JPS60232515A - Apparatus for producing optical fiber coupler - Google Patents
Apparatus for producing optical fiber couplerInfo
- Publication number
- JPS60232515A JPS60232515A JP8816884A JP8816884A JPS60232515A JP S60232515 A JPS60232515 A JP S60232515A JP 8816884 A JP8816884 A JP 8816884A JP 8816884 A JP8816884 A JP 8816884A JP S60232515 A JPS60232515 A JP S60232515A
- Authority
- JP
- Japan
- Prior art keywords
- stretching
- optical fiber
- bases
- pair
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/255—Splicing of light guides, e.g. by fusion or bonding
- G02B6/2551—Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/2804—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
- G02B6/2821—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
- G02B6/2835—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals formed or shaped by thermal treatment, e.g. couplers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/2804—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
- G02B6/2821—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
- G02B6/2843—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals the couplers having polarisation maintaining or holding properties
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、光通信や光フアイバセンサの分野に用いる光
フアイバカップラの製造装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an apparatus for manufacturing an optical fiber coupler used in the fields of optical communications and optical fiber sensors.
光フアイバカップラは、第5図に示すように2本の光フ
ァイバ1−1a 、2−2aの一部を融着。The optical fiber coupler fuses parts of two optical fibers 1-1a and 2-2a as shown in FIG.
延伸させて、一方のファイバ1(またはファイバ2)に
入射した光を融着、延伸部で他方のファイバ2(または
ファイバ1)側にも分割してファイバ1a、2aの双方
から出射できるようにしたもので、光通信や光フアイバ
センサの分野で光ファイバに接続する光回路部品として
利用されている。By stretching, the light incident on one fiber 1 (or fiber 2) is fused and split into the other fiber 2 (or fiber 1) side at the stretching part so that it can be emitted from both fibers 1a and 2a. It is used as an optical circuit component connected to optical fiber in the fields of optical communications and optical fiber sensors.
また、最近、直線偏波を主軸に沿って長距離にわたって
安定に保存する単一モード光ファイバが開発され、直線
偏波保持性光ファイバと呼ばれて、光通信や光フアイバ
センサの分野にあらたな進歩を生み出すものと期持され
ているが、このような直線偏波保持性光ファイバの利用
に際しては、該光ファイバに接続する光フアイバカップ
ラにも直線偏波保持性が要求される。In addition, recently, a single mode optical fiber that stably preserves linearly polarized waves along its principal axis over long distances has been developed, and is called a linear polarization maintaining optical fiber, which has made a new appearance in the fields of optical communications and optical fiber sensors. However, when such a linear polarization maintaining optical fiber is used, the optical fiber coupler connected to the optical fiber is also required to have linear polarization maintaining property.
このような直線偏波保持性光ファイバに接続する光フア
イバカップラとしては、第6図に示す構造のものが提案
されている。As an optical fiber coupler connected to such a linear polarization maintaining optical fiber, an optical fiber coupler having a structure shown in FIG. 6 has been proposed.
この光フアイバカップラは、2本の直線偏波保持性光フ
ァイバ2l−21a 、22−22aの一部を互いに融
着させて延伸させたもので、各直線偏波保持性光ファイ
バ2l−21a、22−22aは、コア部24aの周囲
のクラッド部24bに応力付与部25を有し、応力付与
部25により定まる直線偏波保持性光7?イバ主軸26
a、26わが互いに平行に揃うように、融着、延伸部2
3の断面27で光ファイバが配列された構造となってい
る。このように、各光ファイバの主軸26a。This optical fiber coupler is made by fusion bonding and stretching of two linear polarization maintaining optical fibers 2l-21a and 22-22a, each linear polarization maintaining optical fiber 2l-21a, 22-22a has a stress applying part 25 in the cladding part 24b around the core part 24a, and the linear polarization maintaining light 7? Iba spindle 26
a, the fused and stretched parts 2 so that the 26 sides are aligned parallel to each other.
It has a structure in which optical fibers are arranged in a cross section 27 of 3. Thus, the main axis 26a of each optical fiber.
26bが平行に揃うように各光ファイバを配列した構造
であると、光ファイバ21に入射した直線偏波28は、
光フアイバ主軸に沿って伝わり、融着、延伸部23で他
方の光ファイバにも分割され、直線偏光29.210と
してそれぞれ光ファイバ218.2’2aから出射され
る。If the optical fibers are arranged in such a way that the optical fibers 26b are aligned in parallel, the linearly polarized wave 28 incident on the optical fiber 21 will be
The light propagates along the main axis of the optical fiber, is split into the other optical fiber at the fusion and stretching section 23, and is emitted from the optical fiber 218.2'2a as linearly polarized light 29.210, respectively.
このように、融着、延伸部23において直線偏光状態が
破壊されない2本の光ファイバの配列構造としては、第
6図に示した例の他にも二つのものが知られている。こ
のものと、第6図に示したものと合わせて示せば、第7
図の通りである(第7図中、符号31は融着操作を示し
ている)が、これらの光フアイバカップラを製造する場
合には、該光フアイバカップラのクロストークを低く押
えることから、融着させる直線偏波保持性光フアイバ相
互を、あらかじめ図示の如く主軸の向きをそろえて配列
することが必要になる。この点について具体的に述べる
と、前記クロストークを一20dB以下にするためには
、第7図(a)の配列では、図示の理想的配列からの配
列誤差を5°以下に押えることが必要とされている(参
考文献 河内正夫 電子通信学会 マイクロ波研究会資
料MW83−85>。As described above, in addition to the example shown in FIG. 6, two other arrangements of two optical fibers are known in which the linear polarization state is not destroyed in the fusion/stretching section 23. If this is shown together with the one shown in Fig. 6, the 7th
As shown in the figure (in Figure 7, reference numeral 31 indicates a fusion operation), when manufacturing these optical fiber couplers, fusion is required to suppress the crosstalk of the optical fiber couplers. It is necessary to arrange the linear polarization-maintaining optical fibers to be attached in advance so that their principal axes are aligned as shown in the figure. To explain this point specifically, in order to reduce the crosstalk to -20 dB or less, in the arrangement shown in Figure 7(a), it is necessary to suppress the arrangement error from the ideal arrangement shown to 5 degrees or less. (Reference: Masao Kawachi, Institute of Electronics and Communication Engineers, Microwave Research Group Materials MW83-85).
ところで、従来より光フアイバカップラの製造装置とし
ては第8図に示すものが知られている。By the way, as a conventional optical fiber coupler manufacturing apparatus, the one shown in FIG. 8 is known.
第8図において、1−18.2−2aは光ファイバ、3
.3aは前記光ファイバ1−1a、2−28を固定する
ファイバ固定装置f、4.4aはそれぞれ光フアイバ固
定装置3,3aを支持した延伸台、5は基板、6は光フ
ァイバの融着、延伸部である。In Figure 8, 1-18.2-2a is an optical fiber, 3
.. 3a is a fiber fixing device f for fixing the optical fibers 1-1a and 2-28; 4.4a is a stretching table that supports the optical fiber fixing devices 3 and 3a, respectively; 5 is a substrate; 6 is a fusion splice of optical fibers; This is a stretching part.
この装置は、光ファイバ1−1a、2−2aをファイバ
固定装置3,3aに固定し、それを融着。This device fixes optical fibers 1-1a and 2-2a to fiber fixing devices 3 and 3a, and fuses them together.
延伸部6を加熱して融着し、続いて、この融着。The stretched portion 6 is heated and fused, and then this fusion is performed.
延伸部6を加熱しながら、延伸台4を矢印7の方向に移
動させて延伸する。ところが、この従来装置は、延伸台
4の移動をギア機構によって行なう構成であったため、
延伸の際に光ファイバに無理な張力が加わり易く、清ら
がな延伸が行なえないという欠点があった。While heating the stretching section 6, the stretching table 4 is moved in the direction of the arrow 7 to perform stretching. However, since this conventional device was configured to move the stretching table 4 using a gear mechanism,
There is a drawback that unreasonable tension is easily applied to the optical fiber during stretching, and clear stretching cannot be performed.
また、この従来装置は、直線偏波保持性光ファイバがm
’iaされる以前に開発されたもので、本来通常の光フ
アイバ用のものであるため、第6図に示した如き直l1
IIl波保持性の光ファイバカップラを作製しようとし
ても、融着させる光フアイバ相互の配列をそれぞれの主
軸の方向が揃うように修正することが容易でなく、直線
偏波保持性の光フアイバカップラの作製には不適°当で
あった。In addition, this conventional device has a linear polarization maintaining optical fiber of m
It was developed before the 'ia' and was originally for use with ordinary optical fibers, so it is similar to the one shown in Figure 6.
Even if an attempt is made to create an optical fiber coupler that maintains the IIl wave, it is difficult to modify the arrangement of the optical fibers to be fused so that the directions of their principal axes are aligned, and it is difficult to create an optical fiber coupler that maintains linear polarization. It was unsuitable for fabrication.
以下、前記事情に鑑みてなされた2つの発明について説
明するが、第1の発明は、延伸の際に光ファイバに無理
な張力が作用せず、したがって滑らかに延伸を行なうこ
とができる光フアイバカップラ製造装置を提供すること
を目的とし、第2の発明は、さらに直線偏波保持性光フ
ァイバの主軸の向きを検出することができるとともに各
光ファイバの主軸が揃うように各光ファイバの配列を修
正することができ、容易に直線偏波保持性の光フアイバ
カップラを作製することができる光フアイバカップラ製
造装置を提供することを目的とする。Two inventions made in view of the above circumstances will be described below. The first invention is an optical fiber coupler that does not apply unreasonable tension to the optical fiber during drawing, and therefore can be drawn smoothly. Aiming at providing a manufacturing device, the second invention is further capable of detecting the orientation of the principal axes of linear polarization maintaining optical fibers, and arranging each optical fiber so that the principal axes of each optical fiber are aligned. It is an object of the present invention to provide an optical fiber coupler manufacturing apparatus that can be modified and easily manufactures a linear polarization-maintaining optical fiber coupler.
第1の発明は、基板上に適宜間隔をあけて固定された一
対の延伸装置基台と、これらの延伸装置基台上に載置さ
れるとともに、これらの延伸装置基台から噴出する気体
によって延伸装置基台から浮上した状態で移動自在に支
えられた一対の延伸台と、これらの延伸台上に固設され
て複数本の光フアイバ相互を密着した整列状態で把持す
る一対のファイバ固定装置と、前記一対の延伸台に接続
された線条体の端部に吊り下げられて前記一対の延伸台
を互いに離間する方向に付勢する錘とを備え、前記一対
のファイバ固定装置の間の所定位置で、複数本の光フア
イバ相互を加熱して融着させるとともに前記錘による張
力によって延伸させる構成であり、第2の発明は、上記
第1の発明の構成にさらに前記所定位置で複数本の光フ
ァイバを屈折率整合液に浸して光学的に各光ファイバの
主軸方向を検出する主軸検出装置と、前記各光ファイバ
の両端部を支持し、必要に応じて各光ファイバをその中
心軸のまわりに回転させる主軸調整装置とを付加した構
成とされている。The first invention includes a pair of stretching device bases fixed on a substrate at an appropriate interval, and the stretching device being placed on these stretching device bases, and a gas ejected from these stretching device bases. A pair of stretching tables movably supported while floating above the stretching device base, and a pair of fiber fixing devices that are fixedly installed on these stretching tables and hold a plurality of optical fibers in a closely aligned state. and a weight that is suspended from the ends of the filament bodies connected to the pair of stretching tables and biases the pair of stretching tables in a direction to separate them from each other. The structure is such that a plurality of optical fibers are heated and fused together at a predetermined position and are stretched by the tension applied by the weight. a main axis detection device that optically detects the main axis direction of each optical fiber by immersing the optical fiber in a refractive index matching liquid; It has a configuration in which a main shaft adjustment device that rotates around the main shaft is added.
(発明の実施例)
第1図および第2図は、前述した二つの発明を具備化し
た光フアイバカップラ製造装置の一実施例を示している
。(Embodiment of the Invention) FIGS. 1 and 2 show an embodiment of an optical fiber coupler manufacturing apparatus incorporating the two inventions described above.
これらの図において、2l−21a 、22−228は
直線偏波保持性光ファイバ、41−418は光フアイバ
固定装置、42.428は光フアイバ水平位置、上下位
置調節部、43.43a 、43b、43cは光ファイ
バをその中心軸のまわりに回転させる主軸調整装置、4
4は顕微鏡、45゜45aは偏光板、46.46aはガ
ラス板、47は照明装置、48は酸素・プロパン炎バー
ナ、49.49aは延伸台、410,410aは延伸装
置基台、411は基板、412,412aはワイヤー、
413.413a 、413b 、413c 。In these figures, 2l-21a, 22-228 are linear polarization maintaining optical fibers, 41-418 are optical fiber fixing devices, 42.428 are optical fiber horizontal position, vertical position adjustment parts, 43.43a, 43b, 43c is a main axis adjustment device for rotating the optical fiber around its central axis;
4 is a microscope, 45° 45a is a polarizing plate, 46.46a is a glass plate, 47 is a lighting device, 48 is an oxygen/propane flame burner, 49.49a is a stretching table, 410, 410a is a stretching device base, 411 is a substrate , 412, 412a are wires,
413.413a, 413b, 413c.
414.414a 、414b 、414cは滑車、4
15は錘、416はおもり台、417は偏光板45.4
5aやガラス板46.468を支える支え台、418.
4188は気体導入管である。414.414a, 414b, 414c are pulleys, 4
15 is a weight, 416 is a weight stand, 417 is a polarizing plate 45.4
5a and a support stand for supporting the glass plate 46.468, 418.
4188 is a gas introduction pipe.
以下、実際に直線偏波保持性の光フアイバカップラを作
製する場合の手順に従って、各部の構成を明らかにする
とともに、その作用を説明していく。Hereinafter, the configuration of each part will be clarified and its operation will be explained according to the procedure for actually manufacturing a linear polarization-maintaining optical fiber coupler.
まず、水平位置・上下位ffi調整部42,42aに直
線偏波保持性光ファイバ2l−21a 、22−22a
を接地し、直線偏波保持性光ファイバを平行かつ近接さ
せて水平方向に並ぶように位置調整を行なう。水平位置
・上下位置調整部42,42aを詳しく図解したものが
第3図であり、この第3図において、51.52.は水
平位置を調整するための挟持部材、53は挾持部材52
を矢印54方向に移動させるつまみ、55.56は上下
位置調整用ファイバ押えである。直線偏波保持性光ファ
イバ2l−21a 、22−22aを挟持部材51.5
2の間に設置し、つまみ53によって挾持部材52を矢
印54に沿って移動させて、直線偏波保持性光ファイバ
2l−21a 、22−22aを挟持部材51.52の
間に平行かつ近接させて整列させるようになっている。First, the linear polarization maintaining optical fibers 2l-21a, 22-22a are connected to the horizontal position/upper/lower ffi adjustment parts 42, 42a.
is grounded, and the positions of the linear polarization maintaining optical fibers are adjusted so that they are parallel and close to each other in the horizontal direction. FIG. 3 is a detailed illustration of the horizontal position/vertical position adjustment parts 42, 42a, and in this FIG. 3, 51.52. 53 is a clamping member 52 for adjusting the horizontal position;
55 and 56 are fiber holders for vertical position adjustment. The linear polarization maintaining optical fibers 2l-21a and 22-22a are held by the sandwiching member 51.5.
2, and by moving the clamping member 52 along the arrow 54 using the knob 53, the linear polarization-maintaining optical fibers 2l-21a and 22-22a are placed in parallel and close to each other between the clamping members 51 and 52. It is designed to be aligned.
また、光フアイバ径よりわずかに深い溝を持つファイバ
押え55.56の間に直線偏波保持性光ファイバ2l−
21a 、22−22aを設置すれば、上下方向が調整
される。このような構造となっているため、2l−21
a 、22−22aの2本の直線偏波保持性光ファイバ
は、回転は自由に行なうことができる状態で、平行かつ
近接し水平方向に並ぶように位置調整される。続いて、
主軸配列工程に入る。In addition, the linear polarization maintaining optical fiber 2l-
By installing 21a and 22-22a, the vertical direction can be adjusted. Because of this structure, 2l-21
The two linear polarization maintaining optical fibers 22-22a are adjusted in position so that they are parallel and close to each other and lined up in the horizontal direction while being able to rotate freely. continue,
Enter the spindle arrangement process.
光ファイバ2l−21a 、22−22aの融着。Fusion of optical fibers 2l-21a and 22-22a.
延伸部を46.46aの2枚のガラス板の閑に挟在させ
、しかも光ファイバのクラッド部とほぼ同じ屈折率を有
する整合液に浸漬させる。照明光源47からの光は、偏
光板45aにより直線偏光になり、光ファイバを横断し
た後、偏光板45aの偏光と直交している別の偏光板4
5を通過する。The stretched portion is sandwiched between two glass plates 46 and 46a, and is immersed in a matching liquid having approximately the same refractive index as the cladding portion of the optical fiber. The light from the illumination light source 47 is turned into linearly polarized light by a polarizing plate 45a, and after crossing the optical fiber, it is converted into linearly polarized light by another polarizing plate 4 that is orthogonal to the polarization of the polarizing plate 45a.
Pass 5.
偏光した光が光ファイバを横断する際、応力付与部の光
弾性効果のため、偏光面が回転し、顕微鏡44で観察す
ることにより、明暗差として応力付与部の位置が検出で
き、主軸方向を検出できる。When polarized light crosses an optical fiber, the plane of polarization rotates due to the photoelastic effect of the stress applying part, and by observing it with the microscope 44, the position of the stress applying part can be detected as a difference in brightness, and the principal axis direction can be detected. Can be detected.
このように光ファイバを整合液に浸漬させる検出方法を
採用すれば、応力付与部の屈折率がクラッド部の屈折率
と精度よく一致しているため、通常の顕微鏡観察で応力
付与部の位置を検出できない場合でも、容易にかつ良好
に主軸の方向を検出できる。If this detection method is adopted in which the optical fiber is immersed in a matching liquid, the refractive index of the stress-applying part matches the refractive index of the cladding part with high precision, so the position of the stress-applying part can be determined by ordinary microscopic observation. Even if it cannot be detected, the direction of the main axis can be detected easily and satisfactorily.
このように、整合液に浸漬させる検出方法を採用したの
は、前記光ファイバ2l−21a 、22−22aとし
て、応力付与部の屈折率をクラッド部の屈折率に整合さ
せた直線偏波保持性光ファイバを使用しているからに他
ならない。In this way, the detection method of immersing in a matching liquid was adopted because the optical fibers 2l-21a and 22-22a have linear polarization maintaining properties in which the refractive index of the stress applying part is matched to the refractive index of the cladding part. This is simply because optical fiber is used.
通常の直線偏波保持性光ファイバを使用した光フアイバ
カップラは、挿入損失が3dB程度であるが、応力付与
部の屈折率をクラッド部の屈折率に整合させた直線偏波
保持性光ファイバを使用することにより挿入損失を1d
B以下にできる。また、このように屈折率を整合させた
光ファイバを使用した場合の主軸検出方法としては、前
述のように、直線偏波保持性光ファイバを屈折率整合液
に浸し、偏光を用いて測面から光弾性効果による像を観
察する方法が最適であり、この点については、特願昭5
8−192174 (ファイバ型光結合子およびその製
造方法)にも示されている。An optical fiber coupler that uses a normal linear polarization maintaining optical fiber has an insertion loss of about 3 dB, but a linear polarization maintaining optical fiber that matches the refractive index of the stress applying part to the refractive index of the cladding part is used. Insertion loss can be reduced to 1d by using
Can be made below B. In addition, as described above, as a principal axis detection method when using an optical fiber whose refractive index has been matched in this way, a linear polarization-maintaining optical fiber is immersed in a refractive index matching liquid, and the plane is measured using polarized light. The best method is to observe the image due to the photoelastic effect from the
8-192174 (Fiber type optical coupler and method for manufacturing the same).
次に、主軸方向を検出したら、第2図43.43a 、
43b 、43cの主軸調整装−により、光ファイバ2
l−21a及び22−22aの回転を行ない、所望の主
軸方向配列に調整する。主軸調整装置143.43a
、43b 、43cは回転中心に光ファイバを固定でき
る構造となっており、光ファイバ21−218に関して
は、43.43cを同方向に同じ角度だけ回すことによ
り、光ファイバ21−218にねじれやたるみを生じさ
せることなく、回転操作を行なうことができる。また、
回転角度も43.430の回転角度めもりにより測るこ
とができる。光ファイバ22−22aについては43a
、43bにより同様の操作を行なう。Next, after detecting the main axis direction, Fig. 2 43.43a,
The optical fiber 2 is adjusted by the main axis adjustment devices 43b and 43c.
1-21a and 22-22a are rotated to adjust to the desired alignment in the main axis direction. Main shaft adjustment device 143.43a
, 43b, and 43c have a structure that allows the optical fiber to be fixed at the center of rotation.As for the optical fiber 21-218, by turning 43 and 43c in the same direction and the same angle, the optical fiber 21-218 is free from twisting or slack. Rotation operations can be performed without causing any turbulence. Also,
The rotation angle can also be measured using a rotation angle measurement of 43.430. 43a for optical fiber 22-22a
, 43b perform similar operations.
この結果、所望の主軸方向に直線偏波保持性光ファイバ
2l−21a 、22−22aを配列できる。As a result, the linear polarization-maintaining optical fibers 2l-21a and 22-22a can be arranged in the desired principal axis direction.
続いて、支持台41.41aに光ファイバ2l−21a
、22−22aを固定し、支え台417を除去し、ガ
ラス板46.4681偏光板45aを除去する。光ファ
イバ端21または22から、光フアイバカップラで使用
する波長の光を光ファイバ2l−21aまたは22−2
2aに入射し、出射端21a 、22aから光出力を検
出し、モ二りしておく。続いて融着工程に入る。酸素・
プロパン炎バーナ48により、支持台41.418の闇
の2本の光ファイバの一部を加熱し、顕微1144によ
り融着状況を観察しながら、融着を行なう。Subsequently, the optical fiber 2l-21a is attached to the support stand 41.41a.
, 22-22a are fixed, the support base 417 is removed, and the glass plates 46, 4681 and polarizing plate 45a are removed. From the optical fiber end 21 or 22, the light having the wavelength used by the optical fiber coupler is connected to the optical fiber 2l-21a or 22-2.
2a, the light output is detected from the output ends 21a and 22a, and is monitored. Next comes the fusing process. oxygen·
The propane flame burner 48 heats a portion of the two dark optical fibers on the support base 41 and 418, and the fusion is performed while observing the fusion state using the microscope 1144.
続いて延伸工程に入る。気体導入管418.418aに
より、気体を延伸装置基台410.4108に導入し、
延伸台49.49aに向は気体を噴出する。その結果、
気体圧により延伸台49゜49aが浮上し、延伸装置基
台上を清らかにかつ自在に移動できる状態となる。延伸
台49.498はワイヤー412.412aを通じて錘
415と連結している。ワイヤー412.412aは滑
車413.413a 、413b 、413c 、41
4.414a 、414b 、414cにより、錘41
5まで持っていく。この結果、延伸台49.49aは互
いに離れる方向に力を受けている。通常の状態では、光
ファイバの張力により延伸台49゜49aは静止してい
る。この状態で、融着部を酸素プロパン炎バーナー48
により加熱すると、加熱した峙のみ、延伸台49.49
aは錘415により互いに離れる方向に動き、光ファイ
バの融着部は無理な力を受けることなく滑らかに延伸さ
れる。その結果、光フアイバカップラの延伸部のテーバ
の形状も滑らかであり、体損失な光フアイバカップラが
実現できる。また、錘415の重さを変えることにより
、延伸速度を調節することができ、光ファイバの径、強
度に対応した延伸速度を選択でき、延伸部のテーバの形
状も調節できる。Next, the stretching process begins. Introducing gas into the stretching device base 410.4108 through the gas introduction pipe 418.418a,
Gas is ejected toward the stretching table 49, 49a. the result,
The stretching table 49.degree. 49a floats due to the gas pressure, and becomes in a state where it can be moved clearly and freely on the stretching device base. The stretching table 49.498 is connected to the weight 415 through a wire 412.412a. Wires 412.412a are connected to pulleys 413.413a, 413b, 413c, 41
4.414a, 414b, 414c, weight 41
Bring it up to 5. As a result, the stretching tables 49, 49a are subjected to a force in the direction of separating them from each other. Under normal conditions, the stretching table 49.degree. 49a remains stationary due to the tension of the optical fiber. In this state, the fused portion is heated using an oxygen-propane flame burner 48.
When heated by
a are moved away from each other by the weight 415, and the fused portion of the optical fiber is smoothly stretched without being subjected to excessive force. As a result, the shape of the tapered portion of the extended portion of the optical fiber coupler is smooth, and an optical fiber coupler with no body loss can be realized. Furthermore, by changing the weight of the weight 415, the stretching speed can be adjusted, the stretching speed can be selected in accordance with the diameter and strength of the optical fiber, and the shape of the taper of the stretching section can also be adjusted.
光フアイバ出射端21a、22aからの光出力をモニタ
し、所望の光結合比のところで加熱を中止して延伸を止
める。これで光フアイバカップラの作製を終了する。The light output from the optical fiber output ends 21a and 22a is monitored, and when the desired optical coupling ratio is reached, the heating is stopped and the stretching is stopped. This completes the fabrication of the optical fiber coupler.
なお、実施例は、延伸に際し、延伸台49.498の移
動に錘415を使用したが、延伸台49を固定し、基板
411を傾斜させることで気体圧により浮上せしめられ
た延伸台49aを移動させ、延伸を行なうことができる
。この場合、延伸速度は基板411の傾斜角度により調
整できる。In addition, in the embodiment, a weight 415 was used to move the stretching table 49,498 during stretching, but by fixing the stretching table 49 and tilting the substrate 411, the stretching table 49a floated by gas pressure can be moved. Stretching can be performed. In this case, the stretching speed can be adjusted by adjusting the inclination angle of the substrate 411.
また前述の実施例は、2本の光ファイバを用いた光フア
イバカップラ作製の実施例であるが、本発明は複数本の
光ファイバを用いた光フアイバカップラの作製にも適用
できる。Furthermore, although the above embodiment is an example of fabricating an optical fiber coupler using two optical fibers, the present invention can also be applied to fabricating an optical fiber coupler using a plurality of optical fibers.
また、本実施例で説明した直線偏波保持性光ファイバの
他、第4図(a)に示す様な応力付与構造を有する光フ
ァイバ21−1あるいは第4図(b)に示すような楕円
コアファイバ21″を用いた光フアイバカップラの作製
にも本発明の製造装置が適用できることは勿論である。In addition to the linear polarization maintaining optical fiber described in this example, an optical fiber 21-1 having a stress applying structure as shown in FIG. 4(a) or an elliptical fiber as shown in FIG. 4(b) may be used. Of course, the manufacturing apparatus of the present invention can also be applied to manufacturing an optical fiber coupler using the core fiber 21''.
以上説明したように、本願の第1の発明に係る製造装置
は、延伸台を気体によって浮かせて移動自在にし、該延
伸台に線条体を介して吊り下げた錘によって延伸台を移
動させる構成であるため、延伸させる光ファイバにかか
る張力が、前記錘の重量によって決り、変動のない一定
の大きさとなる。したがって錘の重量を適切に設定して
おくだけで、延伸の際に光ファイバに無理な張力が作用
することを防止できて、滑らかな延伸と延伸速度の調節
とが同時に達成できるようになった。As explained above, the manufacturing apparatus according to the first invention of the present application has a configuration in which the stretching table is made movable by being floated by gas, and the stretching table is moved by a weight suspended from the stretching table via a filament. Therefore, the tension applied to the stretched optical fiber is determined by the weight of the weight and remains constant without fluctuation. Therefore, by simply setting the weight of the weight appropriately, it is possible to prevent excessive tension from being applied to the optical fiber during stretching, and it is now possible to achieve smooth stretching and adjustment of the stretching speed at the same time. .
また、第2の発明に係る製造装置は、第1の発明の装−
と比較して、さらに融着・延伸させる光ファイバの主軸
方向を検出する主軸検出装置と、前記各光ファイバの両
端部を支持し必要に応じて各光ファイバをその中心軸ま
わりに回転させる主軸調整装置とを備えた構成であるた
め、さらに直線偏波保持性光ファイバを相互に融着させ
る場合に、それぞれの光ファイバの主軸方向を容易にか
つ正確に揃えてやることができ、これによりて、直線偏
波状態を破壊せず、低損失、低クロストークな偏波保持
性の光フアイバカップラを容易に作製できるようになっ
た。Further, the manufacturing apparatus according to the second invention is the equipment according to the first invention.
A main axis detection device that detects the main axis direction of the optical fiber to be further fused and stretched, and a main axis that supports both ends of each optical fiber and rotates each optical fiber around its central axis as necessary. Since the configuration is equipped with an adjustment device, when linear polarization maintaining optical fibers are fused together, it is possible to easily and accurately align the principal axes of each optical fiber. As a result, it has become possible to easily produce a polarization-maintaining optical fiber coupler with low loss and low crosstalk without destroying the linearly polarized state.
第1図は本発明の一実施例の上面図、第2図は同側面図
、第3図は第2図中の要部の拡大図、第4図(a)、(
b)’はそれぞれ本発明の装置に使用し得る光ファイバ
の説明図、第5図は従来の光フアイバカップラの説明図
、第6図は直線偏波保持性光ファイバを使用した光フア
イバカップラの構造説明図、第7図(a)(b)(c)
は、それぞれ偏波状態を破壊しない主軸配列の説明図、
第8図は従来の光フアイバカップラ製造装置の説明図で
ある。
2l−21a 、22−22a・・・・・・直線偏波保
持性光ファイバ、23・・・・・・融着延伸部、24a
・・・・・・コア部、24b・・・・・・クラッド部、
25・・・・・・応り付与部、26a 、26b・・・
・・・直線偏波保持性光ファイバ、29,210・・・
・・・出射電輪偏光、31・・・・・・融着操作を示す
矢印、41.41a・・・・・・光フアイバ固定装置、
42.42a・・・・・・光フアイバ水平位置。
上下位置調節部、43.43a 、43b 、43c・
・・・・・主軸調整装置、44・・・・・・顕微鏡、4
5.45a・・・・・・偏光板、46.46a・・・・
・・ガラス板、47・・・・・・照明装曽、48・・・
・・・酸素・プロパン炎バーナ、49.49a・・・・
・・延伸台、410.410a・・・・・・延伸装置基
台、411・・・・・・基板、412,412a・・・
・・・ワイヤー、413,413a 、413b 。
413c 、414.414a 、414b 、414
C・・・・・・酒車、415・・・・・・錘、416・
・・・・・おもり台、417・・・・・・支え板、41
8.418a・・・・・・気体導入管、51.52・・
・・・・挟持部材、53・・・・・・つまみ、55.5
6・・・・・・ファイバ押え。
出願人 日本電信電話公社
第4図
第5図
第7図
第8図FIG. 1 is a top view of an embodiment of the present invention, FIG. 2 is a side view of the same, FIG. 3 is an enlarged view of the main parts in FIG. 2, and FIGS.
b)' is an explanatory diagram of an optical fiber that can be used in the device of the present invention, Fig. 5 is an explanatory diagram of a conventional optical fiber coupler, and Fig. 6 is an explanatory diagram of an optical fiber coupler using a linear polarization-maintaining optical fiber. Structure explanatory diagram, Figure 7 (a) (b) (c)
are explanatory diagrams of the main axis arrangement that does not destroy the polarization state, respectively.
FIG. 8 is an explanatory diagram of a conventional optical fiber coupler manufacturing apparatus. 2l-21a, 22-22a...Linear polarization maintaining optical fiber, 23...Fusion and stretching part, 24a
... core part, 24b ... clad part,
25...Response imparting portion, 26a, 26b...
...Linear polarization maintaining optical fiber, 29,210...
...Output electric ring polarization, 31...Arrow indicating fusion operation, 41.41a...Optical fiber fixing device,
42.42a...Optical fiber horizontal position. Vertical position adjustment section, 43.43a, 43b, 43c.
...Spindle adjustment device, 44 ...Microscope, 4
5.45a...Polarizing plate, 46.46a...
...Glass plate, 47...Lighting equipment, 48...
...Oxygen/propane flame burner, 49.49a...
...Stretching table, 410.410a...Stretching device base, 411...Substrate, 412, 412a...
...Wire, 413, 413a, 413b. 413c, 414.414a, 414b, 414
C... Liquor wheel, 415... Weight, 416.
... Weight stand, 417 ... Support plate, 41
8.418a... Gas introduction pipe, 51.52...
... Clipping member, 53 ... Knob, 55.5
6...Fiber holder. Applicant Nippon Telegraph and Telephone Public Corporation Figure 4 Figure 5 Figure 7 Figure 8
Claims (1)
延伸装置基台と、これらの延伸装置基台上に載置される
とともに、これらの延伸装置基台から噴出する気体によ
って延伸装置基台から浮上した状態で移動自在に支えら
れた一対の延伸台と、これらの延伸台上に固設されて複
数本の光フアイバ相互を密着した整列状態で把持する一
対のファイバ固定装置と、前記一対の延伸台に接続され
た線条体の端部に吊り下げられて前記一対の延伸台を互
いに離間する方向に付勢する錘とを備え、前記一対のフ
ァイバ固定装置の間の所定位置で、複数本の光フアイバ
相互を加熱して融着させるとともに前記錘による張力に
よって延伸させて光フアイバカップラを形成することを
特徴とする光フアイバカップラ製造装置。 2、基板上に適宜間隔をあけて固定された一対の延伸装
置基台と、これらの延伸装置基台上に載置されるととも
に、これらの延伸装置基台から噴出する気体によって延
伸装置基台から浮上した状態で移動自在に支えられた一
対の延伸台と、これらの延伸台上に固設されて複数本の
光フアイバ相互を密着した整列状態で把持する一対のフ
ァイバ固定装置と、前記一対の延伸台に接続された線条
体の端部に吊り下げられて前記一対の延伸台を互いに離
間する方向に付勢する錘とを備え、前記一対のファイバ
固定装置の間の所定位置で、複数本の光フアイバ相互を
加熱して融着させるとともに前記錘による張力によって
延伸させて光フアイバカップラを形成する光フアイバカ
ップラ製造装置であって、前記所定位置で複数本の光フ
ァイバを屈折率整合液に浸して光学的に各光ファイバの
主軸方向を検出する主軸検出装置と、前記各光ファイバ
の両端部を支持し必要に応じて各光ファイバをその中心
軸のまわりに回転させる主軸調整装置とを備えたことを
特徴とする光ファイバカップラ製造装置。[Claims] 1. A pair of stretching device bases fixed on a substrate with an appropriate distance of lI1wA, and a stretching device placed on these stretching device bases and ejected from these stretching device bases. A pair of stretching tables movably supported while floating from the stretching device base by gas, and a pair of fibers fixedly installed on these stretching tables to grip a plurality of optical fibers in a closely aligned state. The pair of fiber fixing devices includes a fixing device and a weight that is suspended from an end of a filament connected to the pair of stretching tables and biases the pair of stretching tables in a direction away from each other. An optical fiber coupler manufacturing apparatus characterized in that a plurality of optical fibers are heated and fused to each other at a predetermined position between them, and are stretched by tension applied by the weight to form an optical fiber coupler. 2. A pair of stretching device bases fixed on the substrate at appropriate intervals, and the stretching device bases are placed on these stretching device bases, and the stretching device bases are stretched by the gas ejected from these stretching device bases. a pair of stretching tables movably supported in a floating state; a pair of fiber fixing devices fixedly installed on these stretching tables and gripping a plurality of optical fibers in a closely aligned state; a weight that is suspended from an end of a filament body connected to the stretching table and biases the pair of stretching tables in a direction away from each other, at a predetermined position between the pair of fiber fixing devices, An optical fiber coupler manufacturing apparatus that forms an optical fiber coupler by heating and fusing a plurality of optical fibers together and stretching them by tension applied by the weight, wherein the refractive index of the plurality of optical fibers is matched at the predetermined position. A main axis detection device that optically detects the main axis direction of each optical fiber by immersing it in a liquid, and a main axis adjustment device that supports both ends of each optical fiber and rotates each optical fiber around its central axis as necessary. An optical fiber coupler manufacturing device comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8816884A JPS60232515A (en) | 1984-05-01 | 1984-05-01 | Apparatus for producing optical fiber coupler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8816884A JPS60232515A (en) | 1984-05-01 | 1984-05-01 | Apparatus for producing optical fiber coupler |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60232515A true JPS60232515A (en) | 1985-11-19 |
JPH0531125B2 JPH0531125B2 (en) | 1993-05-11 |
Family
ID=13935384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8816884A Granted JPS60232515A (en) | 1984-05-01 | 1984-05-01 | Apparatus for producing optical fiber coupler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60232515A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5306323A (en) * | 1991-07-02 | 1994-04-26 | Sumitomo Electric Industries, Ltd. | Fiber coupler manufacturing apparatus having an automatic breaking test device |
-
1984
- 1984-05-01 JP JP8816884A patent/JPS60232515A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5306323A (en) * | 1991-07-02 | 1994-04-26 | Sumitomo Electric Industries, Ltd. | Fiber coupler manufacturing apparatus having an automatic breaking test device |
US5318610A (en) * | 1991-07-02 | 1994-06-07 | Sumitomo Electric Industries, Ltd. | Fiber coupler manufacturing apparatus having an automatic breaking test device |
Also Published As
Publication number | Publication date |
---|---|
JPH0531125B2 (en) | 1993-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4439221A (en) | Method for making optical fiber couplers | |
JP2645458B2 (en) | Method of manufacturing single mode evanescent wave optical coupler | |
US4765816A (en) | Method and apparatus for making optical fiber couplers | |
US6459838B1 (en) | Method for making V-shaped highly birefringent optical fibers | |
JPH0371382B2 (en) | ||
JPS60232515A (en) | Apparatus for producing optical fiber coupler | |
JPH0323241A (en) | Optical fiber cable and preparation thereof and optical fiber coupler | |
JP3974106B2 (en) | Broadband optical fiber coupler, manufacturing method thereof, and manufacturing apparatus thereof | |
JP2918585B2 (en) | Optical fiber coupler manufacturing equipment | |
JPH0455289Y2 (en) | ||
JP2866502B2 (en) | Manufacturing method of optical fiber coupler | |
JPH01321411A (en) | Production of fiber type optical coupler | |
JPS60242406A (en) | Single polarization optical fiber | |
JPH1172646A (en) | Production of multibranching optical coupler | |
JP2003322751A (en) | Method and apparatus for manufacturing polarization maintaining optical fiber | |
JPH027008A (en) | Apparatus for producing optical fiber coupler | |
TW202219572A (en) | An optical system comprising a polarization controller and a method of operation | |
JPH11337763A (en) | Polarization maintaining optical fiber aligning device and manufacturing equipment of polarization maintaining optical fiber coupler | |
JPH02130506A (en) | Manufacture of fiber type optical coupler | |
JPH0456909A (en) | Production of optical fiber coupler and apparatus for producing this coupler | |
JPS63118705A (en) | Optical fiber coupler producing device | |
JPH04204703A (en) | Production of optical fiber coupler | |
JPH05196834A (en) | Process and apparatus for production of optical fiber coupler | |
JP2004325718A (en) | Manufacture method of optical fiber coupler, manufacture equipment thereof and optical fiber coupler | |
JPH11119053A (en) | Manufacture of optical coupler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |