JPS60234237A - Optical reading device - Google Patents

Optical reading device

Info

Publication number
JPS60234237A
JPS60234237A JP59089632A JP8963284A JPS60234237A JP S60234237 A JPS60234237 A JP S60234237A JP 59089632 A JP59089632 A JP 59089632A JP 8963284 A JP8963284 A JP 8963284A JP S60234237 A JPS60234237 A JP S60234237A
Authority
JP
Japan
Prior art keywords
light
luminous flux
receiving element
reading device
beam splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59089632A
Other languages
Japanese (ja)
Inventor
Toshiji Takei
利治 武居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP59089632A priority Critical patent/JPS60234237A/en
Publication of JPS60234237A publication Critical patent/JPS60234237A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector

Abstract

PURPOSE:To detect a focus shift with high accuracy and also to facilitate the easy control of an optical system with miniaturization of an optical reading device, by applying an asymetrical method to each of two luminous fluxes which are divided by a beam splitter in directions opposite or orthogonal to each other. CONSTITUTION:The reflected light sent from a recording medium 5 is made incident on a beam splitter 3, and the reflected luminous fluxes transmitted through a half surfaces and the other half surface separated centering on a plane formed by the optical axis and the track direction are divided in directions opposite to each other and orthogonal to an incident luminous flux. These two reflected luminous fluxes are made incident on two-split photodetecting elements 9 and 9' set at non-image forming points B and B' distant from image forming points A and A' by (x) in rear and front sides. Then a focus shift signal is obtained from the sum component of the output of a photodetecting element including a cut line of the half luminous flux of one or both of elements 9 and 9' and the difference component of one of both elements 9 and 9'. While a tracking signal is obtained from the difference component of both elements 9 and 9'.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、記録媒体に記録さf′Lfc情報を光を用
いて検出、又は、記録媒体に情報を光を用いて記録する
光学式読み取り装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to an optical reader that detects f'Lfc information recorded on a recording medium using light, or records information on a recording medium using light. It is related to the device.

〔従来技術〕[Prior art]

従来より、焦点ずt検出には、非点収差法、臨界角法、
非対称法、SSD法等があった。
Traditionally, the astigmatism method, critical angle method,
There were asymmetric methods, SSD methods, etc.

非点収差法は、ディスクからの反射光に非点収差を起こ
させる光学素子を用いて、焦点ずn信号を得る事を特徴
とするが、光路が長くなり検出範囲が狭いなどの欠点が
あった。臨界角法では、反射光の角度変化を、臨界角プ
リズムを用いて識別する裏で、焦点ずn信号を得る事を
特徴とするが、臨界角プリズムの設定が微妙であり、又
感度が低いなどの欠点があった。非対称法では、反射光
路中にナイフェツジを設けてビームの一部をさえぎる事
で、焦点ずn信号を得る事を特徴とするが、ビームの一
部をさえぎるので、光量損失が多く、RF倍信号S /
 N比が低下し、合焦時付近のエラー検出曲線が非線形
になるなどの欠点があった。EISD法では、焦点ずn
に伴う反射光の大きさの変化を検出するが、焦点ずn検
出用の光学素子を特別設ける必要がない反面、合焦時付
近のエラー検出カーブが非線形になり、又、ゼロクロス
点が2ケ所に現わ肚るなどの欠点があった。
The astigmatism method uses an optical element that causes astigmatism in the light reflected from the disk to obtain an out-of-focus signal, but it has drawbacks such as a long optical path and a narrow detection range. Ta. The critical angle method is characterized by obtaining an out-of-focus n signal behind the scenes where changes in the angle of reflected light are identified using a critical angle prism, but the setting of the critical angle prism is delicate and the sensitivity is low. There were drawbacks such as. The asymmetric method is characterized by providing a knife in the reflected optical path to block part of the beam, thereby obtaining an unfocused n signal.However, since part of the beam is blocked, there is a large loss of light quantity, and the RF multiplied signal is S/
There were drawbacks such as a decrease in the N ratio and a nonlinear error detection curve near the time of focusing. In the EISD method, the focal point n
Although there is no need to provide a special optical element for detecting out-of-focus n, the error detection curve near the time of focusing becomes non-linear, and there are two zero-crossing points. There were drawbacks such as the appearance of

この様なレーザ光の焦点制御及びトラッキング制御を行
なう非対称法の従来例を、次に説明する。
A conventional example of an asymmetric method for performing focus control and tracking control of such a laser beam will be described next.

第1図は、従来の光学式読み取り装置における焦点検出
装置の非対称法の一例を示ず縮図である ゛。光計1か
ら放出さv5た光は、コリメークレンズ □2によって
平行光とさ牡、ビームスプリッタ−3、及び対物レンズ
4’を介して、情報記録媒体5」−に収光さ肚る。この
光束は、凹凸のビット形状を持つ情報トラックにより反
射さ扛、対物レンズ4、及びビームスプリッタ−8を経
て、入射光束とは1交する向きに側内さnる。この反射
光束の約半分をさえぎるじゃへい板(ナイフェツジ)6
と収束レンズ7′f:介して、反射光束を収光させる。
FIG. 1 shows an example of an asymmetrical method of a focus detection device in a conventional optical reading device, but is a microcosm. The light emitted from the optical meter 1 is converted into parallel light by a collimating lens □2, and is focused onto an information recording medium 5'' through a beam splitter 3 and an objective lens 4'. This light beam is reflected by an information track having a concave and convex bit shape, passes through an objective lens 4, and a beam splitter 8, and enters the inside in a direction perpendicular to the incident light beam. A blocking plate (naifetsuji) 6 that blocks about half of this reflected light flux
and a converging lens 7'f: the reflected light beam is converged through the converging lens 7'f.

1焦状態における結像点Aより、適当な距離だけ離t1
.た非結像点13に4分割受光素子8を置く。合焦状態
で、4分割受光素子8の各受光素子の出力が同じになる
様に、4分割受光素子8を配置する。第2図に、焦点ず
れに対する光線の軌跡と4分割受光素子上の光束状態を
示す。(α)図は、合焦状態の)図は、情報記録媒体5
が近づいた状態、(C)図は、情報記録媒体5が遠のい
た状態を表わしている。従って、(8α+8d)−(8
b+8c)より、焦点ずn情報を得る事ができる。しか
し、上述した従来の焦点検出装置の非対称法においては
、しやへい板〔ナイフェツジ〕7に依り、光束の半分を
犠牲にしているので、光量損失が多く、RF倍信号El
 / N比の劣化につながった。さらに、レンズに入る
光束全てを利用していない為、口径の小さいレンズを用
いたのと同じ様に1回折現象によって小さいデジタルビ
ットが正確に読み数匹ない、という問題を持っていた。
An appropriate distance t1 from the imaging point A in the single focus state
.. A four-division light-receiving element 8 is placed at the non-image forming point 13. The four-division light-receiving element 8 is arranged so that the output of each light-receiving element of the four-division light-receiving element 8 is the same in a focused state. FIG. 2 shows the trajectory of the light ray and the state of the light flux on the four-split light receiving element with respect to defocus. (α) The figure shows the in-focus state) The figure shows the information recording medium 5
(C) shows a state where the information recording medium 5 is far away. Therefore, (8α+8d)−(8
b+8c), focus n information can be obtained. However, in the asymmetric method of the conventional focus detection device described above, half of the luminous flux is sacrificed due to the shield plate 7, so there is a large loss of light quantity, and the RF multiplied signal El
/ This led to deterioration of the N ratio. Furthermore, since not all of the light beam entering the lens is used, there is a problem in that several small digital bits cannot be read accurately due to a single diffraction phenomenon, similar to when a lens with a small diameter is used.

又、第8図に示す様に、受光素子の差出力(8a+ 8
 d) −(8b +86 )は、合焦時付近のエラー
検出曲線の傾きが、ディスクの移動量と共に連続的に変
化し、エラー検出曲腺が非線形となる。この為フォーカ
スサーボのゲインがディスクの移動距離と共に変化して
しまうので、電気的サーボをしに<<、高精度な焦点サ
ーボは、不可能であった。又、トラッキングずn信号は
、情報記録媒体6のトラック上の凹凸のビット列に依る
一次回折光の方向変化より検出する。従来、第1図、第
2図に示す様に、トラッキングのサーボ方向と光軸との
なす平面−5^ に垂直な面内に、しやへい板6を光束を二分する様に配
置し、かつ4分割受光素子の分割線は、正確にトラック
方向とトラッキングサーボ方向とに合致させる必要があ
った。トラックずn信号は、(8a+8 b ) −(
8g +86) より得らnるが、上述の様に、しやへ
い板7.4分割受光素子8の調整が、大変困難であった
In addition, as shown in Fig. 8, the difference output of the light receiving element (8a + 8
d) -(8b +86), the slope of the error detection curve near the time of focus changes continuously with the amount of movement of the disk, and the error detection curve becomes nonlinear. For this reason, the gain of the focus servo changes with the distance traveled by the disk, making it impossible to achieve highly accurate focus servo using electrical servo. Further, the tracking Zn signal is detected from the change in direction of the first-order diffracted light due to the uneven bit string on the track of the information recording medium 6. Conventionally, as shown in FIGS. 1 and 2, a shield plate 6 is placed in a plane perpendicular to the plane -5^ formed by the tracking servo direction and the optical axis so as to divide the light beam into two. In addition, the dividing line of the four-part light receiving element had to be precisely aligned with the track direction and the tracking servo direction. The trackless n signal is (8a+8b)-(
8g +86) However, as mentioned above, it was very difficult to adjust the shield plate 7.4-divided light-receiving element 8.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、こtらの欠点を除去し、光学系を非常
に小型に構成できると共に、高精度な焦点ずt検出がで
き、さらに光学系の調整が容易である光学式情報読み取
り装置全提供するものである。
It is an object of the present invention to provide an optical information reading device that eliminates these drawbacks, allows an extremely compact optical system, enables highly accurate out-of-focus detection, and allows easy adjustment of the optical system. All that is offered.

〔発明の構成〕 本発明の光学式情報読取装置は、光源から放射さtた光
を収束させて記録媒体上に記録さnたトラックからの光
学的情報を読み出す際、或いは、記録媒体に情報を記録
する際の焦点制御において、情報記録媒体で反射さし1
対物レンズで年光さ扛た反射光束を、実質上2個のビー
ムスブリッタ6一 −を用いて、光軸とトラック方向とがなす平面を境界面
として、光束を光量の等しい2光束に分け、その2光束
夫々の結像点より等距離だけ離して、一方は情報記録媒
体に近い位置に、他方は情報記録媒体より遠のいた位置
に、半光束の切線に平行な分割線′(i:有する少なく
とも2分割以上さnた受光素子で受け、上記2分割受光
素子の一方の、半光束の切線ヲ含む受光素子の出力から
半光束の切線を含まない受光素子の出力を引いた第1の
差成分と、前記2分割受光素子の他方の、半光束の切線
も含壕ない受光素子の出力から半光束の切線を含む受光
素子の出力を引いた第2の差成分との和成分から、焦点
ずn信号を得、又、上記2分割以上の受光素子のお互い
の差成分から、トラッキングずn信号を得る事を特徴と
する。
[Structure of the Invention] The optical information reading device of the present invention converges light emitted from a light source to read optical information from tracks recorded on a recording medium, or when reading out optical information from tracks recorded on a recording medium, or when reading out optical information from tracks recorded on a recording medium. In focus control when recording information, the reflective point 1 is
Splitting the reflected light beam that has been filtered by the objective lens into two light beams with equal light intensity using substantially two beam splitters 6-- with the plane formed by the optical axis and the track direction as the boundary surface; The dividing line ′ (i: has A first difference obtained by subtracting the output of the light receiving element that does not include the half-luminous flux line from the output of the light-receiving element that includes the half-luminous flux line of one of the two-split light-receiving elements, which is received by a light-receiving element that is divided into at least two parts. and a second difference component obtained by subtracting the output of the light-receiving element that includes the half-luminous flux truncated line from the output of the other one of the two-split light-receiving elements that does not include the half-luminous flux truncated line, the focal point is determined. The present invention is characterized in that a tracking Zn signal is obtained from the difference components of the two or more divided light receiving elements.

〔実施例〕〔Example〕

以下図面を参照して本発明の詳細な説明する。第4図に
おいて、光源1より出射さ′nだ光ビームハ、ビームス
プリッタ8、コリメーターレンズ2で平行光とさし対物
レンズ4を介して情報記録媒体5に入射する。記録媒体
6からの反射光は、対物レンズ5コリメーターレンズ2
f、介してビームスプリッタ8に入射する。この時、光
軸とトラック方向とがなす平面を境界にした半面を通過
した反射光束と、他の半面を通過した反射光束とは、ビ
ームスプリッタ8によって入射光束とは直交する向きに
、お互い逆向きに分けらnる。一方の半面を通過した反
射光束は、結像点Aより後方にπだけ離nた非結像点B
に置かnた2分割受光素子9に入射する。他方の半面を
通過した反射光束は、結像点Aよp前方にXだけ離nた
非結像点B1に置かnた2分割受光素子91に入射する
。ビームスプリッタ8は、光束を偏向させる素子である
。従って、反射光束の光路を、ビームスプリッタ8の干
渉膜多層フィルタを軸にして折り返し、左右に分けらn
た半光束を同一図上に示すと、第5図になる。第5図に
は、半光束の夫々を受光する非結像点B、Blに置かn
た受光索子9,91上の光束状態と光線軌跡図が示さ扛
ている。(α)図は、合焦状態、の)図は、情報記録媒
体5が近づいた状態、0図は、情報記録媒体5が遠のい
た状態を示している。2分割受光素子の配置は、合焦点
時に、光量が等しくなる様にする。
The present invention will be described in detail below with reference to the drawings. In FIG. 4, a light beam emitted from a light source 1 is collimated by a beam splitter 8 and a collimator lens 2, and is incident on an information recording medium 5 via an objective lens 4. The reflected light from the recording medium 6 is transmitted through the objective lens 5 and the collimator lens 2.
f, and enters the beam splitter 8 via. At this time, the reflected light flux that has passed through one half of the plane bordering the plane formed by the optical axis and the track direction, and the reflected light flux that has passed through the other half are separated by the beam splitter 8 in a direction perpendicular to the incident light flux, so that they are opposite to each other. Divided into directions. The reflected light flux that has passed through one half surface is at a non-image forming point B, which is located π behind the image forming point A.
The light enters the two-split light-receiving element 9 placed at n. The reflected light flux that has passed through the other half surface enters a two-split light receiving element 91 located at a non-imaging point B1 located a distance n in front of the imaging point A and a distance n away. Beam splitter 8 is an element that deflects a beam of light. Therefore, the optical path of the reflected light beam is folded around the interference film multilayer filter of the beam splitter 8 and divided into left and right sides.
If the half luminous flux is shown on the same diagram, it becomes Figure 5. In Fig. 5, n
The state of the light flux on the light-receiving cables 9 and 91 and the ray trajectory diagram are shown. The figure (α) shows a state in focus, the figure (α) shows a state in which the information recording medium 5 is close, and the figure 0 shows a state in which the information recording medium 5 is far away. The two-split light-receiving element is arranged so that the amount of light is equal when the focus is focused.

片方だけの差成分、例えば、(9α−9b)又は、(9
’c−9’d)f焦点ずn信号とすると、第8図に示し
た様に、合焦時付近のエラー検出曲線が非線形となり、
焦点ずn信号には、不適となる。そこで、(9α−gb
)と(9’d−9’a)の和信号、即ち(9α−96)
+(9’d gl、)を焦点ずn信号とすtば、例えば
、情報記録媒体5が遠のいた時には、第2図(C)の2
分割受光素子8の状態が、第5図(C)の2分割受光素
子9′の状態となり、第2図Cb)の2分割受光素子8
の状態が、第5図(c)の2分割受光素子9の状態とな
るので、合焦時付近のエラー検出曲線の非線形性は、相
補的な信号の取り方で消え、第6図に示す様に、エラー
検出曲線は、非常に線形性の良い曲線となる。しかも、
エラー検出範囲は、非常に広くと扛るので、焦点サーボ
の引き込みが極めて良くなる。
Only one difference component, for example, (9α-9b) or (9
'c-9'd) If f focus is n signal, the error detection curve near the time of focus becomes non-linear, as shown in Figure 8.
This is not suitable for out-of-focus n signals. Therefore, (9α-gb
) and (9'd-9'a), that is, (9α-96)
+(9'd gl,) is the unfocused n signal. For example, when the information recording medium 5 is far away, 2 in FIG. 2(C)
The state of the divided light receiving element 8 becomes the state of the two divided light receiving element 9' in FIG. 5(C), and the state of the two divided light receiving element 8 in FIG. 2Cb).
This state corresponds to the state of the two-split light-receiving element 9 shown in FIG. 5(c), so the nonlinearity of the error detection curve near the time of focusing disappears by taking complementary signals, as shown in FIG. 6. Similarly, the error detection curve is a curve with very good linearity. Moreover,
Since the error detection range is very wide, the focusing servo can be pulled in very well.

崗9− 又、トラックずし信号は、第4図に示す様に、ビームス
プリッタ8の多層膜の交線をトラック方向に調整するだ
けで、(9(L+9 b) −(9’ c十91 d)
より得る事ができる。何故ならば、トラックずnが生じ
ると、トラックで発生する一次回折光が9,91に異な
る強度で当るからである。又、RF倍信号、各受光素子
からの信号の和、即ち、C9a+9b)+ (9’ c
+9 ’ d)より得る裏ができる。
In addition, as shown in FIG. 4, the track shift signal can be obtained by simply adjusting the intersection line of the multilayer films of the beam splitter 8 in the track direction. d)
You can get more. This is because when a track zn occurs, the first-order diffracted light generated by the track hits 9 and 91 with different intensities. Also, the RF multiplied signal, the sum of the signals from each light receiving element, that is, C9a+9b)+(9' c
+9' d) gives you tails.

尚、上記実施例では、ビームスプリッタに入射する光束
を発散光としたが、コリメーター・レンズを光源とビー
ムスプリッタ間に挿入し、ビームスプリッタ9の両側に
凸レンズを挿入しても同等の効果を得る事ができる。
In the above embodiment, the light beam incident on the beam splitter is a diverging light beam, but the same effect can be obtained by inserting a collimator lens between the light source and the beam splitter and inserting convex lenses on both sides of the beam splitter 9. You can get it.

尚、上記実施例で用いたビームスプリッタは、ハーフミ
ラ−でも良いし、又は、偏光ビームスプリッタと1/4
波長板の組み合わせでも良い。又、ビームスプリッタは
、入射光束と直交する方向に、お互いに逆向き、或いは
、直交する向きに反射光束を、等光量分配するものでh
−nば、どんな&10^ 偏向電子を用いても良い。例えば、第7図の様に、トラ
ック方向を境界に光束e[交する向きに2公害1」シて
も良い。
Note that the beam splitter used in the above embodiment may be a half mirror, or a polarizing beam splitter and a 1/4 beam splitter.
A combination of wave plates may also be used. In addition, a beam splitter is a device that distributes the reflected light flux in an equal amount in a direction perpendicular to the incident light flux, in opposite directions, or in directions orthogonal to each other.
-n, any &10^ deflected electrons may be used. For example, as shown in FIG. 7, the luminous flux e [2 pollution 1] may be set in the intersecting direction with the track direction as the boundary.

〔発明の効果〕〔Effect of the invention〕

以上述べた様に、本発明に依nば、ビームスプリッタ8
で分けら′nたお互いに逆向き、或いは、お互いに直交
する向きに2光束の夫々に対して、しやへい板を用いる
事なく、非対称法を実施する事ができると共に、相補的
な信号の取り方で、エラー検出カーブに非線形性の全く
ない焦点誤差信号を得る事ができる。又、焦点ずn検出
範凹を広くとる事ができると同時に、光量損失を全く伴
う事がなくなり、RF信号のS / N比を大幅に改善
する事ができる。さらに、光学系の調整も非常に容易で
あり、非常に小型であり光学系も簡素である。
As described above, according to the present invention, the beam splitter 8
It is possible to carry out the asymmetric method without using a shield plate for each of the two luminous fluxes that are separated by By taking this method, it is possible to obtain a focus error signal with no nonlinearity in the error detection curve. In addition, the detection range for defocus n can be widened, and at the same time, there is no loss of light quantity, and the S/N ratio of the RF signal can be greatly improved. Furthermore, the optical system is very easy to adjust, is very small, and has a simple optical system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の非対称焦点ず7L検出方法における光
学系の線図。 第2図は、従来の非対称焦点ずれ検出方法における (a、)合焦時の光線軌跡と4分割受光素子上の光束状
態 Cb)情報記録媒体が近づいた時の光線軌跡と4分割受
光素子上の光束状態 (6)情報記録媒体が遠のいた時の光線軌跡と4分割受
光素子上の光束状態を示した図。 第8図 従来の非対称法における情報記録媒体の移動量
とエラー信号量の関係を示し た図 第4図 本発明に係る光学系の線図 第5図 本発明に係る焦点ずn検出方法における (α)合焦時の光線軌跡と2分割受光素子上の夫々の光
束状態 (b)情報記録媒体が近づいた時の光線軌跡と2分 。 側受光素子上の夫々の光束状態 (C)情報記録媒体が遠のいた時の光線軌跡と2分割受
光素子上の夫々の光束状態を示した図。 第6図 本発明((係る焦点ずn検出法における情報記
録媒体の移動量とエラー信号量 の関係を示した図 第7図 本発明に係る光束を2分するビームスプリッタ
の他の実施例である。 以上 出願人 セイコー電子工業株式会社 代理人 弁理士 最 上 務 ^13− 第5図 第6図 99′ 第7図
FIG. 1 is a diagram of an optical system in a conventional asymmetric focal pointless 7L detection method. Figure 2 shows (a) the trajectory of the ray when in focus and the state of the light flux on the 4-split light-receiving element in the conventional asymmetric defocus detection method. Light flux state (6) A diagram showing the light ray locus and the light flux state on the 4-split light receiving element when the information recording medium moves away. FIG. 8 is a diagram showing the relationship between the amount of movement of the information recording medium and the amount of error signal in the conventional asymmetric method. FIG. 4 is a diagram of the optical system according to the present invention. FIG. α) Ray trajectory when in focus and respective luminous flux states on the two-split light-receiving element (b) Ray trajectory and 2 minutes when the information recording medium approaches. (C) A diagram showing the trajectory of the light beam when the information recording medium moves away from the side light receiving element and the state of the light flux on the two-split light receiving element. Fig. 6 is a diagram showing the relationship between the amount of movement of the information recording medium and the amount of error signal in the defocus n detection method according to the present invention. Yes. Applicant: Seiko Electronic Industries Co., Ltd. Agent, Patent Attorney: Mogami, 13- Figure 5, Figure 6, 99' Figure 7

Claims (1)

【特許請求の範囲】 (1)ディスクの記録情報を光を用いて検出、又はディ
スクに情報を光を用いて記録する光学式読み取り装置に
おいて、光源とディスク面を結ぶ光路上に、光源より、
少たくとも、ビームスプリッタ−1対物レンズが配置さ
扛、又、ディスク面と受光素子を結ぶ光路上に、ディス
ク面よp1少なくとも、対物レンズ、光軸とトラック方
向とがなす平面を境界面として光束を光量の等しい2つ
の半光束に分けるビームスプリッタが配置さn1夫々の
2つの半光束の結像点より等距離だけ離して、一方はデ
ィスクに近い位置に、他方はディスクより遠のいた位置
に、半光束の切線に平行な分銅線を有する少なくとも2
分割以上さtた受光素子が、配置さnている事を特徴と
する光学式読み取り装!。 (2)フォーカスずn信号は、前記2分割受光素子の一
方の、半光束の切線を含む受光素子の出力から半光束の
切線を含まない受光素子の出力を引いた第1の差成分と
、前記2分割受光素子の他方の、半光束の切線を含まな
い受光素子の出力から半光束の切線を含む受光素子の出
力を引いた第2の差成分との和成分より得る事を特徴と
する特許請求範囲α)項記載の光学式読み取り装置。 (8)トラッキングずれ信号は、前記両方の2分割以上
の受光素子のお互いの差成分から得る事を特徴とする特
許請求範囲(1)項記載の光学式読み取り装置。
[Scope of Claims] (1) In an optical reading device that detects recorded information on a disc using light or records information on a disc using light, from a light source on an optical path connecting the light source and the disc surface,
At least, the objective lens of the beam splitter 1 is arranged, and on the optical path connecting the disk surface and the light receiving element, at least the plane formed by the objective lens, the optical axis, and the track direction is set as a boundary surface from the disk surface. A beam splitter that divides the light beam into two half-beams of equal light intensity is placed equidistantly from the imaging point of each of the two half-beams of n1, one at a position close to the disk and the other at a position farther from the disk. , at least two having weight lines parallel to the truncation line of the half-luminous flux
An optical reading device characterized by an arrangement of light-receiving elements that are more than divided! . (2) The focus n signal is a first difference component obtained by subtracting the output of the light receiving element that does not include the half-luminous flux tangent from the output of one of the two-split light receiving elements that includes the half-luminous flux tangent; It is characterized in that it is obtained from the sum component of a second difference component obtained by subtracting the output of the light receiving element that includes the half luminous flux tangent from the output of the other of the two-split light receiving elements that does not include the half luminous flux tangent. An optical reading device according to claim α). (8) The optical reading device according to claim (1), wherein the tracking deviation signal is obtained from a difference component between the two or more divided light receiving elements.
JP59089632A 1984-05-04 1984-05-04 Optical reading device Pending JPS60234237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59089632A JPS60234237A (en) 1984-05-04 1984-05-04 Optical reading device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59089632A JPS60234237A (en) 1984-05-04 1984-05-04 Optical reading device

Publications (1)

Publication Number Publication Date
JPS60234237A true JPS60234237A (en) 1985-11-20

Family

ID=13976137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59089632A Pending JPS60234237A (en) 1984-05-04 1984-05-04 Optical reading device

Country Status (1)

Country Link
JP (1) JPS60234237A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547923U (en) * 1977-06-16 1979-01-19
JPS5956234A (en) * 1982-09-24 1984-03-31 Sony Corp Optical reproducing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547923U (en) * 1977-06-16 1979-01-19
JPS5956234A (en) * 1982-09-24 1984-03-31 Sony Corp Optical reproducing device

Similar Documents

Publication Publication Date Title
US4467462A (en) Signal detection system for use in an optically reproducing apparatus
US4358200A (en) Optical focussing-error detection system
JPS618744A (en) Focus error detector of optical disc device
JPH0760527B2 (en) Optical pickup device
JP2901728B2 (en) Optical head and information recording / reproducing apparatus using the same
US4223348A (en) Automatic focussing device
JPS6043234A (en) Detector for defocus of optical disk head
JPS60234237A (en) Optical reading device
JPS6329337B2 (en)
JP2874663B2 (en) Optical head focus error detection method
JP3044667B2 (en) Optical reader
JPS6331858B2 (en)
JP2552660B2 (en) Focus error detector
JPH0534732B2 (en)
JPH0457224A (en) Optical head device
JPS61233441A (en) Optical head device
JP2686323B2 (en) Focus error detection device
JP2712314B2 (en) Optical device
JPH0743835B2 (en) Focus error detector
JPH04167236A (en) Optical disk apparatus
JPS60239936A (en) Optical information detector
JPS61233442A (en) Optical head device
JPS6256576B2 (en)
JPH0386936A (en) Optical head structure
JPS6093643A (en) Optical head