JPS6023282B2 - Relative displacement measuring device - Google Patents

Relative displacement measuring device

Info

Publication number
JPS6023282B2
JPS6023282B2 JP50031737A JP3173775A JPS6023282B2 JP S6023282 B2 JPS6023282 B2 JP S6023282B2 JP 50031737 A JP50031737 A JP 50031737A JP 3173775 A JP3173775 A JP 3173775A JP S6023282 B2 JPS6023282 B2 JP S6023282B2
Authority
JP
Japan
Prior art keywords
grating
light
frequency
image
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50031737A
Other languages
Japanese (ja)
Other versions
JPS50136057A (en
Inventor
アルフレツド セイス レナド
ロバ−ト・マ−テイン・ペテイグリユ−
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Development Corp UK
Original Assignee
National Research Development Corp UK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB11598/74A external-priority patent/GB1504691A/en
Application filed by National Research Development Corp UK filed Critical National Research Development Corp UK
Publication of JPS50136057A publication Critical patent/JPS50136057A/ja
Publication of JPS6023282B2 publication Critical patent/JPS6023282B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/38Forming the light into pulses by diffraction gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/363Direction discrimination

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Description

【発明の詳細な説明】 本発明は一平面に於ける自由度1の直線運動又は回転運
動に対応する様態での第一部材の第二部材に対する変位
を測定する装置に係り、より詳細には、度量衡的格子(
metrolo蟹cal稗ating)を利用するこの
種の装置に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for measuring the displacement of a first member relative to a second member in a manner corresponding to a linear motion or rotational motion with one degree of freedom in one plane, and more specifically, , metrological grid (
This type of device utilizes metrolo calcining.

この種の種々の装置が工作機械の制御等の分野に使用さ
れている。
Various devices of this type are used in fields such as machine tool control.

従来のこの種の装置は、相対変位を測定すべき第一及び
第二部材の夫々に対して固定位置に設けられた同一周波
数又はほぼ同一周波数の一対の格子を有する。この一対
の格子のうちの一方の格子は透過性であり、他方の格子
は透過性又は反射性である。一対の格子の組合体は適当
な光源で照射される。更に、二つの格子の相対運動に応
じて変化する格子の組合体による透過又は反射光の変化
に応答する手段が設けられてし、3る。この従釆の装置
には設計上乃至使用上多くの問題がある。
Conventional devices of this type include a pair of gratings of the same or nearly the same frequency, located at fixed positions relative to each of the first and second members whose relative displacements are to be measured. One grating of the pair of gratings is transmissive and the other grating is either transmissive or reflective. The pair of gratings is illuminated by a suitable light source. Additionally, means are provided for responding to changes in light transmitted or reflected by the combination of gratings that vary in response to relative movement of the two gratings. This secondary device has many problems in design and use.

特に高度にコリメートして格子系を照射する必要があり
、格子間の間隔を非常に正確に維持する必要があり、と
きには格子間の間隔を非3常に小さくする必要がある。
細かい格子を使用する場合、特にこれらの問題が避け難
い。一般には測定に必要な分解館を直接与える格子より
粗い格子が使用され、必要な精度乃至分解館の結果を得
るべく橘間法が用いられるが、この補間自体が誤4差の
原因になる塵れがある。本発明は前記した点に鑑みなさ
れたものであり、その目的とするところは、空間的に周
期的な光学的物体(すなわちコリメートされていない光
を出す)に対する格子の光学的結像特性を利用するとい
う考え方に立脚して、前記した問題点の少なくとも一部
を解決し得、補間法を用いることなくしても所望の分解
館を有する比較的簡単で容易に製造され縛る相対変位測
定装置を提供することにある。
In particular, it is necessary to illuminate the grating system with a high degree of collimation, and the spacing between the gratings has to be maintained very precisely, and sometimes the spacing between the gratings has to be very small.
These problems are especially difficult to avoid when using fine grids. In general, a coarser grid is used than the grid that directly provides the resolution required for measurement, and the Tachibana method is used to obtain the required precision or resolution results, but this interpolation itself is a source of error. There is. The present invention has been made in view of the above points, and its purpose is to exploit the optical imaging properties of gratings for spatially periodic optical objects (i.e. emitting uncollimated light). Based on this idea, we provide a relative displacement measuring device that can solve at least part of the above-mentioned problems and has a desired disassembly even without using an interpolation method and is relatively simple and easy to manufacture. It's about doing.

前記考え方に従う本発明の相対変位測定菱贋は、原理的
には、一つの平面内での自由度1の運動に対応する様態
での第二部材に対する第一部材の相対変位を測定するた
めの装置であって、相互に実質的に一様な間隔となるよ
うに夫々が第一及び第二部材に対して固定位置に設けら
れており、前記運動方向に空間的に周期的に線を有して
いる第一及び第二の格子と、第二の格子をコリメートさ
れてし、ない光で照らす照射手段と、光検出手段とから
なり、前記第一及び第二の格子並びに前記照射手段は、
第二の格子によって規定された空間的に周期的な光学的
物体の、前記運動方向に空間的に周期的であり且つ第一
の格子から実質的に一様に離間した実像が前記第一の格
子によって形成されるように、且つ第一及び第二部材間
に前記相対運動が生じた際、前記実像が一つの平面内で
の自由度1の運動に応じて第二部材に対して相対運動す
るように配置されており、前記光検出器手段は、前記第
こ部材に対して固定位暦に設けられた前記運動方向に空
間的に周期的な構造体を有しており、前記実像を形成し
ている光を受け取るべく構成されており、且つ第一及び
第二部材間に前記相対運動が生じた際、前記構造体が前
記像と相互作用して光検出手段の出力が周期的に変動す
るように礎成されている、相対変位測定装置からなる。
The relative displacement measuring device of the present invention according to the above concept is, in principle, a method for measuring the relative displacement of a first member with respect to a second member in a manner corresponding to movement with one degree of freedom within one plane. an apparatus, each of which is provided in a fixed position with respect to the first and second members at a substantially uniform spacing from each other, and having a line spatially periodically in the direction of movement; irradiation means for illuminating the second grating with collimated light, and a light detection means, the first and second gratings and the irradiation means comprising: ,
a real image of a spatially periodic optical object defined by a second grating, spatially periodic in the direction of motion and substantially uniformly spaced from the first grating; when the relative movement occurs between the first and second members, the real image moves relative to the second member in accordance with the movement with one degree of freedom in one plane; and the photodetector means has a spatially periodic structure in the direction of movement provided in a fixed position relative to the first member, and the photodetector means is arranged to detect the real image. the structure is configured to receive the light forming the image, and when the relative movement occurs between the first and second members, the structure interacts with the image and the output of the light detection means is periodically It consists of a relative displacement measuring device which is built up in a variable manner.

前記原理に基づく本発明のうち、実際上光の回折を無視
し得、光学的物体の影の実像を形成するような格子を用
いる第一発明によれば、前記目的は、一つの平面内での
自由度1の運動に対応する様態での第二部材に対する第
一部材の相対変位を測定するための装置であって、距離
uだけ一様に離れて夫々が第一及び第二部材に対して固
定位置に設けられており、前記運動方向に夫々周波数f
,及びf2(たゞしf,>f2)で空間的に周期的に線
を有している第一及び第二の格子と、f2/L=v/(
u+v)で規定される距離vだけ第一の格子から一様に
離れたところに、f3/f,=u/(u+v)で規定さ
れる周波数b3で前記方向に空間的に周期的であり、第
一及び第二部材間に前記態様での運動が生じた際第二部
材に対して前記様態で動く、光学的物体としての第二の
格子の影の実像を第一の格子によって生ぜしめるべZく
、f,及びf2とは比較にならない種高い周波数のコリ
メートされていない光で第二の格子を照らす照射手段と
、第一及び第二部材間に相対運動が生じた際出力に周期
的変化を生ずるように、実質的にもの周波数で空間的に
周期的であり第一の格子Zから実質的にv離れて第二部
材に対して固定位直に設けられた構造体を有しており、
前記像に応答する光検出器手段とを有する相対変位測定
装置によって達成される。
Among the present inventions based on the above-mentioned principles, the first invention uses a grating that can practically ignore the diffraction of light and forms a real image of the shadow of an optical object. Apparatus for measuring the relative displacement of a first member with respect to a second member in a manner corresponding to a movement with one degree of freedom of are provided at fixed positions in the direction of movement, respectively at a frequency f.
, and f2 (just f, > f2), the first and second gratings have spatially periodic lines, and f2/L=v/(
uniformly spaced apart from the first grating by a distance v defined by u+v) and spatially periodic in said direction with a frequency b3 defined by f3/f,=u/(u+v); The first grating should produce a real image of the shadow of the second grating as an optical object, which moves in the manner described above with respect to the second member when a movement occurs in the manner described between the first and second members. irradiation means for illuminating the second grating with uncollimated light of an incomparably higher frequency than Z, f, and f2; a structure which is spatially periodic at substantially the same frequency and is disposed in a fixed position relative to the second member at a distance of substantially v from the first grating Z so as to produce a change in the structure; Ori,
and photodetector means responsive to said image.

更に、前記原理に基づく本発明のうち、光学的2物体の
回折実像を形成する格子を用いる第二発明によれば、前
記目的は、一つの平面内での自由度1の運動に対応する
様態で第二部材に対する第一部材の相対変位を測定する
ための袋贋であって、 2距離uだ
け一様に離れて夫々が第一及び第二部材に対して固定位
置に設けられており、前記運動方向に夫々周波数f,及
びf2(たゞし幻,>f2)で空間的に周期的に線を有
している第一及び第二の格子と、
3ら/f,=2V/(u十V)で規定される
距離Vだけ第一の格子から一様に離れたところに、F3
/f,=沙/(u十V)で規定される周波数F3で前記
方向に空間的に周期的であり、第一及び第二部材間に前
記様態での運動が生じた際第二部材に対し3て前記様態
で動く、光学的物体としての第二の格子の回折実像を第
一の格子によって生ぜしめるべく、f,及びf2と同程
度の周波数であり、第一の格子のピッチをwとした場合
最大波長^mがuとが/2^mで規定されるコリメート
されていな4い光で第二の格子を照らす照射手段と、第
一及び第二部材間に相対運動が生じた際出力に周期的変
化を生ずるように、実質的にF3の周波数で空間的に周
期的であり第一の格子から実質的にV離れて第二部材に
対して固定位置に設けられた構造体を有しており、前記
像に応答する光検出器手段とを有する相対変位測定装置
によって達成される。
Furthermore, among the present inventions based on the above-mentioned principles, according to a second invention using a grating that forms a real diffraction image of two optical objects, the above-mentioned object is a mode corresponding to movement with one degree of freedom within one plane. a counterfeit device for measuring the relative displacement of a first member with respect to a second member, the counterfeit counterfeit being provided at a fixed position with respect to the first and second members, respectively, spaced uniformly apart by two distances u; first and second gratings having spatially periodic lines at frequencies f and f2 (>f2) in the direction of movement, respectively;
F3 is uniformly spaced apart from the first grid by a distance V defined by 3/f, = 2V/(u + V).
It is spatially periodic in the above direction at a frequency F3 defined by /f,=sha/(u 1 V), and when the movement in the above manner occurs between the first and second members, the second member On the other hand, in order to produce a real diffraction image of the second grating as an optical object moving in the above manner by the first grating, the frequencies are comparable to f and f2, and the pitch of the first grating is w. In this case, a relative movement occurs between the illumination means that illuminates the second grating with uncollimated light whose maximum wavelength ^m is defined by u and /2^m, and the first and second members. a structure that is spatially periodic at a frequency of substantially F3 and is located in a fixed position relative to the second member at a distance of substantially V from the first grating so as to produce a periodic change in the output power; and photodetector means responsive to said image.

本明細書中「光一という用語は可視光線並びに紫外線及
び赤外線を含むものとする。
As used herein, the term ``light'' includes visible light as well as ultraviolet and infrared light.

本発明の相対変位測定装置では、第一部材と第二部材と
の間の相対変位によって、像と第二部材との間により大
きな相対変位が生ずる。
In the relative displacement measuring device of the present invention, the relative displacement between the first member and the second member causes a larger relative displacement between the image and the second member.

0 一般に前記第一の格子、光学的物体を構成する前記
第二の格子、光検出器手段の周期的構造体はすべて前記
所与の平面に実質的に平行な平面内に位鷹するように配
設される。
0 Generally, the first grating, the second grating constituting the optical object, and the periodic structure of the photodetector means are all positioned in a plane substantially parallel to the given plane. will be placed.

本発明の第二発明の装置のうち、例えば、前記タ第一の
格子が反射格子からなり、光学的物体を構成する前記第
二の格子と光検出器手段の周期的構造体とが実質的に同
一平面にある(すなわちu=V)ような好ましい一具体
例の装置では、前記第一の格子、光学的物体を構成する
前記第二の格0子、及び周期的構造体の空間周波数が実
質的に同一である(すなわちf,=ら=F3)。
In the device of the second aspect of the present invention, for example, the first grating comprises a reflection grating, and the second grating constituting the optical object and the periodic structure of the photodetector means are substantially In one preferred embodiment, the spatial frequencies of the first grating, the second grating constituting the optical object, and the periodic structure are coplanar (i.e., u=V). are substantially identical (i.e., f,=et=F3).

この装置では、(u十V)/u=2故、周波数のF3の
像と第二部材との間の相対変位は第一部材と第二部材と
の間の相対変位の2倍の大きさになり、従って格タ子の
1周期分に対応する第一部材と第二部材との間の相対変
位によって光検出器手段で2周期分の周期的な出力変化
が生ずる。次に添付図面を参照して本発明を詳細に説明
する。
In this device, since (u + V)/u = 2, the relative displacement between the image of frequency F3 and the second member is twice the relative displacement between the first member and the second member. Therefore, a relative displacement between the first member and the second member corresponding to one period of the grating results in a periodic output change of two periods in the photodetector means. The present invention will now be described in detail with reference to the accompanying drawings.

0 本発明の基本原理は概念的に最も単純な第1図の形
に示される。
0 The basic principle of the present invention is illustrated in the conceptually simplest form of FIG.

第1図に示す光学系において、ランプ1からの光はしン
ズ2により集光され、三つの線形の透過格子3,4,5
を通過し、光電池6に達する。第二の格子としての格子
3及び第一夕の格子としての格子4は、相互に距離u隔
てられた平行面内に夫々の線が平行になるように設けら
れている。第一の格子4は空間周波数f.を有し、第二
の格子3は空間周波数らを有する。格子3は格子4を散
漫に照射する空間的に周期的な光学的0物体を規定して
いる。以上において第二の格子3をコリメートされてい
ない光で照らす照射手段は、ランプ1及びレンズ2から
なる。まず、格子4の結像特性を考える際、ランプ1及
びレンズ2からコリメートされていない光の周波数が格
子3,4の空間周波数f2,f,とは比較にならない程
大きく、格子4による回折効果が無視できる状態である
とする。
In the optical system shown in FIG. 1, light from a lamp 1 is focused by a lens 2 and three linear transmission gratings 3, 4, 5
and reaches the photovoltaic cell 6. The grating 3 as the second grating and the grating 4 as the first grating are provided in parallel planes separated by a distance u from each other so that their respective lines are parallel. The first grating 4 has a spatial frequency f. , and the second grating 3 has spatial frequencies et al. The grating 3 defines a spatially periodic optical zero object that diffusely illuminates the grating 4. In the above, the irradiation means for illuminating the second grating 3 with uncollimated light consists of the lamp 1 and the lens 2. First, when considering the imaging characteristics of the grating 4, the frequency of uncollimated light from the lamp 1 and lens 2 is incomparably larger than the spatial frequencies f2, f of the gratings 3 and 4, and the diffraction effect due to the grating 4 is Assume that the condition is negligible.

すなわち本発明のうち第一発明に対応する場合について
考える。この場合光は直線的に伝播し、格子4から距離
vにあり格子4に平行な面内に格子4の影の像が実像の
形で形成される。ここで距離vは次の式‘1}により決
定される。ら/f.iV/(u十V){1, この影の像は次の式■により与えられる空間周波数らを
有する。
That is, a case corresponding to the first invention of the present invention will be considered. In this case, the light propagates linearly, and a real image of the shadow of the grating 4 is formed in a plane parallel to the grating 4 at a distance v from the grating 4. Here, the distance v is determined by the following equation '1}. et/f. iV/(u+V){1, This shadow image has a spatial frequency given by the following equation (2).

も/f.=u/(u+V) ■尚、式
‘11,【2)よりしてf3=f,一f2故、f,>f
2である。
mo/f. =u/(u+V) ■By Equation '11, [2], f3=f, -f2, so f,>f
It is 2.

格子3に対して格子4を、格子3,4の面に平行に且つ
格子3,4の線に垂直に大きさdだけ変位させると、影
像が大きさDだけ平行に変位する。
If the grating 4 is displaced with respect to the grating 3 by an amount d parallel to the planes of the gratings 3, 4 and perpendicular to the lines of the gratings 3, 4, the image will be displaced by an amount D in parallel.

ここで影像の変位の大きさDは次の式{31により決定
される。D=d(1十v/u)‘3’ 従って空間周波数がf3の格子5を形成し、この格子5
を、格子3,4の線と格子5の線とが平行になるように
格子3,4に平行に格子4からvの距離に格子3に対し
て固定的に設置すると、格子3及び4が格子面に平行に
且つ格子の線に垂直に2相対的に移動されるにつれ、格
子4により形成される影像が格子5と相互作用して光電
池6に達する光の強度が周期的に変化する。
Here, the magnitude D of the displacement of the image is determined by the following equation {31. D=d(10v/u)'3' Therefore, a grating 5 with a spatial frequency of f3 is formed, and this grating 5
is fixed to the grid 3 at a distance v from the grid 4 parallel to the grids 3 and 4 so that the lines of the grids 3 and 4 are parallel to the lines of the grid 5, then the grids 3 and 4 become As the image formed by the grating 4 interacts with the grating 5, the intensity of the light reaching the photovoltaic cell 6 changes periodically as it is moved 2 relatively parallel to the grating plane and perpendicular to the lines of the grating.

更に、格子5が格子3に対して静止している故、光電池
6の出力から前記相対運動の大きさを求め得る。
3以上において、光検出器手段は空間的に周期的な構
造体としての格子5と光電池6とからなる。式mから格
子3,4の空間周波数が同一である場合、影像が形成さ
れないことが判る。またf,がらの2倍であればvはu
に等しいことが明らかで3あり、この場合式■からWま
f2に等しいことが判る。u=V.豪=f2:もなる装
置の場合第1図に示す光学系を変更して格子4の代りに
反射格子7を使用して影像面を格子3の面と一致させる
と都4合がよい。この結果、上記光学系は三つの格子を
有する構造から単に二つの格子のみを有する構造に縮小
され、これらの格子3,7のうちの一方の格子3の二つ
の機能(第1図の格子3と格子5の機能)を果たす。即
ち、例えば第2図の格子3は空間的に周期的な光学的物
体を構成する第二の格子として働くのみならず影像と相
互作用する光検出器手段の空間的に周期的な構造体とし
て働く。この変更を加えた特定の光学系についての詳細
は後述する。格子3に入射する光が完全にコリメートさ
れている場合影像は全く形成されない。
Furthermore, since the grating 5 is stationary with respect to the grating 3, the magnitude of the relative movement can be determined from the output of the photovoltaic cell 6.
3 and above, the photodetector means consists of a grating 5 as a spatially periodic structure and a photovoltaic cell 6. It can be seen from equation m that no image is formed if the spatial frequencies of gratings 3 and 4 are the same. Also, if f is twice as large as , then v is u
It is clear that W is equal to 3, and in this case, from equation (2), it can be seen that W is equal to f2. u=V. In the case of an apparatus in which the optical system is similar to f2, it is better to change the optical system shown in FIG. As a result, the optical system is reduced from a structure with three gratings to a structure with only two gratings, and the two functions of one of these gratings 3, 7 (grating 3 in FIG. and the function of grid 5). Thus, for example, the grating 3 in FIG. 2 not only acts as a second grating constituting a spatially periodic optical object, but also as a spatially periodic structure of the photodetector means that interacts with the image. work. Details of the specific optical system with this change will be described later. If the light incident on the grating 3 is perfectly collimated, no image is formed.

更に部分的にコリメートされている入射光の場合、ほゞ
(N−1/2)ノ^L,f2なる距離uに対しては良好
な影像は形成されない。ここでNは整数であり、入は使
用する光の平均波長である。一般に距離vが増加するに
つれ、光が直進するという仮定は次第に有効性を失なう
ため、影像のコントラストは減少する。次に、ランプ1
及びレンズ2からの光の周波数が格子3,4の空間周波
数に匹敵する程度の大きさであり、格子4が回折格子と
して働く場合入m2髪を考える。
Furthermore, in the case of partially collimated incident light, no good image is formed for a distance u of approximately (N-1/2) L,f2. Here, N is an integer and I is the average wavelength of the light used. Generally, as the distance v increases, the assumption that light travels in a straight line becomes less and less valid, and the contrast of the image decreases. Next, lamp 1
When the frequency of the light from the lens 2 is comparable to the spatial frequency of the gratings 3 and 4, and the grating 4 acts as a diffraction grating, consider an input m2.

すなわち本発明のうち第二発明に対応する場合について
考える。この場合、干渉像が形成される。この像は格子
4から距離Vのところに形成され、Vは次の式‘4}に
より決定される。ら/f.=2V/(n十V)
■この像は次式‘5)で求められる空間周波
数F3を有する。
That is, a case corresponding to the second invention of the present invention will be considered. In this case, an interference image is formed. This image is formed at a distance V from the grating 4, where V is determined by the following equation '4}. et/f. =2V/(n10V)
(2) This image has a spatial frequency F3 determined by the following equation '5).

F3/f,=狐/(u+V) ■尚、
式{4),{5ばりしてF3=が,一f2故、2,>f
2である。式{3}と同形の式が回折格子により形成さ
れる干渉像に適用され、式{41,側を満たす格子5を
格子3に対し固定的に設けることにより光電池6に達す
る光強度が周期的に変化する相対変位測定装置が得られ
る。
F3/f,=Fox/(u+V) ■In addition,
Formula {4), {5, F3= is -f2, so 2,>f
It is 2. An equation of the same form as equation {3} is applied to the interference image formed by the diffraction grating, and by providing a fixed grating 5 that fills the equation {41, side with respect to the grating 3, the light intensity reaching the photovoltaic cell 6 becomes periodic. A relative displacement measuring device is obtained that changes as follows.

式‘小ま、格子3,4が同一の空間周波数を有する場合
、V=uのところに干渉像が形成されることを示し、式
■はこの場合干渉像が格子3,4と同一の空間周波数を
有することを示している。
Equation 'small' indicates that if gratings 3 and 4 have the same spatial frequency, an interference image is formed at V=u, and equation (2) indicates that in this case the interference image is in the same space as gratings 3 and 4. It shows that it has a frequency.

この場合も、格子4を反射格子に代えることにより第1
図の光学系を変更すると便利であり、この場合も第1図
の格子3,5の機能を果たす単一の格子を使用し得る。
格子3への入射光が完全にコリメートされている場合、
干渉像は全く形成されない。
In this case as well, by replacing the grating 4 with a reflection grating, the first
It may be convenient to modify the optical system in the figure and again use a single grating that performs the function of gratings 3, 5 in FIG.
If the incident light on grating 3 is perfectly collimated,
No interference image is formed.

従って格子3への入射光が少なくとも部分的に散漫乃至
拡散的であることが重要である。実際には、格子3を完
全に拡散乃至散漫照射することは困難であり、部分的に
コリメートされた光では、(N−1/2)/^f,,り
こ近い距離uに対しては良好な干渉像は形成されないこ
とに注意しなければならない。更に距離u力W2/2入
mより小さい場合、光が十分に回折されないため、形成
される干渉像のコントラストに役に立たない程低い。こ
こで^mは使用される光の最大波長であり、wは格子4
のピッチである。上記の第一及び第二発明の夫々の例に
対応する光学系において、格子3,4,5は全てその線
が平行になるように設けられており、従って光強度の周
期的変化を生じさせる像と格子5との相互作用は、「シ
ャツタリング」効果(shu比eringe日ect)
とみなされ得る。
It is therefore important that the light incident on the grating 3 is at least partially diffuse. In reality, it is difficult to completely diffuse or diffuse irradiation of the grating 3, and partially collimated light works well for distances u that are close to (N-1/2)/^f,. It must be noted that no interference image is formed. Furthermore, if the distance u is smaller than the input force W2/2 m, the light will not be sufficiently diffracted, and the contrast of the formed interference image will be so low as to be useless. where ^m is the maximum wavelength of the light used and w is the grating 4
This is the pitch of In the optical systems corresponding to the respective examples of the first and second inventions above, the gratings 3, 4, and 5 are all provided so that their lines are parallel, thus causing periodic changes in light intensity. The interaction of the image with the grating 5 causes a "shuttering" effect
can be considered as

勿論、別の方法も可能である。格子4の線を格子3,5
の線に対してわずかに煩斜ごせてもよく、像が格子5と
相互作用するとき、(複数の)モアレ縞が生成される。
これは単一のモアレ縞に亘る複数の光電池により検出さ
れ得る。格子5が格子4により形成される像の空間周波
数とわずか異なる空間周波数を有していてもよく、この
場合には、バーニャ綱として知られる縞が生成され、モ
アレ糠と同様な方法で検出され得る。上記の説明は又回
転変位の測定に使用される放射状格子の場合にも適用で
き、この場合、基f,,ら,wは格子系の平均半径での
適切なパラメータを示す。
Of course, other methods are also possible. Connect the lines of grid 4 to grids 3 and 5
may be slightly distorted relative to the lines, and when the image interacts with the grating 5, moiré fringes are generated.
This can be detected by multiple photocells across a single Moiré fringe. The grating 5 may have a spatial frequency slightly different from the spatial frequency of the image formed by the grating 4, in which case fringes known as bagna lines are produced and detected in a similar way to moiré bran. obtain. The above explanation also applies to the case of radial gratings used for measuring rotational displacements, where the radicals f, , ra, w indicate the relevant parameters at the mean radius of the grating system.

しかし乍ら、この場合、線形格子に比較して、系の使用
可能光学的アパーチャ上のピッチ変化に応じる程度に像
のコントラストが悪くなる。第2図及び第3図は第1図
の光学系の二種類の変形例を示すもので、透過格子4の
代りに反射格子7を使用している。
However, in this case, compared to a linear grating, the image contrast deteriorates to the extent that the pitch changes over the available optical aperture of the system. FIGS. 2 and 3 show two variations of the optical system shown in FIG. 1, in which a reflection grating 7 is used in place of the transmission grating 4. FIGS.

第2図の光学系において、ランプ1からの光はしンズ2
により集光され、ハーフミラー8で反射され、透過型指
標格子3を通って反射型スケール格子7に入射される。
格子7からの反射光は再び格子3を遜り、ハーフミラー
8を透過して光電池6に入る。第3図の光学系では、ラ
ンプ1からの光は鏡9で反射され、レンズ2で集光され
、指標格子3を通過した後、反射スケール格子7に入射
される。
In the optical system shown in Fig. 2, light from lamp 1 is transmitted through
The light is focused by a half mirror 8, passes through a transmission index grating 3, and enters a reflection scale grating 7.
The reflected light from the grating 7 passes through the grating 3 again, passes through the half mirror 8, and enters the photovoltaic cell 6. In the optical system shown in FIG. 3, light from a lamp 1 is reflected by a mirror 9, condensed by a lens 2, passes through an index grating 3, and then enters a reflective scale grating 7.

格子7からの反射光は再び格子3を通り、レンズ10及
び鏡11を介して光電池6に達する。光学要素1,9,
2,3,10,11,6は固定的に組み立てられた議取
りヘッド12を構成している。謙取ヘッド12と反射格
子7とからなる相対変位測定装置では、謙取ヘッド12
と格子7との間の横方向相対運動が測定される。これら
の両光学系に於いて、格子3,7の空間周波数及びこれ
ら相互の間隔は勿論上記の原理に従って式{1’及び■
、又は式【4’及び‘51を満たすように選択されてい
る。第2図及び第3図に示す装置の変形に於いて、光検
出手段は格子3と光電池6との組み合わせにより効果的
に構成され、必要であれば、透過格子と空間的に周期的
な光検出器の機能とを結合した単一の周期的構造体に代
えることが可能である。
The reflected light from the grating 7 passes through the grating 3 again and reaches the photovoltaic cell 6 via the lens 10 and the mirror 11. optical elements 1, 9,
2, 3, 10, 11, 6 constitute a permanently assembled discussion head 12. In the relative displacement measuring device consisting of the compact head 12 and the reflection grating 7, the compact head 12
The relative lateral movement between the grid 7 and the grating 7 is measured. In both of these optical systems, the spatial frequencies of the gratings 3 and 7 and their mutual spacing are of course expressed by the equations {1' and
, or is selected to satisfy equations [4' and '51. In a variant of the device shown in FIGS. 2 and 3, the light detection means are advantageously constituted by a combination of a grating 3 and a photovoltaic cell 6, and if necessary a transmission grating and a spatially periodic light beam. It is possible to replace it with a single periodic structure that combines the functions of the detector.

この構造体は格子7により反射された光を受けるために
格子の線と夫々協働する感光素子列からなる。前記構造
体は例えば英国特許第123102y号明細書に述べら
れている。これらの変形で、透過格子の照射に使われる
装置は勿論第1図の格子3の照射に使用した菱贋と同様
なものでもよい。透過又は反射格子のいずれかを使って
結像させる装置に原則として適用可能な別の変形として
は、別個の光源で照射される格子3を、空間的に周期的
な光学的物体を構成する発光素子列を内蔵する装置に置
き代えることである。反射格子を用いて結像させる場合
、この発光素子列は、該発光素子と感光素子とを交互に
並べてなる空間的に周期的な構造体の一部分になってい
てもよい。次に第4図及び第5図に示す本発明の具体例
について説明する。この装贋は第二部材としての部材1
4に固定的に設けられた読取りヘッド135と、第一部
材としての都材17の機械加工面16に固定的に設けら
れた線形の反射スケール格子15とからなる。部材14
は格子15の面に平行に且つ該格子ラインに垂直に部材
17に対して移動可能である。案内ねじ19の動作によ
り部村140が部材17に形成された溝18内をすべり
、その結果読み取りヘッド13が格子15に対して移動
し、都材14,17間の相対運動の程度及び方向が測定
可能となる。この相対運動は制御の対象である工作機械
の構成要素の運動と一致させてもよし、。第5図は第4
図の読み取りヘッド13の部分を示す透視図であり、線
形の透過型指標格子20は格子15,20間の間隔が一
様になるように格子15に対向して読み取りヘッド13
に装着されている。
This structure consists of rows of photosensitive elements each cooperating with a line of the grating 7 to receive the light reflected by the grating 7. Said structure is described, for example, in GB 123102y. In these variations, the apparatus used to illuminate the transmission grating may of course be similar to the diamond plate used to illuminate the grating 3 in FIG. Another variant, applicable in principle to devices that image using either transmission or reflection gratings, is to use the grating 3, which is illuminated by a separate light source, as a light emitting device that constitutes a spatially periodic optical object. The idea is to replace it with a device that incorporates an array of elements. In the case of imaging using a reflection grating, the row of light emitting elements may be part of a spatially periodic structure in which light emitting elements and photosensitive elements are arranged alternately. Next, a specific example of the present invention shown in FIGS. 4 and 5 will be described. This counterfeit is the member 1 as the second member.
4 and a linear reflective scale grating 15 fixedly mounted on the machined surface 16 of the backing material 17 as a first member. Member 14
is movable relative to the member 17 parallel to the plane of the grating 15 and perpendicular to the grating lines. The action of the guide screw 19 causes the section 140 to slide in the groove 18 formed in the member 17, with the result that the reading head 13 is moved relative to the grid 15, and the degree and direction of the relative movement between the sections 14, 17 is determined. Measurable. This relative motion may be made to match the motion of the component of the machine tool that is the object of control. Figure 5 is the 4th
2 is a perspective view of a portion of the read head 13 in the figure, in which a linear transmission index grating 20 is placed opposite the grating 15 on the read head 13 such that the spacing between the gratings 15, 20 is uniform; FIG.
is installed on.

格子20の背面には4つの同一ユニット21が適当な接
着剤により固定されている。各ユニット21は合成樹脂
でシールドされた固体発光器22と固体光検出器23と
を有している。更に、発光器22に電力を供V給し光検
出器23から出力信号をとりだす導線が設けられている
。光源22から出た光は格子20を通り、格子20の面
に像が形成されるように格子15で反射される。格子2
0を通過した反射光は光検出器23に達する。各光検出
器23は基本的に各検出器23が属するユニット21内
の光源22から出た光を受け取るため、部材14,17
間に相対運動が生じた場合、各光検出器23の出力は周
期的に変化する。格子20はその線が格子15の線に対
してわずかに額斜した状態で読み取りヘッド13内に設
けられており、格子15によって形成された像が格子2
0と相互作用したとき、この像はモアレ縞を生じさせる
。4つの光検出器23が単一のモアレ縞に亘り、部材1
4,17間の相対運動によって生じる4つの光検出器2
3の検出出力の周期的変化の位相が順次90o増‐ぐ変
化するように、ユニット21は格子20上に設置されて
いる。
Four identical units 21 are fixed to the back side of the grid 20 with a suitable adhesive. Each unit 21 has a solid state light emitter 22 and a solid state photodetector 23 shielded with synthetic resin. Further, a conducting wire is provided for supplying power to the light emitter 22 and for taking out an output signal from the photodetector 23. Light emitted from the light source 22 passes through the grating 20 and is reflected by the grating 15 so that an image is formed on the surface of the grating 20. Lattice 2
The reflected light that has passed through 0 reaches the photodetector 23. Each photodetector 23 basically receives the light emitted from the light source 22 in the unit 21 to which each detector 23 belongs, so the members 14, 17
When a relative movement occurs between them, the output of each photodetector 23 changes periodically. The grating 20 is provided in the reading head 13 with its lines slightly oblique to the lines of the grating 15, so that the image formed by the grating 15 is aligned with the grating 20.
When interacting with 0, this image produces moiré fringes. Four photodetectors 23 span a single moire fringe, and the member 1
Four photodetectors 2 caused by the relative movement between 4 and 17
The unit 21 is installed on the grating 20 so that the phase of the periodic change in the detection output of No. 3 changes sequentially by 90 degrees.

第6図は光検出器23の出力を用いて部材14,17間
の相対運動の方向と大きさとを決定する1方法を示す図
である。
FIG. 6 illustrates one method of using the output of photodetector 23 to determine the direction and magnitude of relative motion between members 14 and 17.

第6図の回路において、光検出器23の出力は整合され
た増幅器24によって増幅され、位相順にみて第1及び
第3の光検出器23の増幅出力は差動回路25で減算さ
れる。回路25の出力は信号Aを発生する矩形波用のシ
ュミットトリガ26に入る。第2及び第4の光検出器2
3の増幅出力は差動回路27で減算され、回路27の出
力は信号Bを出力するシュミットトリガ28によって矩
形波化される。都材14,17間の相対運動の結果生ず
る各信号A,8の大きさの変化は90oずれた位相関係
にある。信号A及びBは一対のJ−Kフリツプフロツプ
29,30‘こ加えられる。信号Aはフリップフロツプ
29のクロツク入力31とフリツプフロツプ30のリセ
ツト入力32に与えられ、信号Bはフリツプフロツプ2
9のリセツト入力33とフリツプフロップ30のクロッ
ク入力34に与えられる。各フリップフロップ29.3
0のJ及びK入力は論理1の維持された端子35に接続
されている。フリップフロツプ29のQ出力は両方向計
数器37の「アップ一入力36に入り、フリツプフロツ
プ30のQ出力は計数器37の「ダウン一入力38に入
る。計数器37の出力は適当な文字及び数字表示装置3
9により表示される。上記方法でフリップフロップ29
及び3川こ信号A及びBを送ると、部材14,17間の
相対運動の一方向に対して単に1個のみのフリッブフ。
In the circuit of FIG. 6, the output of the photodetector 23 is amplified by a matched amplifier 24, and the amplified outputs of the first and third photodetectors 23 are subtracted by a differential circuit 25 in phase order. The output of circuit 25 enters a Schmitt trigger 26 for square waves which generates signal A. Second and fourth photodetector 2
The amplified output of No. 3 is subtracted by a differential circuit 27, and the output of the circuit 27 is converted into a rectangular wave by a Schmitt trigger 28 which outputs a signal B. The changes in the magnitudes of the signals A and 8 that occur as a result of the relative movement between the materials 14 and 17 have a phase relationship that is shifted by 90 degrees. Signals A and B are applied to a pair of JK flip-flops 29, 30'. Signal A is applied to clock input 31 of flip-flop 29 and reset input 32 of flip-flop 30, and signal B is applied to flip-flop 2.
9 and a clock input 34 of flip-flop 30. Each flip-flop 29.3
The 0 J and K inputs are connected to a logic 1 maintained terminal 35. The Q output of flip-flop 29 goes into the UP input 36 of bidirectional counter 37, and the Q output of flip-flop 30 goes into the DOWN input 38 of counter 37.The output of counter 37 is connected to a suitable character and numeric display device. 3
Displayed by 9. Flip-flop 29 using the above method
and 3 signals A and B, there is only one flip for one direction of relative movement between members 14, 17.

ップが計数器37に出力を出し得る。他方のフリツプフ
ロップではクロック入力に信号が発生する間、リセット
入力に信号が現われ従ってそのQ出力の変化を抑制する
からである。フリップフロップ29,30のいずれが出
力を与えるかは、都材14.17間の相対運動の向きに
より決定される信号AとBとの位相差の向きに依存して
いる。適切なフリップフロップにより計数器37に送ら
れるパルス数は勿論相対運動の程度に比例する。第4図
及び第5図に示す装置において、格子15及び20の空
間周波数及びその間隔は当然上記の原理に従って式{1
}及び■、又は式‘4}及び■を満たすように選択され
ている。例えば光源22として、ピークが波長940ナ
ノメータにあるガリウムヒ素赤外線用発光ダイオードを
使用し、光検出器23としてN一P−Nシリコンフオト
トランジスタを使用する際、干渉像の場合(第二発明に
対応する例)は、格子15及び20が100ライン/肋
の空間周波数を有し且つその間隔が2弧離れているのが
代表的であり、影像の場合(第一発明に対応する例)に
は格子15及び20の夫々の空間周波数が100ライン
/弧及び50ライン/仇で、格子15,20間の間隔を
2のあげた配列が適当である。以上のとおり、本発明相
対変位測定装置では、第二の格子をコリメートされてい
ない光で照らす照射手段が設けられており、第二の格子
が空間的に周期的な光学的物体を規定するように第二の
格子及び照射手段が構成されているために、第二の格子
が光学的物体として散漫な光を出し、しかも、前記光学
的物体の、第一及び第二部材の相対運動方向に空間的に
周期的であり且つ第一の格子から実質的に一様に離間し
た実像が第一の格子によって形成されるように第一及び
第二の格子が構成されているために、空間的に周期的な
光学的物体として働く第二の格子からの散漫な光が第一
の格子によって実像として結像され得る。
The chip may provide an output to counter 37. This is because while the other flip-flop receives a signal at its clock input, a signal appears at its reset input, thus suppressing changes in its Q output. Which of the flip-flops 29, 30 provides an output depends on the direction of the phase difference between the signals A and B, which is determined by the direction of relative motion between the backings 14 and 17. The number of pulses sent to the counter 37 by a suitable flip-flop is of course proportional to the degree of relative movement. In the apparatus shown in FIGS. 4 and 5, the spatial frequencies of gratings 15 and 20 and their spacing are of course determined by the equation {1
} and ■, or formula '4} and ■. For example, when using a gallium arsenide infrared light emitting diode with a peak wavelength of 940 nanometers as the light source 22 and using an N1P-N silicon phototransistor as the photodetector 23, in the case of an interference image (corresponding to the second invention) In the case of an image (an example corresponding to the first invention), gratings 15 and 20 typically have a spatial frequency of 100 lines/rib and are spaced apart by 2 arcs. A suitable arrangement is such that the spatial frequencies of the gratings 15 and 20 are 100 lines/arc and 50 lines/arc, and the interval between the gratings 15 and 20 is increased by 2. As described above, the relative displacement measuring device of the present invention is provided with an irradiation means that illuminates the second grating with uncollimated light, so that the second grating defines a spatially periodic optical object. The second grating and the illumination means are arranged in such a way that the second grating emits diffuse light as an optical object, and in the direction of the relative movement of the first and second members of said optical object. Because the first and second gratings are configured such that the first grating forms a real image that is spatially periodic and substantially uniformly spaced from the first grating, Diffuse light from the second grating, acting as a periodic optical object, can be imaged as a real image by the first grating.

本発明の相対変位測定装置では、第二の格子を散漫な光
を出す光学的物体として機能させ、第一の格子を結像手
段として機能させるようにしたため、第二部材に対する
第一部材の相対変位を第二部材に対する像の拡大された
変位に変換し得る。
In the relative displacement measuring device of the present invention, since the second grating functions as an optical object that emits diffuse light and the first grating functions as an imaging means, the relative displacement of the first member with respect to the second member is The displacement may be converted into a magnified displacement of the image relative to the second member.

しかも、本発明の相対変位測定装置では、光検出手段が
、第二部材に対して固定位置に設けられた前記運動方向
に空間的に周期的な構造体を有しており、実像を形成し
た光を受け取るべく構成されているために、前記の拡大
された塚変位を、周期的に変動する出力の形で出した得
、高精度の相対変位測定を可能にしている。
Moreover, in the relative displacement measuring device of the present invention, the light detection means has a spatially periodic structure in the movement direction provided at a fixed position with respect to the second member, and forms a real image. Being configured to receive light, it is able to output said magnified mound displacement in the form of a periodically varying output, allowing for highly accurate relative displacement measurements.

【図面の簡単な説明】 第1図は本発明の基本原理を示す説明図、第2図及び第
3図はそれぞれ第1図の配列の変形態様を示す説明図、
第4図は本発明に係る装置の概略透視図、第5図は第4
図の装置の一部の概略透視0図、第6図は第4図の装置
に使用する電気回路の概略を示す回路図である。 1,22・・・・・・光源、2,10・・・・・・レン
ズ、3,4,5,7,15,20・・・・・・格子、6
,23…・・・光検出器、8,9,11・・・・・・鏡
、12,13・・・・・・タ論取ヘッド。 第1図 第2図 第3図 第4図 第5図 図 山 船
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is an explanatory diagram showing the basic principle of the present invention, FIGS. 2 and 3 are explanatory diagrams showing modifications of the arrangement in FIG. 1, respectively.
FIG. 4 is a schematic perspective view of the device according to the present invention, and FIG.
FIG. 6 is a schematic perspective view of a part of the device shown in the figure, and FIG. 6 is a circuit diagram schematically showing an electric circuit used in the device shown in FIG. 1, 22... Light source, 2, 10... Lens, 3, 4, 5, 7, 15, 20... Grid, 6
, 23...photodetector, 8,9,11...mirror, 12,13...ta discussion head. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Mountain boat

Claims (1)

【特許請求の範囲】 1 一つの平面内での自由度1の運動に対応する様態で
の第二部材に対する第一部材の相対変位を測定するため
の装置であつて、 距離uだけ一様に離れて夫々が第一
及び第二部材に対して固定位置に設けられており、前記
運動方向に夫々周波数f_1及びf_2(たヾしf_1
>f_2)で空間的に周期的に線を有している第一及び
第二の格子と、f_2/f_2=V/(u+v)で規定
される距離vだけ第一の格子から一様に離れたところに
、f_3/f_1=u/(u+v)で規定される周波数
f_3で前記方向に空間的に周期的であり、第一及び第
二部材間に前記様態での運動が生じた際第二部材に対し
て前記様態で動く、光学的物体としての第二の格子の影
の実像を第一の格子によつて生ぜしめるべく、f_1及
びf_2とは比較にならない程高い周波数のコリメート
されていない光で第二の格子を照らす照射手段と、 第
一及び第二部材間に相対運動が生じた際出力に周期的変
化を生ずるように、実質的にf_3の周波数で空間的に
周期的であり第一の格子から実質的にv離れて第二部材
に対して固定位置に設けられた構造体を有しており、前
記像に応答する光検出器手段とを有する相対変位測定装
置。 2 一つの平面内での自由度1の運動に対応する様態で
の第二部材に対する第一部材の相対変位を測定するため
の装置であつて、 距離uだけ一様に離れて夫々が第一
及び第二部材に対して固定位置に設けられており、前記
運動方向に夫々周波数f_1及びf_2(たゞ2f_1
>f2)で空間的に周期的に線を有している第一及び第
二の格子と、 f_2/f_1=2V/(u+V)で規
定される距離Vだけ第一の格子から一様に離れたところ
に、F_3/f_1=2u/(u+V)で規定される周
波数F_3で前記方向に空間的に周期的であり、第一及
び第二部材間に前記様態での運動が生じた際第二部材に
対して前記様態で動く、光学的物体としての第二の格子
の回折実像を第一の格子によつて生ぜしめるべく、f_
1及びf_2に匹敵する程度の周波数であり、第一の格
子のピツチをwとした場合最大波長λmがu≧w^2/
2λmで規定されるコリメートされていない光で第二の
格子を照らす照射手段と、 第一及び第二部材間に相対
運動が生じた際出力に周期的変化を生ずるように、実質
的にF_3の周波数で空間的に周期的であり第一の格子
から実質的にV離れて第二部材に対して固定位置に設け
られた構造体を有しており、前記像に応答する光検出手
段とを有する相対変位測定装置。
[Scope of Claims] 1. A device for measuring the relative displacement of a first member with respect to a second member in a manner corresponding to movement with one degree of freedom in one plane, the device comprising: uniformly measuring a distance u; spaced apart from each other in a fixed position relative to the first and second members, each having a frequency f_1 and f_2 (with f_1) in the direction of movement.
> f_2) with lines spatially periodic and uniformly spaced apart from the first grating by a distance v defined by f_2/f_2=V/(u+v). However, the frequency f_3 defined by f_3/f_1=u/(u+v) is spatially periodic in the above direction, and when the movement in the above manner occurs between the first and second members, the second In order to produce, by the first grating, a real image of the shadow of the second grating as an optical object, moving in said manner relative to the member, an uncollimated lens of a comparably higher frequency than f_1 and f_2 is used. illumination means for illuminating the second grating with light, the illumination means being spatially periodic at a frequency of substantially f_3 so as to produce a periodic variation in the output when relative motion occurs between the first and second members; a relative displacement measuring device having a structure mounted in a fixed position relative to the second member substantially v away from the first grating, and photodetector means responsive to said image. 2. A device for measuring the relative displacement of a first member with respect to a second member in a manner corresponding to movement with one degree of freedom in one plane, wherein each of the first members is uniformly separated by a distance u. and a second member, the frequency f_1 and f_2 (only 2f_1) are respectively provided in the direction of movement.
>f2) with spatially periodic lines and uniformly spaced apart from the first grating by a distance V defined by f_2/f_1=2V/(u+V). However, the frequency F_3 defined by F_3/f_1=2u/(u+V) is spatially periodic in the direction, and when the movement in the above manner occurs between the first and second members, the second f_
1 and f_2, and when the pitch of the first grating is w, the maximum wavelength λm is u≧w^2/
illumination means for illuminating the second grating with uncollimated light defined by 2λm; a structure spatially periodic in frequency and located in a fixed position relative to the second member at a distance of substantially V from the first grating; and photodetection means responsive to said image. Relative displacement measuring device.
JP50031737A 1974-03-15 1975-03-14 Relative displacement measuring device Expired JPS6023282B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB11598/74A GB1504691A (en) 1974-03-15 1974-03-15 Measurement apparatus
GB11598/74 1974-03-15
GB4452274 1974-10-14
GB44522/74 1974-10-14

Publications (2)

Publication Number Publication Date
JPS50136057A JPS50136057A (en) 1975-10-28
JPS6023282B2 true JPS6023282B2 (en) 1985-06-06

Family

ID=26248389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50031737A Expired JPS6023282B2 (en) 1974-03-15 1975-03-14 Relative displacement measuring device

Country Status (4)

Country Link
JP (1) JPS6023282B2 (en)
DE (2) DE7508197U (en)
FR (1) FR2329972A1 (en)
NL (1) NL185178C (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218680U (en) * 1988-07-19 1990-02-07
US7186969B2 (en) 2003-02-12 2007-03-06 Mitutoyo Corporation Optical configuration for imaging-type optical encoders
DE19701941B4 (en) * 1996-01-23 2016-01-14 Mitutoyo Corp. Optical encoder

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170214U (en) * 1983-04-30 1984-11-14 株式会社ベルデックス micro scale
DE3325803C2 (en) * 1983-07-16 1986-11-20 Dr. Johannes Heidenhain Gmbh, 8225 Traunreut Incremental photoelectric measuring device
DE3334398C1 (en) * 1983-09-23 1984-11-22 Dr. Johannes Heidenhain Gmbh, 8225 Traunreut Measuring device
GB8615197D0 (en) * 1986-06-21 1986-07-23 Renishaw Plc Opto-electronic scale reading apparatus
GB8729066D0 (en) * 1987-12-12 1988-01-27 Renishaw Plc Opto-electronic scale-reading apparatus
US4943716A (en) * 1988-01-22 1990-07-24 Mitutoyo Corporation Diffraction-type optical encoder with improved detection signal insensitivity to optical grating gap variations
GB2216257B (en) * 1988-02-26 1992-06-24 Okuma Machinery Works Ltd Optical linear encoder
JP3196459B2 (en) * 1993-10-29 2001-08-06 キヤノン株式会社 Rotary encoder
JP3513251B2 (en) * 1994-03-14 2004-03-31 キヤノン株式会社 Optical displacement sensor
DE19859669A1 (en) 1998-12-23 2000-06-29 Heidenhain Gmbh Dr Johannes Integrated optoelectronic sensor and method for its production
DE19859670A1 (en) 1998-12-23 2000-06-29 Heidenhain Gmbh Dr Johannes Readhead and method of making same
DE19917950A1 (en) 1999-04-21 2000-10-26 Heidenhain Gmbh Dr Johannes Integrated optoelectronic thin film sensor, useful for scale scanning in a length, angle or two-dimensional measuring system, has a semiconductor layer of thickness corresponding to that of the detecting region of photodetectors
US7589314B2 (en) * 2004-07-12 2009-09-15 Mitsubishi Denki Kabushiki Kaisha Optical encoder applying substantially parallel light beams and three periodic optical elements

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829464A (en) * 1971-08-17 1973-04-19

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1911231A1 (en) * 1968-03-06 1970-02-12 Holotron Corp Ultrasound mammograph
US3578979A (en) * 1968-04-23 1971-05-18 Tajima Seisakusho Kk Electrical signal generating apparatus having a scale grid
GB1231029A (en) * 1968-12-13 1971-05-05
GB1353470A (en) * 1970-10-19 1974-05-15 Post D Position measuring apparatus utilizing moire fringe multiplication
US3812352A (en) * 1972-08-28 1974-05-21 Itek Corp Encoder readout system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829464A (en) * 1971-08-17 1973-04-19

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218680U (en) * 1988-07-19 1990-02-07
DE19701941B4 (en) * 1996-01-23 2016-01-14 Mitutoyo Corp. Optical encoder
US7186969B2 (en) 2003-02-12 2007-03-06 Mitutoyo Corporation Optical configuration for imaging-type optical encoders
US7435945B2 (en) 2003-02-12 2008-10-14 Mitutoyo Corporation Optical configuration for imaging-type optical encoders
US7570433B2 (en) 2004-02-11 2009-08-04 Mitutoyo Corporation Photoelectric encoder

Also Published As

Publication number Publication date
NL185178C (en) 1990-02-01
FR2329972B1 (en) 1982-03-26
DE2511350C2 (en) 1987-06-04
NL7503103A (en) 1975-09-17
DE7508197U (en) 1976-02-05
DE2511350A1 (en) 1975-10-09
FR2329972A1 (en) 1977-05-27
AU7911675A (en) 1976-09-16
NL185178B (en) 1989-09-01
JPS50136057A (en) 1975-10-28

Similar Documents

Publication Publication Date Title
JPS63153408A (en) Relative displacement measuring device
JPS6023282B2 (en) Relative displacement measuring device
US6359691B2 (en) Device for measuring translation, rotation or velocity via light beam interference
US3768911A (en) Electro-optical incremental motion and position indicator
US8243279B2 (en) Displacement measurement apparatus
GB2194044A (en) Optical type displacement detecting device
JPH0781815B2 (en) Optoelectronic detector for remote detection of physical quantities
US4025197A (en) Novel technique for spot position measurement
US4049965A (en) Measurement apparatus
JPS58191907A (en) Method for measuring extent of movement
WO1994011895A1 (en) Method and apparatus for measuring displacement
US5184014A (en) Opto-electronic scale reading apparatus
JPH046884B2 (en)
JP2718440B2 (en) Length measuring or angle measuring device
EP0486050B1 (en) Method and apparatus for measuring displacement
JP2503561B2 (en) Laser interference encoder
JP2675317B2 (en) Moving amount measuring method and moving amount measuring device
JPH11118422A (en) Dimension measuring device using moire fringe
CN114353671B (en) Dual-wavelength diffraction interference system and method for realizing synchronous measurement of displacement and angle
JPS62204126A (en) Encoder
JP2003307439A (en) Two-dimensional encoder
JPH0444211B2 (en)
JPH0411807B2 (en)
SU1651167A1 (en) Photovoltage displacement converter
JPH0799325B2 (en) Minute displacement measuring method and minute displacement measuring device