JPS60234961A - Hard material parts for tool having very hard coating layers - Google Patents

Hard material parts for tool having very hard coating layers

Info

Publication number
JPS60234961A
JPS60234961A JP9143884A JP9143884A JPS60234961A JP S60234961 A JPS60234961 A JP S60234961A JP 9143884 A JP9143884 A JP 9143884A JP 9143884 A JP9143884 A JP 9143884A JP S60234961 A JPS60234961 A JP S60234961A
Authority
JP
Japan
Prior art keywords
hard
coating layer
nitrides
hard material
oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9143884A
Other languages
Japanese (ja)
Other versions
JPH0313305B2 (en
Inventor
Taijiro Sugisawa
杉澤 泰次郎
Noribumi Kikuchi
菊池 則文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP9143884A priority Critical patent/JPS60234961A/en
Publication of JPS60234961A publication Critical patent/JPS60234961A/en
Publication of JPH0313305B2 publication Critical patent/JPH0313305B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/342Boron nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain hard material parts for a tool having very hard coating layers by forming a cubic BN-base coating layer having a specified atomic weight ratio of B/(N+O) and contg. Ti and/or Al in a specified ratio to B atomic weight on the surface of a hard substrate. CONSTITUTION:The very hard coating layer is formed on the surface of each hard material substrate for a tool. The layer has 0.5-10mum average thickness and consists of cubic BN-base fine grains of <=1mum average grain size having 0.95-1.2 atomic weight ratio of B/(N+O) and contg. Ti and/or Al in 1/500-1/20 ratio to B atomic weight.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、極度に耐摩耗性にすぐれる超硬質被覆層を
有する切削工具や耐摩工具のような工具用の硬質材料部
品に関するもので、前記の超硬質被覆層は立方晶窒化硼
素(以下cBNで示す)を主体として構成されて〜・る
ことを特徴とするものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a hard material component for tools such as cutting tools and wear-resistant tools having an extremely hard coating layer with excellent wear resistance. The ultra-hard coating layer is characterized in that it is mainly composed of cubic boron nitride (hereinafter referred to as cBN).

〔従来の技術及びその問題点〕[Conventional technology and its problems]

従来の各種工具材、すなわち超硬合金、サーメツ)、c
BN基セラミックスあるいは窒化珪素(以下S I 3
N4で示す)基セラミックスは、すぐれた耐摩耗性と靭
性を有するので、切削工具や苛酷な条件で使用する耐摩
工具として使用されてきているが、さらに靭性の大巾な
低下をもたらすことなく耐摩耗性を増大させるための各
種コーティングが試みられ、実用化されでいる。被覆物
質としては、Ti及びHfの炭化物並びに窒化物、 A
Jの酸化物等が化学蒸着できるために広く使用されてい
るが、近年はダイヤモンドによる被覆やcBNにょる被
梳も検削されている。特にcHNを被覆した工具材につ
いては/dlr1や鋳鉄の切削用として期待されている
が、cBN結晶が高圧安定相であることから、常圧また
は、i4:苧中で行なう物理蒸着法によるコーティング
の場合、cBN被榎抜機生成する物理的d?i条件の範
囲は狭く、しがもcBNの生成率は低い、すなわち生成
4櫟層中にcBN以外の相や異物を含むのである。した
がって十分な耐摩れ性の同上が楠られてぃないのが現状
である。
Various conventional tool materials (i.e. cemented carbide, cermets), c
BN-based ceramics or silicon nitride (hereinafter referred to as S I 3
Base ceramics (denoted as N4) have excellent wear resistance and toughness, and have been used as cutting tools and wear-resistant tools used under harsh conditions. Various coatings have been tried and put into practical use to increase wear resistance. As the coating material, carbides and nitrides of Ti and Hf, A
J oxide is widely used because it can be chemically vapor deposited, but in recent years diamond coating and cBN combing have also been tested. In particular, cHN-coated tool materials are expected to be used for cutting /dlr1 and cast iron, but since cBN crystals are stable at high pressure, coating by physical vapor deposition at normal pressure or in i4: If the physical d?cBN extracted machine produces? The range of the i conditions is narrow, and the cBN production rate is low, that is, the produced tetragonal layer contains phases other than cBN and foreign substances. Therefore, the current situation is that there is no material with sufficient wear resistance.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、被覆層中のc B N a)含有率
をできるだけ高め、その結果として硬さの向上した被覆
層を有し、全体として耐摩耗性の極めて向上した工具用
の拐料を得ることである。。
The purpose of this invention is to increase the cBN a) content in the coating layer as much as possible, and as a result, to provide a coating material for tools that has a coating layer with improved hardness and has extremely improved wear resistance as a whole. It's about getting. .

〔知見事項〕[Knowledge]

本発明者らは棟々偵究した結果、次のような知見を得た
As a result of extensive investigation, the present inventors obtained the following knowledge.

a)sa層中のcHNの含有率を高めるためには、物理
的諸条件の選択もさることながら、化学的諸条件すなわ
ち組成の選択も重要であること、b)硼素成分と窒素成
分の他にTiあるいはAlの1つあるいは両方の成分を
少量共存させて蒸着し、被覆層の中にTiあるいはAA
の1つあるいは両方を含有させることにより、生成被覆
層中のcBNの割合が増大し、被覆層の硬さが顕著に増
加すること、 C)前記b)の被覆層を工具用の各種基材の表面に設け
ると、工具用の材料の耐摩耗性は極めてすぐれたものと
なること。
a) In order to increase the content of cHN in the SA layer, it is important to select not only physical conditions but also chemical conditions, that is, composition; b) In addition to boron and nitrogen components, A small amount of one or both of Ti or Al components is deposited on the coating layer, and Ti or AA is added to the coating layer.
By including one or both of the following, the proportion of cBN in the resulting coating layer increases and the hardness of the coating layer increases significantly. When provided on the surface of the tool, the wear resistance of the material for the tool is extremely excellent.

〔発明の構成に欠くことができない事項と実施態様項〕[Matters essential to the structure of the invention and embodiments]

この発明は、上記知見にもとすいて更に研究を重ねた結
果、発明されたものであり、 1)工具用の硬質材料を基材として、その表面に硼素/
(窒素+酸素)の原子数比が0695〜1.2の範囲に
あり、硼素の原子数に対し11500〜l/20の割合
でチタンあるいはアルミニウムの1つまたは両方が含有
されており、cBNを主体とし、平均粒径1μm以下の
微粒子から構成される平均層厚0.5〜10μmの被覆
層を設けてなることを特徴とする超硬質被覆層な有する
工具用の硬質材料部品。
This invention was invented as a result of further research based on the above findings. 1) A hard material for tools is used as a base material, and boron/
The atomic ratio of (nitrogen + oxygen) is in the range of 0,695 to 1.2, and one or both of titanium and aluminum is contained in a ratio of 11,500 to 1/20 to the number of boron atoms. 1. A hard material part for a tool having an ultra-hard coating layer, characterized in that the main body is provided with a coating layer having an average layer thickness of 0.5 to 10 μm and composed of fine particles with an average particle size of 1 μm or less.

2)晶相となる硬質材料は、4a、5a及び6a族金属
の炭化物並びに窒化物のうちの1種以上と結合金属より
なる超硬質合金である特許請求の範囲第1項記載の超硬
質被覆層を有する工具用の硬質材料部品。
2) The ultra-hard coating according to claim 1, wherein the hard material forming the crystal phase is an ultra-hard alloy made of a bonding metal and one or more of carbides and nitrides of group 4a, 5a and 6a metals. Hard material parts for tools with layers.

3)基材となる硬質材料は、4a、5a及び6a族金属
の炭化物並びに窒化物のうちの1種以上と結合金属より
なる超硬質合金の表面に内層としてTi及びHfの炭化
物、窒化物、炭窒化物、炭酸窒化物並びに炭酸化物と更
にA−1の窒化物及び酸化物からなる群のうちの1種の
化合物あるいは2梅以上の混合体の1層あるいは多重層
を有している被覆超硬質合金である特許請求の範囲第1
項記載の超硬質被覆層を有する工具用の硬質材料部品。
3) The hard material serving as the base material is a super hard alloy made of a bonded metal with one or more of the carbides and nitrides of group 4a, 5a and 6a metals, and the inner layer is made of carbides and nitrides of Ti and Hf, A coating having one layer or multiple layers of one compound or a mixture of two or more of the group consisting of carbonitrides, carbonitrides, carbonates, and nitrides and oxides of A-1. Claim 1 which is a super hard alloy
A hard material part for a tool having an ultra-hard coating layer as described in 1.

4)基材となる硬質材料は、分散相としてのCBN :
 3o〜93容量係と結合相としてのTiの炭化物、窒
化物、酸化物及び硼化物、 Alの窒化物。
4) The hard material serving as the base material is CBN as a dispersed phase:
3o to 93 capacitance and Ti carbides, nitrides, oxides and borides as binding phases, Al nitride.

硼化物及び酸化物並びにS r 3N4からなる群のう
ち01種の化合物あるいは2種以上の固溶体の1相ある
いは多相ニア9〜7容量係よりなるcBN基セラミック
スである特許請求の範囲第1項記載の超硬質被覆層を有
する工具用の硬質材料部品。
Claim 1, which is a cBN-based ceramic consisting of a one-phase or multi-phase N9-7 volume ratio of one compound or two or more solid solutions from the group consisting of borides, oxides, and Sr3N4. A hard material part for a tool having an ultra-hard coating layer as described.

5ン 基材となる硬質材料は、Tiの炭化物、窒化物、
及び炭窒化物、 Alの窒化物及び酸化物、Yの酸化物
、Siの酸化物並びにZrの酸化物のうちの1種または
2種以上が5〜20重量係で残りが8r3N4かもなる
S i 3N4基セラミツクスである特許請求の範囲第
1項記載の超硬質被覆層を有する工具用の硬質材料部品
5. The hard material used as the base material is Ti carbide, nitride,
and carbonitrides, nitrides and oxides of Al, oxides of Y, oxides of Si, and oxides of Zr. A hard material part for a tool having an ultra-hard coating layer according to claim 1, which is made of 3N4 ceramics.

6)基材となる硬質材料は、Tiの炭化物、窒化物、及
び炭窒化物、AJの窒化物及び酸化物、Yの酸化物、S
iの酸化物並びにZrの酸化物のうちの1種または2種
以上が5〜20重量係で残りが813N4からなる8 
i 3N4基セラミツクスの表面に内層としてTi及び
Hfの炭化物、窒化物、炭窒化物、炭酸窒化物並びに炭
酸化物と更にAIの窒化物及び酸化物からなる群のうち
の1種の化合物あるいは2種以上の混合体の1層あるい
は多重層を有している被覆セラミックスである特許請求
の範囲第1項記載の超硬質被覆層を有する工具用の硬質
材料部品。
6) Hard materials serving as base materials include Ti carbides, nitrides, and carbonitrides, AJ nitrides and oxides, Y oxides, S
One or more of the oxide of i and the oxide of Zr is 5 to 20% by weight, and the remainder is 813N4.
i One or two compounds from the group consisting of carbides, nitrides, carbonitrides, carbonitrides, and carbonates of Ti and Hf, and nitrides and oxides of AI, as an inner layer on the surface of the 3N4-based ceramics. A hard material part for a tool having an ultra-hard coating layer according to claim 1, which is a coated ceramic having one layer or multiple layers of the above mixture.

〔発明の構成要件〕[Components of the invention]

以下、この発明の構成について、被覆層を中心にして述
べる。
The configuration of the present invention will be described below, focusing on the coating layer.

1)硼素/(窒素+酸素)の原子数比 この値は0.95〜1.2の範囲がよい。cBNは化学
艮、論的には硼素/窒素の原子数比(以下、B/Nの比
と言う)が1/1であり、大きなcBN単結晶はこの値
にきわめて近いが、一般に、物理蒸す法を用いて窒化硼
素からなる被覆層をつくる場合、H/ Nの比は広い範
囲で任意にとることができるし、また酸素成分が窒素成
分に置換されて含有される。酸素成分の皺が多くなると
B−N結合が少なくなり、その分だけH−0結合が増加
し、硼素/(穿素十酸素)の原子数比(以下、B/(N
+0)の比と呂う)か小さくなる。すなわち、13/(
N+0)の比が0.95未満では13−0結合が増える
か、あるいは窒素成分過剰となり、cBNの生成率が減
り、生成被覆層の硬さが低下する。
1) Atomic ratio of boron/(nitrogen+oxygen) This value is preferably in the range of 0.95 to 1.2. cBN is a chemical entity, and theoretically the boron/nitrogen atomic ratio (hereinafter referred to as the B/N ratio) is 1/1, and large cBN single crystals are very close to this value, but in general, physical steaming is When a coating layer made of boron nitride is produced using the method, the H/N ratio can be arbitrarily set within a wide range, and the oxygen component is replaced with a nitrogen component. As the number of wrinkles in the oxygen component increases, the number of B-N bonds decreases, and the number of H-0 bonds increases accordingly.
The ratio of +0) and R) become smaller. That is, 13/(
If the ratio of N+0) is less than 0.95, the number of 13-0 bonds increases or the nitrogen component becomes excessive, resulting in a decrease in the production rate of cBN and a decrease in the hardness of the resulting coating layer.

逆にH/(N+0)の比が1.2より大きくなると硼素
成分が過剰になるためにcBNの生成率が減少し被覆層
の硬さが低下する。したがって、B/(N+0)の比を
0.95〜1.2と定めた。
On the other hand, when the ratio of H/(N+0) is greater than 1.2, the boron component becomes excessive, so the cBN production rate decreases and the hardness of the coating layer decreases. Therefore, the ratio of B/(N+0) was determined to be 0.95 to 1.2.

1「)チタンあるいはアルミニウムの含有量チタンある
いはアルミニウムの1つまたは両方を同時に蒸着させ被
覆層の中に含有させると、同一条件でこれらの添加成分
のない窒化硼素の蒸着の場合と比べて、被覆層中のcB
Nの生成率が増大し、硬さが顕著に増加する。
1) Content of titanium or aluminum If one or both of titanium or aluminum are deposited simultaneously and included in the coating layer, the coating will have a higher cB in the layer
The N production rate increases and the hardness increases significantly.

チタンあるいはアルミニウムの量としては硼素の原子数
に対して11500未満の時にはcBN生成率の向上に
大きな効果がない。一方、1/20を超えると、かえっ
て生成被覆層全体の軟化を示すことから、その範囲を1
1500〜1/20と定めたものである。
When the amount of titanium or aluminum is less than 11,500 relative to the number of boron atoms, there is no significant effect on improving the cBN production rate. On the other hand, if it exceeds 1/20, the entire formed coating layer will soften, so the range should be reduced to 1/20.
It is set as 1500 to 1/20.

III)cBNの含有量 窒化硼素には、cBNと六方晶窒化硼素(以下HBNで
示す)との2変態があるが、この発明の被覆層はcBN
を主体とする(すなわち、全窒化イ1l(Al素に対す
るcBNの割合が500重量%上である)ものである。
III) Content of cBN Boron nitride has two transformations: cBN and hexagonal boron nitride (hereinafter referred to as HBN).
(i.e., total nitride 1l (the ratio of cBN to Al is over 500% by weight).

+V)CBN等の被覆層をm Xする粒子の粒子径cB
N等の被覆層なセN成する粒子は平均粒径が1μm以下
の賎わt子からなるのがよいうこれは緻仔;で11曳反
が昌〜資;シ仇ハリとするためである。
+V) Particle diameter cB of particles forming a coating layer such as CBN
It is preferable that the particles forming the coating layer such as N be composed of cotton balls with an average particle size of 1 μm or less. be.

■)平均に4〜。■) 4~ on average.

c ISN主体の併穣バXIけ、0.5〜lOμmの平
均層厚と−するのかよい。()、5μ電未滴では耐摩耗
性1ii1上の効果か小さく、J (1μmより厚くは
ると触造に侵詩間を偲゛し、その割にVム付りれた被覆
層による剛績托性の回上刈果か限界に近く1エリ、かえ
って被覆部品がチッピングしやすくなるからである。
c) The ISN-based layer XI may have an average layer thickness of 0.5 to 10 μm. (), 5 μm droplets have a small effect on wear resistance 1ii1, and J This is because the reaping performance is close to the limit and the coated parts are more likely to chip.

(A明の附帝的事項1 この発明の被覆i−は、例えはスパッタリング法により
形成される。
(A Ming Imperial matter 1) The coating i- of the present invention is formed by, for example, a sputtering method.

そして、例えばスパッタリング法により被覆層な形成す
る場付には、真望度や雰囲気ガス中のN2/Ar〕比を
変えることにより、被覆層のB/(N + g )の比
を震えることができ、又、l(B Nターゲットと基材
との距離と、TiあるいはAlターゲットと基材との距
離との比を変えることにより、被覆層の(Ti +AA
’ ) / Bの比を変えることができるし、更に、被
覆層の平均層厚は、真空度、ターゲットと基材との距離
及び蒸着時間のうちの少な(とも1つを変えることによ
り、変えることができる。この出願の特許請求の範囲に
記載されたH/(N+0)の比、(T凰+A/)/Bの
比及び平均層厚を有する被覆層な形成するためには、ス
パッタリング法の場合、真空度10 −10 關H9−
N2 / Arの比1/20〜5/1.HBNターゲッ
トと基材との距離10〜70謔、TiあるいはAツタ−
ゲットと基材との距1i1it15〜l 00 xme
 蒸着時間1.0〜20時間にするとよい。又、被覆層
を構成する粒子の平均粒径な1μm以下とするためには
、基材加熱温度を150−1000℃、バイアス重圧を
50〜500Vの条件でスパッタリングするとよい。
For example, when forming a coating layer by sputtering, it is possible to change the B/(N + g) ratio of the coating layer by changing the degree of purity and the N2/Ar ratio in the atmospheric gas. By changing the ratio of the distance between the N target and the base material and the distance between the Ti or Al target and the base material, the (Ti + AA
) / B ratio can be changed, and the average layer thickness of the coating layer can be changed by changing one of the following: vacuum degree, distance between target and substrate, and deposition time. In order to form a coating layer having the ratio of H/(N+0), the ratio of (T+A/)/B and the average layer thickness described in the claims of this application, a sputtering method can be used. In the case of vacuum degree 10-10 degree H9-
N2/Ar ratio 1/20 to 5/1. Distance between HBN target and base material: 10~70cm, Ti or A vine
Distance between get and base material 1i1it15~l 00 xme
The deposition time is preferably 1.0 to 20 hours. Further, in order to make the average particle size of the particles constituting the coating layer 1 μm or less, sputtering is preferably performed at a base material heating temperature of 150 to 1000° C. and a bias pressure of 50 to 500 V.

〔実施例〕〔Example〕

以下に、比較例とともに実施例によりこの発明の構成と
効果な詳細に述べる。
Hereinafter, the structure and effects of the present invention will be described in detail using Examples as well as Comparative Examples.

実施例1及び比較例 平均粒径1μmのWC粉末;94重駄%と同1.2μ電
のCo粉末−6重量%からなる粉末配合物をボールミル
でアルコール中72時間混合し、取り出して乾燥し、l
 t / cm”の圧力でプレス成形し、この成形体を
1400″Cで水素中にて1時間焼結した。このよう圧
して、WCとCOよりなる超硬質合金製のISO規格5
NGN432に則した切削用チップを製造した。
Example 1 and Comparative Examples A powder formulation consisting of 94% by weight of WC powder with an average particle size of 1 μm and 6% by weight of Co powder with the same 1.2 μm was mixed in alcohol for 72 hours in a ball mill, taken out and dried. ,l
The molded body was press-molded at a pressure of t/cm'' and sintered in hydrogen at 1400''C for 1 hour. By applying pressure in this way, a super hard alloy made of WC and CO is manufactured according to ISO standard 5.
A cutting tip conforming to NGN432 was manufactured.

この切削用チップを暴利とし、HB Nをターゲットと
した高周波スパッタリングの装置に装填した。この装置
の内部にチタンの第二のターゲットを直き、窒化硼素と
同時にチタンを蒸着できるようにした。さらにチップを
1転させる機構を設け、チップ表面に均一な層厚の蒸着
被覆層が得られるよ5にした。
This cutting chip was used for profit and loaded into a high frequency sputtering device targeting HBN. A second titanium target was installed inside this device, allowing titanium to be deposited simultaneously with boron nitride. Furthermore, a mechanism was provided to rotate the chip once, so that a vapor-deposited coating layer with a uniform thickness could be obtained on the chip surface.

基材加熱温度4()0℃、基材とHBNターゲットとの
バイアス電圧&150V、 N2/Arの比を1/4と
し10”gmlりの真空下でHBNのス、くツタリング
を行なった。同時にチタンターゲットを一1oonvに
加電圧してチタンのスパッタリングを起こさせるように
し、チタンターゲットと基材との距離を20〜90II
11の間で種々変えて(HBNターゲットと基材との距
離は変えずに、30籠に固定)、チタンの蒸着速度を変
えることにより、チップ表面上の蒸着被覆層中に含まれ
るチタンの量を変化させた。蒸着時間はいずれも6時間
である。このようにして本発明品&1〜6及び比較品A
l〜5を製造した。
At a substrate heating temperature of 4()0°C, a bias voltage of 150 V between the substrate and the HBN target, and a N2/Ar ratio of 1/4, HBN was sputtered under a vacuum of 10 gml. At the same time, The titanium target was applied with a voltage of -1 oonv to cause titanium sputtering, and the distance between the titanium target and the base material was set at 20 to 90 mm.
The amount of titanium contained in the vapor deposited coating layer on the chip surface can be varied by changing the titanium deposition rate between 11 and 11 (fixed at 30 cages without changing the distance between the HBN target and the substrate). changed. The deposition time was 6 hours in both cases. In this way, the present invention products &1 to 6 and comparative product A
1-5 were manufactured.

又、上記のスパッタリングを行なう際に、チタンターゲ
ットと基材との距離を50龍に固定して、雰囲気の真空
度を変化させ、またN2/Ar比を変えることにより、
チップ表面上の蒸着被覆層のB/(N+o)の比を変化
させ、本発明品A7〜9と比較品/I66〜7を製造し
た。
Also, when performing the above sputtering, by fixing the distance between the titanium target and the base material at 50 dragons, changing the vacuum degree of the atmosphere, and changing the N2/Ar ratio,
Inventive products A7-9 and comparative products /I66-7 were manufactured by changing the ratio of B/(N+o) of the vapor-deposited coating layer on the chip surface.

このようにして製造された本発明品41〜9及び比較品
A1〜7と更に従来品について、得られた被覆層のB/
(N+O)の比、Ti/Bの比、CBN/(cBN+H
BN)の重量比、被覆層を構成する粒子の平均粒径、平
均層厚、ビッカース硬さを測定して、その結果を第1表
に示す。(従来品とは、被覆層を有しない基材のみのも
のである。)なお、cHN/(cBN+HBN )の重
量比は、X線回折分析法により算出した。
B/
(N+O) ratio, Ti/B ratio, CBN/(cBN+H
The weight ratio of BN), the average particle diameter of the particles constituting the coating layer, the average layer thickness, and the Vickers hardness were measured, and the results are shown in Table 1. (The conventional product is only a base material without a coating layer.) The weight ratio of cHN/(cBN+HBN) was calculated by X-ray diffraction analysis.

そして、被覆層を構成する粒子の平均粒径は、破面の走
査型電子線像より直接求めた。
The average particle size of the particles constituting the coating layer was determined directly from a scanning electron beam image of the fracture surface.

更に、平均層厚は、破面の走査型電子線像あるいは研摩
断面より、測定した。
Furthermore, the average layer thickness was measured from a scanning electron beam image of the fracture surface or a polished cross section.

次に、上記本発明品、比較品及び従来品を用いての下記
条件での切削テストを行なって、その工具寿飴なめ、そ
の結果も81表に示す。
Next, a cutting test was conducted under the following conditions using the above-mentioned products of the present invention, comparative products, and conventional products, and the results are also shown in Table 81.

く切削テスト〉 被剛材:FC30(プリネル硬さ:250)切削速度:
250m/分 送 リ : 0. 2 0 m宵/ rev。
Cutting test> Rigid material: FC30 (Prinel hardness: 250) Cutting speed:
250m/min feed: 0. 20m evening/rev.

切込み:3龍 切削油:エマルジョンタイプ 第1表に示されるように、被覆層中のTiの量の増加と
共に被覆層のcBN生成率が増大し、ビツカース硬さも
高くなり、Ti/B(原子数比)=0.01のとき最大
となるが、この発明の範囲をはずれて更に多くなると、
硬さの低下が著しくなる。
Depth of cut: 3 Dragon cutting oil: Emulsion type As shown in Table 1, as the amount of Ti in the coating layer increases, the cBN production rate of the coating layer increases, the Vickers hardness also increases, and Ti/B (atomic number It is maximum when ratio) = 0.01, but if it increases beyond the scope of this invention,
Hardness decreases significantly.

又、Ti / Bの比な一定とし、B / (N + 
0 )の比を増加させると、この値が0.97〜110
の範囲をはすれると硬さが低下する。又、この発明の被
積層を有しない基材のみ(従来品)では工具寿命か0.
5分であり、Tiを含有しないでcBNを含有する被覆
層を有する比較品/I61では工具寿命が7分であるの
に対し、本発明品では11〜20分の工具寿命を有する
こともわかる。
Also, the ratio of Ti / B is assumed to be constant, and B / (N +
0), this value increases from 0.97 to 110
If the hardness is outside the range, the hardness decreases. In addition, with only the base material (conventional product) that does not have a layer to be laminated according to the present invention, the tool life is 0.
It can also be seen that the tool life of the inventive product is 11 to 20 minutes, whereas the comparative product/I61, which has a coating layer containing cBN but not Ti, has a tool life of 7 minutes. .

実施例2及び比較例 実施例1と同一の装置ケ用い、高周波スパッタリング方
式でcBN主体の被覆層を第2表の各種基材の表面に被
覆した。
Example 2 and Comparative Examples Using the same equipment as in Example 1, cBN-based coating layers were coated on the surfaces of the various substrates shown in Table 2 by high-frequency sputtering.

このときの被積層の形成条件は実施例1とほぼ同じであ
るが、Tiターゲットと基材との距離を50朋に固定し
て、蒸着時間を0.5〜30時間の間で変えることによ
り、得られる被覆層の平均層厚を変化させて、本発明品
A1〜10と比較品I61〜2を製造した。
The conditions for forming the laminated layer at this time were almost the same as in Example 1, but by fixing the distance between the Ti target and the base material at 50 mm and changing the deposition time between 0.5 and 30 hours. Inventive products A1-10 and comparative products I61-2 were manufactured by changing the average layer thickness of the resulting coating layer.

上記本発明品及び比較品のそれぞれについて、被積層の
B / (N + 0 )の比、Ti/Bの比、cBN
/(cBN+HBN)の重量比、被覆層を構成する粒子
の平均粒径、平均層厚を測定し、その結果を第2表に示
す。
For each of the above-mentioned products of the present invention and comparative products, the ratio of B / (N + 0), Ti / B ratio, cBN
The weight ratio of /(cBN+HBN), the average particle diameter of particles constituting the coating layer, and the average layer thickness were measured, and the results are shown in Table 2.

又、上記本発明品及び比較品並びに従来品A1〜5のそ
れぞれを用いて、実施例1と同一条件の切削試験を行な
い、その工具寿命な測定し、その結果も第2表に示した
Furthermore, using the products of the present invention, comparative products, and conventional products A1 to A5, a cutting test was conducted under the same conditions as in Example 1, and the tool life was measured. The results are also shown in Table 2.

第2表から、この発明の被覆i−は、各種基材に被覆さ
れても、その耐摩耗性を極度に向上させる効果を有する
ことがわかるし、又、前記被覆層の平均層厚がこの発明
の範囲を外れると、被覆層による耐摩耗性向上の効果が
著しく低下することもわかる。
From Table 2, it can be seen that the coating i- of the present invention has the effect of extremely improving the abrasion resistance even when coated on various base materials, and the average layer thickness of the coating layer is as follows. It can also be seen that outside the scope of the invention, the effect of improving wear resistance by the coating layer is significantly reduced.

実施例3 高周波スパッタリング装置内にHBHのターゲットおよ
びAJのターゲットを置き、両者を交互にスパッタリン
グさせることによって、AJ含有量の異なる各種の窒化
硼素ta層を8 ! 3N4基セラミツクスの表面に被
覆した。
Example 3 By placing an HBH target and an AJ target in a high-frequency sputtering device and sputtering them alternately, various boron nitride TA layers with different AJ contents were formed into 8! It was coated on the surface of 3N4 ceramics.

基材の513N4基セラミツクスとしては、次のような
組成、80 Si3N4−10 Tt N 5 A11
 N 5 Y2O3(以上、重量%)を有するものを用
いた。
The base material 513N4-based ceramic has the following composition: 80 Si3N4-10 Tt N 5 A11
A material containing N 5 Y2O3 (the above, weight %) was used.

基材加熱温度650℃、 N 2 / Arの比を11
5゜真窒度0.8X10−3朋HI、基材のバイアス車
圧を200Vとした。蒸着速度は約0.5μm/時間で
あり、蒸着時間10時間で基材上に平均層厚5μmの窒
化硼素被覆層を蒸着させた。
Base material heating temperature: 650°C, N2/Ar ratio: 11
The true nitrogen degree was 5°, the degree of nitrogen was 0.8×10-3 HI, and the bias vehicle pressure of the base material was 200V. The deposition rate was about 0.5 μm/hour, and a boron nitride coating layer with an average layer thickness of 5 μm was deposited on the substrate over a deposition time of 10 hours.

得られた被覆層のB/(N+0)の比ば1,02であり
、被覆層を構成する粒子の平均粒径は0.07μmであ
る。そして、AA / Bの比によってXa回折のピー
ク値から得られたcHN/(cBN+HHN)の重量比
が異なるが、A711/Bの比がo、oi附近で最大と
なり、0.95の値を示した。
The ratio of B/(N+0) of the obtained coating layer was 1.02, and the average particle size of the particles constituting the coating layer was 0.07 μm. The weight ratio of cHN/(cBN+HHN) obtained from the peak value of Xa diffraction differs depending on the AA/B ratio, but the A711/B ratio reaches its maximum near o and oi, showing a value of 0.95. Ta.

又、このA/!/Hの比か0.01の被覆層を有する切
削用チップは実施例1の切削条件で150分の工具寿命
を示した。なお、比較として、窒化硼素被覆層のない基
材の工具寿命は40分であった。
Also, this A/! A cutting tip having a coating layer with a /H ratio of 0.01 exhibited a tool life of 150 minutes under the cutting conditions of Example 1. For comparison, the tool life of the base material without the boron nitride coating layer was 40 minutes.

Claims (1)

【特許請求の範囲】 l)工具用の硬質材料を基材として、その表面に硼素/
(窒素+酸素)の原子数比が0.95〜1.2の範囲に
あり、硼素の原子数に対し11500〜1/20の割合
でチタンあるいはアルミニウムの1つまたは両方が含有
されており、立方晶窒化硼素を主体とし、平均粒径1I
ITrL以下の微粒子から構成される平均層厚0.5〜
10μmの被覆層を設けてなることを特徴とする超硬質
被覆層を有する工具用の硬質材料部品。 2)暴利となる硬質材料は、4a、5a及び6a族金属
の炭化物並びに窒化物のうちの18以上と結合金属より
なる超硬質合金である特許請求の範囲第1項記載の超硬
質被覆層を有する工具用の硬質材料部品。 3)基材となる硬質材料は、4a、5a及び6a族金属
の炭化物並びに窒化物のうちの1ffi以上と結合金属
よりなる超硬質合金の表面に内層としてTi及び)If
の炭化物、窒化物、現金化物、炭酸窒化物並びに炭酸化
物と更にA/の窒化物及び酸化物からなる群のうちの1
1aの化合物あるいは2種以上の混合体の1層あるいは
多重層を、有している抜機超硬質合金である特許請求の
範囲第1項記載の超硬質被覆層を有する工具用の硬質材
料部品。 4)基材となる硬質材料は、分散相としての立方晶窒化
硼素:30〜93容量係と結合相としてのTiの炭化物
、窒化物、酸化物及び硼化物、 A/の窒化物、硼化物
及び酸化物並びに蟹化珪素からなる群のうちの1種の化
合物あるいは2種以上の固溶体のl相あるいは多相ニア
0〜7容鼠係よりなる立方晶窒化硼素基セラミックスで
ある特許請求の範囲第1項記載の超硬質被覆層を有する
工具用の硬質材料部品。 52 基材となる硬質材料は、Tjの炭化物、窒化物、
及び炭窒化物、 A7の窒化物及び酸化物、Yの酸化物
、Siの酸化物並びにZrの酸化物のうちの1神または
2種以上が5〜20重量係で残りが窒化珪素からなる窒
化珪素基セラミックスである特許請求の範囲第1項記載
の超硬質被覆層を有する工具用の硬質材料部品。 6)基材となる硬質材料は、Tiの炭化物、窒化物、及
び炭窒化物、 AIの窒化物及び酸化物、Yの酸化物、
Slの酸化物並びにZrの酸化物のうちの1ねまたは2
棟以上が5〜20i量%で残りが窒化珪素からなる窒化
珪素基セラミックスの表面に内層として′1゛i及びに
−1fの炭化物、窒化物、炭窒化物。 炭酸窒化物並びに炭酸化物と更にAIの窒化物及び酸化
物からなるイrトのうちの1棟の化合物あるいは2種以
上の混合体の1層あるいは多重層を有している被統セシ
ミノクスである特許請求の範囲第1項記載の超硬質1−
レ覆層を不]する工具用の硬質材料部品3.
[Claims] l) A hard material for tools is used as a base material, and boron/
The atomic ratio of (nitrogen + oxygen) is in the range of 0.95 to 1.2, and one or both of titanium or aluminum is contained in a ratio of 11500 to 1/20 to the number of boron atoms, Mainly cubic boron nitride, average grain size 1I
Average layer thickness composed of fine particles of ITrL or less: 0.5~
A hard material part for a tool having an ultra-hard coating layer, characterized in that the coating layer has a thickness of 10 μm. 2) The hard material to be exploited is a super hard alloy made of a bonded metal with 18 or more carbides and nitrides of group 4a, 5a and 6a metals. Hard material parts for tools with. 3) The hard material serving as the base material is a super hard alloy made of a bonding metal with 1ffi or more of carbides and nitrides of group 4a, 5a and 6a metals.
1 of the group consisting of carbides, nitrides, cash compounds, carbonitrides, and carbonates of A/, and further nitrides and oxides of A/
2. A hard material part for a tool having an ultra-hard coating layer according to claim 1, which is a punched ultra-hard alloy having one layer or multiple layers of the compound 1a or a mixture of two or more thereof. 4) The hard material serving as the base material is cubic boron nitride as a dispersed phase: 30 to 93 capacitance and carbides, nitrides, oxides and borides of Ti as a binder phase, nitrides and borides of A/ The claim is a cubic boron nitride-based ceramic consisting of l-phase or multi-phase near 0 to 7 volume ratio of one kind of compound or two or more kinds of solid solutions from the group consisting of A hard material part for a tool having an ultra-hard coating layer according to item 1. 52 The hard material serving as the base material is Tj carbide, nitride,
and carbonitrides, nitrides and oxides of A7, oxides of Y, oxides of Si, and oxides of Zr. A hard material part for a tool having an ultra-hard coating layer according to claim 1, which is a silicon-based ceramic. 6) The hard material serving as the base material is Ti carbide, nitride, and carbonitride, AI nitride and oxide, Y oxide,
One or two of the oxide of Sl and the oxide of Zr
Carbide, nitride, carbonitride of '1゛i and -1f as an inner layer on the surface of a silicon nitride-based ceramic consisting of 5 to 20i mass % and the remainder silicon nitride. It is a phylogenetic seciminox having one layer or multiple layers of one compound or a mixture of two or more of carbonate nitrides, carbonates, and nitrides and oxides of AI. Super hard 1- according to claim 1
Hard material parts for tools with no coating layer 3.
JP9143884A 1984-05-08 1984-05-08 Hard material parts for tool having very hard coating layers Granted JPS60234961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9143884A JPS60234961A (en) 1984-05-08 1984-05-08 Hard material parts for tool having very hard coating layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9143884A JPS60234961A (en) 1984-05-08 1984-05-08 Hard material parts for tool having very hard coating layers

Publications (2)

Publication Number Publication Date
JPS60234961A true JPS60234961A (en) 1985-11-21
JPH0313305B2 JPH0313305B2 (en) 1991-02-22

Family

ID=14026371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9143884A Granted JPS60234961A (en) 1984-05-08 1984-05-08 Hard material parts for tool having very hard coating layers

Country Status (1)

Country Link
JP (1) JPS60234961A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326349A (en) * 1986-07-18 1988-02-03 Kobe Steel Ltd Formation of cubic boron nitride film
US5948541A (en) * 1996-04-04 1999-09-07 Kennametal Inc. Boron and nitrogen containing coating and method for making
US5976716A (en) * 1996-04-04 1999-11-02 Kennametal Inc. Substrate with a superhard coating containing boron and nitrogen and method of making the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727910A (en) * 1980-06-04 1982-02-15 Battelle Development Corp Manufacture of cubic boron nitride
JPS5980775A (en) * 1982-11-01 1984-05-10 Sumitomo Electric Ind Ltd Manufacture of hard thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727910A (en) * 1980-06-04 1982-02-15 Battelle Development Corp Manufacture of cubic boron nitride
JPS5980775A (en) * 1982-11-01 1984-05-10 Sumitomo Electric Ind Ltd Manufacture of hard thin film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326349A (en) * 1986-07-18 1988-02-03 Kobe Steel Ltd Formation of cubic boron nitride film
US5948541A (en) * 1996-04-04 1999-09-07 Kennametal Inc. Boron and nitrogen containing coating and method for making
US5976716A (en) * 1996-04-04 1999-11-02 Kennametal Inc. Substrate with a superhard coating containing boron and nitrogen and method of making the same
US6054185A (en) * 1996-04-04 2000-04-25 Kennametal Inc. Substrate with superhard coating containing boron and nitrogen and method of making the same
US6086959A (en) * 1996-04-04 2000-07-11 Kennametal Inc. Boron and nitrogen containing coating and method for making
US6096436A (en) * 1996-04-04 2000-08-01 Kennametal Inc. Boron and nitrogen containing coating and method for making
US6117533A (en) * 1996-04-04 2000-09-12 Kennametal Inc. Substrate with a superhard coating containing boron and nitrogen and method of making the same

Also Published As

Publication number Publication date
JPH0313305B2 (en) 1991-02-22

Similar Documents

Publication Publication Date Title
WO2000079022A1 (en) Coated hard alloy
EP1413648B1 (en) Coated cutting tool
JP2007237391A (en) Coated cermet cutting tool
JP2825521B2 (en) Hard material protective layer for strongly loaded substrates and its preparation
JPH08209335A (en) Coated hard member
JPS60234961A (en) Hard material parts for tool having very hard coating layers
JP3360565B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer exhibiting excellent wear resistance
JP2005248309A (en) Cemented carbide and coated cemented carbide
JPH08199340A (en) Coated hard alloy
JPH0222453A (en) Surface-treated tungsten carbide-base sintered hard alloy for cutting tool
JP3519127B2 (en) High thermal conductive coated tool
JPH0873289A (en) Composite high hardness material for tool
JP3107168B2 (en) Coated silicon nitride sintered body for tools
JP2596429B2 (en) Cemented carbide
JPH05171442A (en) Coated sintered hard alloy and its manufacture
JPS6229507B2 (en)
JPS63306805A (en) Diamond coated cutting tool
JP3729463B2 (en) Tough cemented carbide and coated cemented carbide for milling
JPH0929508A (en) High tenacity surface-coated hard metal
JPS6050747B2 (en) Aluminum oxide based ceramic with high toughness and hardness
JPH108182A (en) Impact resisting cemented carbide and surface coated cemented carbide
JP2970201B2 (en) Surface coated Ti-based carbonitride-based cermet cutting tool with excellent adhesion of hard coating layer
JPS60204687A (en) Multi-layer coated ceramic member for antiabrasive tool or cutting tool
JPS60204686A (en) Surface-coated cubic boron nitride base ceramic member for cutting tool
JPS60174876A (en) Manufacture of coated cutting tool