の説明では上述した紬孔形成エッチングをO
DE(OrientationDependentEt
ching)と略称して用い、特に詳細なエッチング条
件をその都度断わらないとする。また本発明の構成はド
レィン容量(第1図a)あるいは反転容量(第1図b)
を用いることができるので、まずドレイン容量の実施例
を先に説明する。第5図に本発明の実施例を示した。In addition, in the description of the present invention, the above-mentioned pongee hole forming etching is
DE(OrientationDependentEt
The detailed etching conditions will not be specified each time. In addition, the structure of the present invention is a drain capacitor (Fig. 1a) or an inversion capacitor (Fig. 1b).
An example of the drain capacitance will be described first. FIG. 5 shows an embodiment of the present invention.
まずaに示すように基板4上にエッチングとなる絶縁膜
(Si02がよく用いられる)にエッチング孔1 9を
フオトェッチング法によって形成する。しかる後にOD
Eによって細孔16を形成し「、bに示すように、ソー
スとなる領域と紬孔部の絶縁膜を除き公知の熱拡散やイ
オン打込み法によって第1導電型の基板と逆の第2導電
型の領域5を形成する。cに示すようにしかる後に熱酸
化法などによって絶縁膜6を被着し、フオトェッチング
法等によって電極接続孔20を形成し、しかる後にdに
示すようにゲート電極8、ソース電極7を形成する。こ
うすることによって第1図aに示した本発明の構造が実
現できる。本発明の他の実施例を第6図に示す。First, as shown in a, an etching hole 19 is formed on the substrate 4 in an insulating film (often made of SiO2) by photo-etching. After that, OD
A pore 16 is formed by E, and as shown in b, a substrate of the first conductivity type and a second conductivity type opposite to that of the first conductivity type substrate are removed by a known thermal diffusion or ion implantation method, except for the insulating film in the source region and the hole area. A mold region 5 is formed.As shown in c, an insulating film 6 is then deposited by a thermal oxidation method or the like, an electrode connection hole 20 is formed by a photoetching method or the like, and then a gate electrode 8 is formed as shown in d. , a source electrode 7 is formed.By doing this, the structure of the present invention shown in FIG. 1a can be realized.Another embodiment of the present invention is shown in FIG.
aまでは第5図に示した方法と同様である。しかる後b
に示すように所定の絶縁膜6上に自己整合電極21を形
成しこれをマスクとしてcで示すように公知のイオン打
込みや熱拡散法によって第2導電型の領域5を形成する
。自己整合電極21はイオン打込みあるいは熱拡散耐え
るものであればよく、熱拡散法では多結晶シリコンやM
o,Wなどの高融点金属などがよく用いられる。さらに
その上にCVD(ChemicalVaporDepo
sition)法によるSi02腰やこれにりんやほう
素を添加したPSG(Phospho‐silicaに
Glass)やBSG(Boro−silicaにG
lass)で代表される第2層絶縁膜22を被着し、ソ
ース領域と、自己整合電極21に接続するソース電極7
とゲート電極8を接続する。本実施例はソース領域およ
びドレィン領域とゲートが自己整合で形成されるので素
子の微小化が達成される。第7図に本発明の他の実施例
を示した。The process up to step a is the same as the method shown in FIG. After that b
As shown in FIG. 2, a self-aligned electrode 21 is formed on a predetermined insulating film 6, and using this as a mask, a second conductivity type region 5 is formed by known ion implantation or thermal diffusion method as shown in c. The self-aligned electrode 21 may be made of a material that can withstand ion implantation or thermal diffusion.
High melting point metals such as O, W, etc. are often used. Furthermore, on top of that, CVD (Chemical Vapor Depo)
PSG (Phospho-silica Glass) and BSG (Boro-silica G
A source electrode 7 which is connected to the source region and the self-aligned electrode 21 is coated with a second layer insulating film 22 typified by
and the gate electrode 8 are connected. In this embodiment, the source region, the drain region, and the gate are formed in self-alignment, so that miniaturization of the device can be achieved. FIG. 7 shows another embodiment of the present invention.
aに示すように絶縁膜6を形成し、所定の部分に自己整
合型電極21を形成する。この電極をODEエッチング
のマスクとするのであるから、KOH水溶液に雛熔であ
る必要があるが、前記の多結晶シリコン、Mo、W等は
溶け易い。それ故さらに絶縁膜6を電極21上にも被着
する必要がある。次にbに示すようにODEによって紬
孔16を形成し次に電極21をマスクとしてソース部の
絶縁膜6を除去する。しかる後にcに示すように公知の
イオン打込みや熱拡散法によって第2導電型の領域5を
形成し、第2層絶縁膜22を被着する。さらにdに示す
ように電極接続孔20をフオトェツチング法によって形
成し、ソース電極7とゲート電極8を形成する。本実施
例は細孔とドレィンとソースとゲートの4者が自己整合
されているので第5図、第6図に示した実施よりさらに
微小化できうる。このとき自己型電極21は平面図eに
示すように細孔16のまわりを取り囲むようにして形成
されている。以上3つの本発明の実施例を説明したが第
5図、第6図の場合ドレィンとゲートは一方向に並んで
いる例を用いた。As shown in a, an insulating film 6 is formed, and self-aligned electrodes 21 are formed in predetermined portions. Since this electrode is used as a mask for ODE etching, it needs to be dissolved in a KOH aqueous solution, but the aforementioned polycrystalline silicon, Mo, W, etc. are easily soluble. Therefore, it is also necessary to deposit the insulating film 6 on the electrode 21 as well. Next, as shown in b, a hole 16 is formed by ODE, and then the insulating film 6 in the source portion is removed using the electrode 21 as a mask. Thereafter, as shown in c, a second conductivity type region 5 is formed by known ion implantation or thermal diffusion method, and a second layer insulating film 22 is deposited. Further, as shown in d, an electrode connection hole 20 is formed by photoetching, and a source electrode 7 and a gate electrode 8 are formed. In this embodiment, since the pore, drain, source, and gate are self-aligned, the device can be made even smaller than the embodiments shown in FIGS. 5 and 6. At this time, the self-type electrode 21 is formed so as to surround the pore 16, as shown in the plan view e. The three embodiments of the present invention have been described above, and in the case of FIGS. 5 and 6, an example was used in which the drain and the gate are lined up in one direction.
これは第8図に示すように紬孔16を取り囲むようにゲ
ート電極およびソースとなる第2導電型領域5を形成す
ることができる。また以上3つの本発明の実施例はすべ
て1つの素子を用いて説明したが、これをマトリックス
状に配列するソース領域の接続であるデータ線と、ゲー
トの接続であるワード線13は互いに交叉する。As shown in FIG. 8, a second conductivity type region 5 that becomes a gate electrode and a source can be formed to surround the pongee hole 16. Furthermore, although all of the above three embodiments of the present invention have been explained using one element, the data line 13, which is the connection of the source region arranged in a matrix, and the word line 13, which is the connection of the gate, intersect with each other. .
このときに以上3つの実施例ではゲート電極8とソース
電極7と同じ面内で分離することができない。これを解
決するにはソースの第2導蚤型領域5からソース電極7
を接続することなく基板4の表面上にあわせればよい。
しかしこうするとゲートとなる自己整合型電極21の直
下には領域5が形成できないわけであるから第6図、第
7図の場合には良域5を形成する以上にあらかじめソー
スス接続用の領域5を形成しておく必要がある。これに
は第9図aに示すごとく絶縁膜のマスク6の一部を除去
して公知のイオン打込みや熱拡散法によって第2導電型
の領域5を形成するか、bに示すように基板全面に領域
5を形成した後ソース領域となる領域5を残して他を除
去する方法を用いることができる。At this time, in the above three embodiments, the gate electrode 8 and the source electrode 7 cannot be separated within the same plane. To solve this problem, from the second conductive region 5 of the source to the source electrode 7.
It is sufficient to align it on the surface of the substrate 4 without connecting it.
However, in this case, the region 5 cannot be formed directly under the self-aligned electrode 21 that becomes the gate, so in the case of FIGS. need to be formed. For this purpose, a part of the insulating film mask 6 is removed and a region 5 of the second conductivity type is formed by known ion implantation or thermal diffusion method, as shown in FIG. 9a, or the entire surface of the substrate is formed as shown in FIG. A method can be used in which after forming the region 5, the region 5 that will become the source region is left and the rest are removed.
第10図に本発明のマトリックス状に配列した実施例を
示す。FIG. 10 shows an embodiment of the present invention arranged in a matrix.
aはソースとゲートが一方向に並んだもの、bはゲゲー
トを囲むように形成したソースの場合である。上述した
方法を用いてソースとなる第2導電型の領域5をデータ
線とし、ゲートとなる自己整合型電極21をワード線と
する。このとき平行に並んだソース間は電気的に分離す
る必要があり各間に分離帯23を形成する。この分離帯
は、この上の絶縁膜を5000A以上に厚くするか、あ
るいはこの部分に基板と同じ導電型となる不純物を添加
するか、あるいは第3の電極を絶縁膜6を介して電極2
1の下に形成し、基板上にチャンネルが形成されて導電
状態になるのを防ぐように電圧を印加するか等のいくつ
かの方法が知られているが、本発明はその方法を限定し
ない。第11図に本発明の他の実施例を示した。これは
第1,2,5図のbの反転容量を用いたものであり第1
1図中aに示すようにソースとなる第2導電型の領域5
を形成し、しかる後にbに示すようにODEによって所
定の部分に細孔16を形成する。さらにcに示すように
絶縁膜6を形成した後、ソース上に電極接続孔20を形
成して、dに示すようにソース電極7、ゲート電極8、
容量電極9を形成し、細孔の内壁部を容量として用いる
。本発明の他の実施例を第12図に示した。A is a case in which the source and gate are arranged in one direction, and b is a case in which the source is formed to surround the gate. Using the method described above, the second conductivity type region 5 serving as the source is used as a data line, and the self-aligned electrode 21 serving as the gate is used as a word line. At this time, it is necessary to electrically isolate the sources arranged in parallel, and a separation band 23 is formed between them. This separation band can be formed by increasing the thickness of the insulating film above it to 5000A or more, by adding impurities that have the same conductivity type as the substrate, or by connecting the third electrode to the electrode 2 through the insulating film 6.
Several methods are known, such as forming a channel under the substrate and applying a voltage to prevent it from forming a channel on the substrate and becoming conductive, but the present invention is not limited to these methods. . FIG. 11 shows another embodiment of the present invention. This uses the inverting capacitance b in Figures 1, 2, and 5.
As shown in FIG. 1, a region 5 of the second conductivity type that becomes a source
Then, as shown in b, pores 16 are formed in predetermined portions by ODE. Furthermore, after forming the insulating film 6 as shown in c, electrode connection holes 20 are formed on the source, and as shown in d, the source electrode 7, the gate electrode 8,
A capacitor electrode 9 is formed and the inner wall of the pore is used as a capacitor. Another embodiment of the invention is shown in FIG.
これはゲートとソースを自己整合によって形成するもの
でaに示すごとくODEによって紬孔16を形成した後
、表面全体を覆う絶縁膜6を形成し、bに示すように自
己整合電極21を所定の位置に形成した後、これをマス
クとして公知のイオン打込みや熱拡散法によって第2導
電型の領域5を形成する。しかる後にcに示すように第
2層絶縁膜22を形成し、dに示すごとくソース電極7
、ゲート電極8、容量電極9を電極接続孔を通じて接続
する。こうすることによってソースとゲートと容量電極
が自己整合によって形成でき微小化に有効である。本発
明の他の実施例を第13図に示した。In this method, the gate and source are formed by self-alignment. After forming the pongee hole 16 by ODE as shown in a, an insulating film 6 covering the entire surface is formed, and a self-aligned electrode 21 is formed in a predetermined position as shown in b. After forming the second conductivity type region 5 in the position, the second conductivity type region 5 is formed by using this as a mask by known ion implantation or thermal diffusion method. Thereafter, a second layer insulating film 22 is formed as shown in c, and a source electrode 7 is formed as shown in d.
, the gate electrode 8 and the capacitor electrode 9 are connected through the electrode connection hole. By doing so, the source, gate, and capacitor electrode can be formed by self-alignment, which is effective for miniaturization. Another embodiment of the invention is shown in FIG.
これはゲート、ソース、容量電極および細孔を自己整合
によって形成するもので、aに示すように前述の方法に
よって自己整合電極21を形成した後これをODEエッ
チングの際のマスクとして用いるため一例として絶縁膜
6を被着し、これをマスクとしてbに示すようにODE
エッチングして細孔16を形成した後、紬孔内壁を絶縁
膜6で覆う。しかる後にcに示すように第2自己整合電
極24を被看し所定の部分を残す。その後公知のイオン
打込みや拡散によってスースとなる第2導電型領域5を
形成する。またこの領域5は第2自己整合電極24を形
成する以前でもよい。その後dに示すように第2層絶縁
膜22を形成し電極接続孔20を形成した後ソース電極
7、ゲート電極8、容量電極9を接続する。こうすれば
各電極が互いに自己整合で形成できるのでさらに微小化
には有利である。第14図に第13図とは異つた配列の
ソース、ゲート容量電極を自己整合によって形成した本
発明の他の実施例を示す。In this method, the gate, source, capacitor electrode, and pore are formed by self-alignment.As shown in a, after forming the self-aligned electrode 21 by the method described above, this is used as a mask during ODE etching. An insulating film 6 is deposited and ODE is applied as shown in b using this as a mask.
After forming the pores 16 by etching, the inner walls of the pores are covered with an insulating film 6. Thereafter, as shown in c, the second self-aligned electrode 24 is inspected and a predetermined portion is left. Thereafter, a second conductivity type region 5 which becomes a soot is formed by known ion implantation or diffusion. Further, this region 5 may be formed before the second self-aligned electrode 24 is formed. Thereafter, as shown in d, a second layer insulating film 22 is formed and an electrode connection hole 20 is formed, after which the source electrode 7, gate electrode 8, and capacitor electrode 9 are connected. This allows the electrodes to be formed in self-alignment with each other, which is advantageous for further miniaturization. FIG. 14 shows another embodiment of the present invention in which source and gate capacitor electrodes are formed by self-alignment in a different arrangement from that in FIG. 13.
これら第15図、第16図、第17図及び第18図に示
したように容量電極、ソース、ゲートを一方向に配列す
る方法の他に第12図に示すように互いにより囲むよう
にも配列できる。In addition to the method of arranging the capacitor electrode, source, and gate in one direction as shown in FIGS. 15, 16, 17, and 18, there is also a method of arranging the capacitor electrode, source, and gate in one direction as shown in FIG. Can be arrayed.
またマトリックス状に多数の素子を配列する場合ソース
を共通にするときは前述したように第13図に示した共
通のソースをあらかじめ形成すればよい。本容量電極を
もつ素子をマトリックス状に配列するには第15図のよ
うにすればよい。これは第10のドレィン接合容量を用
いる場合に容量電極が加わった構造であり、図に示すよ
うにゲート電極と容量重電極を交互に配列すればよい。
こうすれば電極接続孔を形成することなくマトリックス
が構成できるので微小化しうる。本発明の説明には便宜
上絶縁膜6を基板表面にも、自己整合電極上にも同様に
形成したが各下地上で異つた絶縁膜を用いてもよい。Further, when a large number of elements are arranged in a matrix and a common source is to be used, the common source shown in FIG. 13 may be formed in advance as described above. The elements having this capacitive electrode can be arranged in a matrix as shown in FIG. This is a structure in which a capacitor electrode is added when using the tenth drain junction capacitor, and the gate electrode and the capacitor heavy electrode may be arranged alternately as shown in the figure.
In this way, the matrix can be constructed without forming electrode connection holes, so miniaturization can be achieved. In the description of the present invention, for convenience, the insulating film 6 is formed on the substrate surface and on the self-aligned electrode in the same way, but a different insulating film may be used on each substrate.
又本発明では{110}面のシリコン基板を用いるが、
他の低指数の面たとえば{111}、{100}では表
面にほぼ垂直な紬孔は形成できないので本発明の実施例
効果はほとんどなく、本発明は{110}面とその近傍
約20o以内が好ましい。Further, in the present invention, a {110}-plane silicon substrate is used,
For other low-index planes, such as {111} and {100}, it is impossible to form pongee holes that are almost perpendicular to the surface, so there is little effect of the embodiment of the present invention. preferable.
上記説明から明らかなように、本発明によれば所要面積
を著しく減少させることができ、集積密度の向上に極め
て有効である。As is clear from the above description, according to the present invention, the required area can be significantly reduced, and it is extremely effective in improving the integration density.
第1図は本発明の概念を示す断面図、第2図、第3図、
第4図は細孔の形成法を説明する図、第5図から第15
図までは本発明の実施例を示す図である。
多′図
第2図
多3図
第4図
第5図
誇る図
第7図
多8図
幕?四
弟 /0 図
弟 ′′ 図
弟 ′2 図
秦 /3 四
多 /4 図
多 ′5 図Fig. 1 is a sectional view showing the concept of the present invention, Fig. 2, Fig. 3,
Figure 4 is a diagram explaining the method of forming pores, Figures 5 to 15
The figures up to the figures are diagrams showing embodiments of the present invention. Figure 2, figure 3, figure 4, figure 5, figure 7, figure 7, figure 8? Four brothers /0 Two brothers ′′ Two brothers ’2 Two brothers /3 Four brothers /4 Two brothers ’5 Pictures
Claims (1)
ンジスタを含んでなる半導体記憶装置において、上記容
量は、上記半導体基板の主表面から上記基板内部へ向け
て形成された細孔の表面上に積層して形成された絶縁膜
と容量電極を少なくとも有し、かつ、上記容量の他の電
極は上記細孔の表面に沿つて上記基板内に形成されてあ
ることを特徴とする半導体記憶装置。1. In a semiconductor memory device including a capacitor serving as an information storage portion and an insulated gate field effect transistor, the capacitor is laminated on the surface of a pore formed from the main surface of the semiconductor substrate toward the inside of the substrate. What is claimed is: 1. A semiconductor memory device comprising at least an insulating film and a capacitor electrode formed as a semiconductor memory device, the other electrode of the capacitor being formed in the substrate along the surface of the pore.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58217716A JPS6023505B2 (en) | 1983-11-21 | 1983-11-21 | semiconductor storage device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58217716A JPS6023505B2 (en) | 1983-11-21 | 1983-11-21 | semiconductor storage device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP50053883A Division JPS5812739B2 (en) | 1975-05-07 | 1975-05-07 | semiconductor storage device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61104651A Division JPS61263153A (en) | 1986-05-09 | 1986-05-09 | Manufacture of semiconductor memory storage |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59103371A JPS59103371A (en) | 1984-06-14 |
JPS6023505B2 true JPS6023505B2 (en) | 1985-06-07 |
Family
ID=16708615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58217716A Expired JPS6023505B2 (en) | 1983-11-21 | 1983-11-21 | semiconductor storage device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6023505B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4957779A (en) * | 1972-06-02 | 1974-06-05 |
-
1983
- 1983-11-21 JP JP58217716A patent/JPS6023505B2/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4957779A (en) * | 1972-06-02 | 1974-06-05 |
Also Published As
Publication number | Publication date |
---|---|
JPS59103371A (en) | 1984-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5812739B2 (en) | semiconductor storage device | |
JPS60231357A (en) | Semiconductor memory device | |
JPS6023507B2 (en) | semiconductor storage device | |
JPS60160653A (en) | Manufacture of semiconductor device | |
JPS63228710A (en) | Semiconductor device | |
JPS6023505B2 (en) | semiconductor storage device | |
JPH0481868B2 (en) | ||
JPH077086A (en) | Charge preservation electrode manufacture of semiconductor memory | |
JPS6023506B2 (en) | semiconductor storage device | |
JPS59106146A (en) | Semiconductor memory | |
JPS6343900B2 (en) | ||
JPH0621340A (en) | Manufacture of semiconductor device | |
JPH02303048A (en) | Semiconductor device and manufacture thereof | |
JPS59181045A (en) | Semiconductor device | |
JPS61263153A (en) | Manufacture of semiconductor memory storage | |
JPH03257859A (en) | Semiconductor device and manufacture thereof | |
JPH04186882A (en) | Semiconductor device and manufacture thereof | |
JPS59228752A (en) | Semiconductor device | |
JPH01236648A (en) | Semiconductor device and manufacture thereof | |
JPH0555513A (en) | Semiconductor memory | |
JPS6171664A (en) | Manufacture of semiconductor device | |
JPS6333862A (en) | Semiconductor storage device and manufacture thereof | |
JPS63229747A (en) | Manufacture of semiconductor device | |
JPS63155660A (en) | Semiconductor device | |
JPH02100357A (en) | Manufacture of semiconductor memory |