JP2866502B2 - Manufacturing method of optical fiber coupler - Google Patents
Manufacturing method of optical fiber couplerInfo
- Publication number
- JP2866502B2 JP2866502B2 JP14305891A JP14305891A JP2866502B2 JP 2866502 B2 JP2866502 B2 JP 2866502B2 JP 14305891 A JP14305891 A JP 14305891A JP 14305891 A JP14305891 A JP 14305891A JP 2866502 B2 JP2866502 B2 JP 2866502B2
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- heat source
- temperature heat
- optical fibers
- fiber coupler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Mechanical Coupling Of Light Guides (AREA)
- Optical Couplings Of Light Guides (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】本発明は、光ファイバ通信システ
ムや光ファイバセンサ、光計測などに用いられる光ファ
イバカプラの製造方法に関するもので、さらに詳しく
は、融着延伸型光ファイバカプラを、従来より大幅に再
現性良く作製する製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical fiber coupler used for an optical fiber communication system, an optical fiber sensor, an optical measurement, and the like. The present invention relates to a manufacturing method for producing a semiconductor device with significantly higher reproducibility.
【0002】[0002]
【従来の技術】従来の低損失の光ファイバカプラを図5
に示す。これは複数の光ファイバ101を平行に保持し、
その一部分を加熱融着し、さらに所望の分岐比が得られ
るまで延伸を行うことによって作製される。図6にこの
光ファイバカプラの分岐比の波長特性を示す。横軸に波
長を縦軸に分岐比をそれぞれ示し、波長が異なれば分岐
比に差が生じていることが分かる。波長が1.3μmで分
岐比が50%であり、波長が 1.3μmよりも大きくなると
分岐比も50%より大きくなり、波長が1.3μmよりも小
さくなると分岐比も50%より小さくなる。この従来例は
分岐比の波長依存性が大きいため、複数の波長を利用す
る波長多重通信システム等には向かないなど用途が限定
されていた。2. Description of the Related Art A conventional low-loss optical fiber coupler is shown in FIG.
Shown in This holds multiple optical fibers 101 in parallel,
It is produced by heat-sealing a part thereof and further stretching it until a desired branching ratio is obtained. FIG. 6 shows the wavelength characteristics of the branching ratio of this optical fiber coupler. The wavelength is shown on the horizontal axis and the branching ratio is shown on the vertical axis, and it can be seen that there is a difference in the branching ratio when the wavelength is different. When the wavelength is 1.3 μm, the branching ratio is 50%. When the wavelength is larger than 1.3 μm, the branching ratio is also larger than 50%, and when the wavelength is smaller than 1.3 μm, the branching ratio is smaller than 50%. Since this conventional example has a large wavelength dependence of the branching ratio, it is not suitable for a wavelength division multiplexing communication system using a plurality of wavelengths, and its use is limited.
【0003】また、多分岐の光スターカプラの作製にあ
たっては、密着性と分配特性を向上させるために、融着
延伸時に光ファイバを捩りながら作製する方法がよく用
いられている。従来の光ファイバカプラの第二の例を図
7に示す。これはD.B.Mortimore によってElectronics
Letters Vol.21,No.17, pp742,1985年にWavelength-Fla
ttenedFused Couplersと題して公表されている。これは
2本の光ファイバ102のうち片方を前もって加熱延伸し
ておき、少し外径の異なった光ファイバ同士を捩り密着
させ、加熱し融着延伸を行って作るものである。これに
より、分岐比の波長依存性を低減することができる。図
8にこのタイプの分岐比の波長依存性の一例を示す。波
長が1.3μmと1.55μmで分岐比が50%で、波長が1.3μ
mと1.55μmとの間で分岐比は50%より僅かに大きく、
かつ、徐々に変化し、波長が1.3μm以下および1.55μ
m以上では分岐比が50%より小さく徐々に減少してい
る。これにより、波長の変動に対して分岐比の変動が小
さいのが良く理解できる。このような光ファイバカプラ
は、広い波長帯域で使用が可能であるため、広帯域光フ
ァイバカプラとも呼ばれる。[0003] In the production of a multi-branched optical star coupler, a method of twisting an optical fiber at the time of fusing and stretching is often used in order to improve adhesion and distribution characteristics. FIG. 7 shows a second example of a conventional optical fiber coupler. This is Electronics by DBMortimore
Letters Vol.21, No.17, pp742, Wavelength-Fla in 1985
Published as ttenedFused Couplers. In this method, one of the two optical fibers 102 is heated and stretched in advance, and optical fibers having slightly different outer diameters are twisted and brought into close contact with each other, heated and fused and drawn. Thereby, the wavelength dependence of the branching ratio can be reduced. FIG. 8 shows an example of the wavelength dependence of this type of branching ratio. Wavelength 1.3μm and 1.55μm, branching ratio 50%, wavelength 1.3μ
between m and 1.55 μm, the branching ratio is slightly greater than 50%,
And gradually changes, the wavelength is less than 1.3μm and 1.55μ
Above m, the branching ratio is smaller than 50% and gradually decreases. Thus, it can be clearly understood that the change in the branching ratio is small with respect to the change in the wavelength. Since such an optical fiber coupler can be used in a wide wavelength band, it is also called a broadband optical fiber coupler.
【0004】また、米国特許第4,798,438号公報に開示
されているように、予め2本の光ファイバのうちの一方
の光ファイバを他方の光ファイバとほぼ等しい径を持っ
た細径に延伸した後、他方の光ファイバを密着整列させ
て融着延伸することにより、両者の光ファイバの伝搬定
数に差を設ける手法が用いられているものもある。As disclosed in US Pat. No. 4,798,438, one of two optical fibers is previously drawn to a small diameter having a diameter substantially equal to that of the other optical fiber. In some cases, a method is used in which the other optical fiber is closely contacted and aligned and fusion-stretched to provide a difference in the propagation constant between the two optical fibers.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記融
着延伸型光ファイバカプラにおいては、融着の範囲や融
着状態によって作製された光ファイバカプラの損失や分
岐比等の光学特性にバラツキが生じやすい。また、密着
性や分配特性を良くするために光ファイバを捩りながら
融着延伸する場合においては、なおさら再現性は損なわ
れる。更に、分岐比の波長依存性を低減した光ファイバ
カプラを作製する場合、予め一方の光ファイバを延伸す
るなど、加工した後融着延伸するため、再現性が非常に
悪いという問題点があった。However, in the above-mentioned fusion-stretched optical fiber coupler, optical characteristics such as loss and branching ratio of the produced optical fiber coupler vary depending on the fusion range and fusion state. Cheap. In the case where the optical fiber is melt-stretched while being twisted in order to improve the adhesion and distribution characteristics, the reproducibility is further impaired. Furthermore, when manufacturing an optical fiber coupler in which the wavelength dependence of the branching ratio is reduced, there is a problem that reproducibility is very poor because one optical fiber is previously drawn and then fused and drawn. .
【0006】[0006]
【課題を解決するための手段】そこで、本発明は、上記
の問題点を解決するために、複数の光ファイバの中間部
の被覆を除去し、該被覆除去部を整列治具にて平行に整
列させ、前記複数の光ファイバを軟化させる低温熱源を
用いて所定長延伸し、少なくとも一方の整列治具を、最
細径部において前記複数の光ファイバが接する角度だけ
回転させることにより延伸部を密着させ、その後前記低
温熱源の温度を高くした高温熱源により前記密着させた
延伸部を融着し、前記高温熱源の温度を低くして再度低
温熱源として、前記密着部を所望の結合が得られるまで
延伸する製造方法である。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention removes the coating of the middle part of the plurality of optical fibers and makes the coating removed parts parallel with an alignment jig. Aligning, stretching a predetermined length using a low-temperature heat source to soften the plurality of optical fibers, at least one alignment jig, by rotating the plurality of optical fibers at an angle at which the plurality of optical fibers are in contact at the narrowest diameter portion, the stretching portion. Closely adhered, after that, the stretched portion that has been brought into close contact with the high-temperature heat source with the temperature of the low-temperature heat source raised is fused, and the temperature of the high-temperature heat source is lowered and again as a low-temperature heat source, whereby the desired bonding of the bonded portion is obtained. This is a manufacturing method of stretching to
【0007】[0007]
【作用】本発明の製造方法を用いることにより、融着時
における光ファイバの融着条件が安定するだけでなく、
融着延伸時に捩りを加えることなく結合部を作製するた
め、作製した融着延伸型光ファイバカプラの光学特性の
再現性が極めて良くなる。特に、再現性の悪い分岐比の
波長依存性を低減した広帯域光ファイバカプラ等を作製
する際に非常に有効である。By using the manufacturing method of the present invention, not only the fusion condition of the optical fiber at the time of fusion is stabilized, but also
Since the joint portion is produced without applying a twist during the fusion-stretching, the reproducibility of the optical characteristics of the produced fusion-stretched optical fiber coupler is extremely improved. In particular, it is very effective in producing a broadband optical fiber coupler or the like in which the wavelength dependence of the branching ratio having poor reproducibility is reduced.
【0008】[0008]
【実施例】以下に本発明の実施例を、図1から図3を用
いて説明する。図1は、例えばコーニング社製SMF−
28TMなどの2本のシングルモード光ファイバ1・2を融
着延伸して光ファイバカプラを製造する方法を示してい
る。 図1(a)では2本の光ファイバ1・2の中間部の被覆を
一部除去し、その被覆除去部21、22を、所定距離へだて
て配置した整列治具3にて平行に整列させる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows, for example, Corning SMF-
Shows a method of manufacturing an optical fiber coupler of the single-mode optical fiber 1 and 2 two such 28 TM and fused and extended. In FIG. 1 (a), the coating at the intermediate portion between the two optical fibers 1 and 2 is partially removed, and the coating removing portions 21 and 22 are aligned in parallel by an alignment jig 3 arranged at a predetermined distance. .
【0009】図1(b)では光ファイバ1・2を軟化させ
る酸水素バーナー等の低温熱源4を光ファイバ1・2の
軸方向に振幅させながら所定長延伸させる。延伸された
光ファイバ1・2の最細径部は接せず離れている。な
お、酸水素バーナーの低温熱源4は、温度を高めて光フ
ァイバ1・2を融着させる高温熱源14となる。温度の制
御はガスの流量で行い、水素ガスの流量を多くして高温
熱源14とする。In FIG. 1B, a low-temperature heat source 4 such as an oxyhydrogen burner for softening the optical fibers 1 and 2 is stretched for a predetermined length while oscillating in the axial direction of the optical fibers 1 and 2. The narrowest diameter portions of the drawn optical fibers 1 and 2 are separated without contact. The low-temperature heat source 4 of the oxyhydrogen burner is a high-temperature heat source 14 for increasing the temperature and fusing the optical fibers 1 and 2. The temperature is controlled by the flow rate of the gas, and the flow rate of the hydrogen gas is increased to make the high-temperature heat source 14.
【0010】図1(c)では、離れている前記2本の光フ
ァイバ1・2の最細径部が互いに接するようになる角度
だけ整列治具3を回転させる。整列治具3の回転で、一
方の整列治具3のみを回転させる構成でもよいが、ここ
では両側の整列治具3を逆方向に同一角度回転させる構
成としている。それは、図3に示すとおり、最細径部の
光ファイバ1・2の位置関係が、酸水素バーナー等の低
温熱源4の中心軸L−L上に光ファイバ1・2の接点P
がほぼ位置し、低温熱源4からの距離が一定で加熱条件
が安定するためである。図3(b)は図1(c)の中央部分の
B−B断面、図3(a)は図1(c)の図に向かって左端部分
のA−A断面、図3(c)は図1(c)の右端部分のC−C断
面で、光ファイバ1・2の左端部分と右端部分は、互い
に逆方向に回転した状態が示されている。これに対し、
一方の整列治具3のみを回転させると光ファイバ1・2
の接点Pは、低温熱源4の中心軸L−L上に位置しにく
くなり、低温熱源4からの距離が一定せず加熱条件が不
安定となる。In FIG. 1C, the alignment jig 3 is rotated by an angle such that the narrowest diameter portions of the two optical fibers 1 and 2 which are separated from each other come into contact with each other. The rotation of the alignment jig 3 may be such that only one of the alignment jigs 3 is rotated. However, in this case, the alignment jigs 3 on both sides are rotated in the opposite direction by the same angle. As shown in FIG. 3, the positional relationship between the optical fibers 1 and 2 in the narrowest diameter portion is such that the contact points P of the optical fibers 1 and 2 are located on the central axis LL of the low-temperature heat source 4 such as an oxyhydrogen burner.
Is located approximately, the distance from the low-temperature heat source 4 is constant, and the heating condition is stable. 3B is a cross-sectional view taken along the line BB of the center of FIG. 1C, FIG. 3A is a cross-sectional view taken along the line AA of the left end of FIG. 1C, and FIG. FIG. 1C shows a cross section taken along the line CC of the right end portion, in which the left end portion and the right end portion of the optical fibers 1 and 2 are rotated in directions opposite to each other. In contrast,
When only one of the alignment jigs 3 is rotated, the optical fibers 1 and 2 are rotated.
Becomes difficult to be located on the central axis LL of the low-temperature heat source 4, the distance from the low-temperature heat source 4 is not constant, and the heating condition becomes unstable.
【0011】図1(b)の延伸長としては、外径 125μm
の光ファイバ1・2を用いた場合、光ファイバ1・2を
最細径部が89μm程度に延伸しておけば、整列治具3を
逆方向に45度づつ回転させ、光ファイバ1・2の両端か
ら均等な張力を付与してやることにより、最細径部で光
ファイバ1・2が適度に密着する。ここで、半径Rの2
本のシングルモード光ファイバ1・2を予備延伸し、密
着させる時、予備延伸により最細径化された部位の2本
の半径の和をThe stretching length in FIG. 1 (b) is 125 μm in outer diameter.
When the optical fibers 1.2 are used and the thinnest portion of the optical fibers 1.2 is stretched to about 89 μm, the alignment jig 3 is rotated in the opposite direction by 45 degrees, and the optical fibers 1.2 are rotated. By applying uniform tension from both ends of the optical fiber, the optical fibers 1 and 2 are brought into close contact with each other at the narrowest diameter portion. Here, the radius R is 2
When the single mode optical fibers 1 and 2 are pre-drawn and brought into close contact with each other, the sum of the two radii of the portions whose diameters have been reduced by the pre-drawing is calculated.
【0012】 [0012]
【0013】とし、整列治具3の回転角を逆方向45度づ
つの90度とすれば、最細径部が一点で接する最良の密着
条件になることを確認した。図2は整列治具3の回転機
構の一例を示している。この回転機構は、上面を精密に
仕上げた精密V溝6を有する回転台5の精密V溝6に、
円柱体を軸方向に半割りした整列治具3をその円状外周
Sを当接させて載置してなる。光ファイバ1・2を整列
治具3の支持平面7上に整列させるが、支持平面7は整
列治具3の円柱体の中心軸を含むように設定し、整列治
具3の円状外周Sの回転の中心軸を支持平面7に位置さ
せる事により、精密V溝6上で整列治具3を正方向に
も、逆方向にも回転できるようにする。When the rotation angle of the alignment jig 3 is set to 90 degrees at 45 degrees in the reverse direction, it has been confirmed that the best contact condition is obtained in which the narrowest diameter portion contacts at one point. FIG. 2 shows an example of a rotation mechanism of the alignment jig 3. This rotation mechanism is provided in a precision V-groove 6 of the turntable 5 having a precision V-groove 6 whose upper surface is precisely finished.
An alignment jig 3 in which a cylindrical body is divided in half in the axial direction is placed with its circular outer periphery S in contact therewith. The optical fibers 1 and 2 are aligned on the support plane 7 of the alignment jig 3. The support plane 7 is set so as to include the central axis of the cylindrical body of the alignment jig 3, and the circular outer periphery S of the alignment jig 3 is set. By positioning the center axis of the rotation on the support plane 7, the alignment jig 3 can be rotated on the precision V-groove 6 in the forward direction or the reverse direction.
【0014】さらには図1(d)では、低温熱源4の水素
ガスの流量を多くして温度を高くした高温熱源14とし
て、その高温熱源14により光ファイバ1・2を密着させ
た延伸部を融着し、融着部Fを形成する。最後に図1
(e)では高温熱源14の温度を低くして再度低温熱源4と
して、図1(b)で示す場合と同様に、光ファイバ1・2
の軸方向に低温熱源4を振幅させながら融着部Fを所望
の結合が得られるまで延伸する。Further, in FIG. 1 (d), as the high-temperature heat source 14 in which the flow rate of the hydrogen gas of the low-temperature heat source 4 is increased and the temperature is increased, a drawn portion in which the optical fibers 1 and 2 are brought into close contact with the high-temperature heat source 14 is used. Fusion is performed to form a fusion portion F. Finally Figure 1
In (e), the temperature of the high-temperature heat source 14 is lowered, and the low-temperature heat source 4 is used again as in the case shown in FIG.
While the low-temperature heat source 4 is oscillated in the axial direction, the fused portion F is stretched until a desired bond is obtained.
【0015】尚、図示していないが各工程においては、
一方の光ファイバ1の一端より安定化光源を用いて光を
入射させ、2本の光ファイバ1・2の他端から出射する
光を光パワーメータを用いて常時モニターしている。以
上の例は、分岐比が通常の波長依存性を有する光ファイ
バカプラの例であったが、広帯域光ファイバカプラの作
製を行う場合は、図1(b)の予備延伸工程において、特
願平2−223,873号「光ファイバカプラの製造装置」で
本出願人が開示したような、少なくとも1本の光ファイ
バを他の光ファイバと異なる速度で延伸できる装置を用
いて、2本の光ファイバを異なる速度で延伸することに
より光ファイバ1・2の最細径部の径を異ならせ図1
(c)以下の工程を行えばよい。Although not shown, in each step,
Light is incident from one end of one optical fiber 1 using a stabilized light source, and light emitted from the other ends of the two optical fibers 1 and 2 is constantly monitored using an optical power meter. The above example is an example of an optical fiber coupler whose branching ratio has a normal wavelength dependence. However, when a broadband optical fiber coupler is manufactured, the pre-stretching step shown in FIG. 2-223,873, "Apparatus for manufacturing optical fiber coupler", disclosed in the present applicant, at least one optical fiber can be drawn at a different speed than another optical fiber, using two optical fibers. By drawing at different speeds, the diameters of the narrowest diameter portions of the optical fibers 1 and 2 are made different from each other.
(c) The following steps may be performed.
【0016】図9はこの装置の一実施例で、所定距離へ
だてて光ファイバ1・2の整列治具3を配置し、この整
列治具3より外側に少なくとも一方が可動である対向し
た一対の駆動台11、12を設け、駆動台11、12上にはそれ
ぞれ把持具41、42があり、整列治具3間に熱源4を配置
してある。ここで、光ファイバ1・2の被覆除去部21、
22を整列治具3により密着整列させ、この光ファイバ1
・2の両端側を駆動台11、12上に把持具41、42により把
持し、駆動台11・12が異なる速度で光ファイバ1・2を
延伸駆動でき、これによって熱源4によって細径化され
た光ファイバ1・2の最細径部の径を異ならせ、整列治
具3を回転させて細径部を密着させるものである。以
下、前記した通り熱源4の温度を高くして細径部を融着
させ、再び熱源4の温度を低くして融着部を所望の結合
が得られるまで駆動台11・12により延伸させる。FIG. 9 shows an embodiment of this apparatus, in which an alignment jig 3 for the optical fibers 1 and 2 is arranged at a predetermined distance, and a pair of opposed opposing movable members, at least one of which is movable outside the alignment jig 3. Drive tables 11 and 12 are provided, and holding tools 41 and 42 are provided on the drive tables 11 and 12, respectively, and the heat source 4 is arranged between the alignment jigs 3. Here, the coating removing portions 21 of the optical fibers 1 and 2
22 is closely aligned by the alignment jig 3, and the optical fiber 1
2 Both ends of 2 are gripped on the driving bases 11 and 12 by the grippers 41 and 42, and the driving bases 11 and 12 can draw and drive the optical fibers 1 and 2 at different speeds. The diameters of the narrowest diameter portions of the optical fibers 1 and 2 are made different, and the alignment jig 3 is rotated to bring the small diameter portions into close contact. Thereafter, as described above, the temperature of the heat source 4 is raised to fuse the small diameter portion, and the temperature of the heat source 4 is lowered again to stretch the fused portion by the driving stands 11 and 12 until a desired connection is obtained.
【0017】なお、前記駆動台11・12はそれぞれ別体と
されているが、図10のように駆動台31の上に駆動台32を
載せ、駆動台31上で駆動台32を駆動できるようにしても
よい。図4は図9、図10の装置を用いて波長1.3μmで
分岐比が50%になるように作製した光ファイバカプラの
分岐比の波長依存性を測定した一例を示す。波長1.3μ
mから1.55μm付近で分岐比がほぼ50%程度で、波長1.
3μmで分岐比が50%より小さく、波長が1.55μmで分岐
比が50%より大きい。本発明の製造方法を用いて作製し
たこの種の広帯域光ファイバカプラは、従来の手法を用
いて作製したものと比較して、再現性が良く、ほとんど
同じ波長特性を示すことを確認した。The driving bases 11 and 12 are separately provided. However, as shown in FIG. 10, the driving base 32 is mounted on the driving base 31 so that the driving base 32 can be driven on the driving base 31. It may be. FIG. 4 shows an example of measuring the wavelength dependence of the branching ratio of an optical fiber coupler manufactured using the apparatus of FIGS. 9 and 10 so that the branching ratio becomes 50% at a wavelength of 1.3 μm. 1.3μ wavelength
The branching ratio is about 50% from 1.5 m to 1.55 μm, and the wavelength is 1.
At 3 μm, the branching ratio is less than 50%, and at 1.55 μm, the branching ratio is greater than 50%. It was confirmed that this kind of broadband optical fiber coupler manufactured using the manufacturing method of the present invention had better reproducibility and exhibited almost the same wavelength characteristics as those manufactured using the conventional method.
【0018】なお、図9、図10を用いた例においても、
前記した通り半径Rの2本の光ファイバについてその最
細径部の半径の和を、Incidentally, in the example using FIGS. 9 and 10,
As described above, the sum of the radii of the narrowest diameter portions of the two optical fibers having the radius R is given by:
【0019】 [0019]
【0020】として整列治具3の回転角を逆方向45°ず
つの90°とすれば最良の密着条件となる。また、上記例
では2本の光ファイバを用いた例を示したが、多数本の
光ファイバを用いた光スターカプラでも同様の構成を用
いることにより、融着延伸時に捩りを加えることなしに
再現性良く作製できることは言うまでもない。If the rotation angle of the alignment jig 3 is set to 90 ° in 45 ° increments in the opposite direction, the best contact condition is obtained. In the above example, two optical fibers were used, but an optical star coupler using a large number of optical fibers could be reproduced without twisting during fusion stretching by using the same configuration. Needless to say, it can be manufactured with good properties.
【0021】また、上記例ではシングルモードファイバ
を用いた例を示したが、マルチモードファイバを用いて
も最細径部を密着でき、融着条件が安定することはいう
までもない。In the above example, a single mode fiber is used. However, it is needless to say that even when a multimode fiber is used, the thinnest portion can be in close contact and the fusion conditions are stable.
【0022】[0022]
【発明の効果】本発明の製造方法を用いることにより、
通常の光ファイバカプラ (光スターカプラを含む) だけ
でなく、分岐比の波長依存性を低減した広帯域光ファイ
バカプラについても再現性良く作製することができる。
また、本発明は、装置そのものも従来の製造装置を若干
変更する程度で大幅な歩留まりの向上が可能となるた
め、安価な光ファイバカプラを提供することが可能とな
る。By using the production method of the present invention,
Not only ordinary optical fiber couplers (including optical star couplers) but also broadband optical fiber couplers with reduced wavelength dependence of the branching ratio can be manufactured with good reproducibility.
Further, according to the present invention, the yield can be greatly improved by slightly changing the apparatus itself from the conventional manufacturing apparatus, so that an inexpensive optical fiber coupler can be provided.
【図1】図1(a)〜図1(e)は本発明の光ファイバカプラ
の製造方法の一例を示す概念図である。FIGS. 1A to 1E are conceptual views showing an example of a method for manufacturing an optical fiber coupler of the present invention.
【図2】本発明に用いる整列治具の回転機構の一例を説
明する断面図である。FIG. 2 is a cross-sectional view illustrating an example of a rotation mechanism of an alignment jig used in the present invention.
【図3】図3(a)〜図3(c)は図1(c)の光ファイバの軸
方向の各箇所における整列状態を示す断面図である。FIGS. 3 (a) to 3 (c) are cross-sectional views showing the alignment state of the optical fiber of FIG. 1 (c) at various points in the axial direction.
【図4】本発明の波長と分岐比との特性図である。FIG. 4 is a characteristic diagram of a wavelength and a branching ratio according to the present invention.
【図5】従来の光ファイバカプラの斜視図である。FIG. 5 is a perspective view of a conventional optical fiber coupler.
【図6】従来の光ファイバカプラの波長と分岐比の関係
を示す特性図である。FIG. 6 is a characteristic diagram showing a relationship between a wavelength and a branching ratio of a conventional optical fiber coupler.
【図7】従来の他の光ファイバカプラの斜視図である。FIG. 7 is a perspective view of another conventional optical fiber coupler.
【図8】従来の他の光ファイバカプラの波長と分岐比の
関係を示す特性図である。FIG. 8 is a characteristic diagram showing a relationship between a wavelength and a branching ratio of another conventional optical fiber coupler.
【図9】本発明にかかる一実施例を示す製造装置の概略
構成図である。FIG. 9 is a schematic configuration diagram of a manufacturing apparatus showing one embodiment according to the present invention.
【図10】本発明にかかる一実施例を示す他の製造装置
の概略構成図である。FIG. 10 is a schematic configuration diagram of another manufacturing apparatus showing one embodiment according to the present invention.
1・2…光ファイバ 21・22…被覆除去部 3…整列治具 4…低温熱源 14…高温熱源 F…融着部 1.2 Optical fiber 21/22 Coating removal part 3 Alignment jig 4 Low temperature heat source 14 High temperature heat source F Fused part
Claims (4)
バの被覆除去部を対向して配置した整列治具にて平行に
整列させる工程と、前記被覆除去部の光ファイバを軟化
させる整列治具間に配置した低温熱源を用いて所定長延
伸する工程と、前記延伸により形成された被覆除去部そ
れぞれの最細径部が互いに接するようになる角度だけ前
記整列治具の少なくとも一方を回転させることにより延
伸部を密着させる工程と、前記低温熱源の温度を高くし
た高温熱源により前記密着させた延伸部を融着する工程
と、前記高温熱源の温度を低くして再度低温熱源とし前
記融着部を所望の結合が得られるまで延伸する工程とよ
りなる光ファイバカプラの製造方法。A step of aligning the coating removal portions of the plurality of optical fibers from which the coating of the intermediate portion has been removed in parallel with an alignment jig arranged oppositely; and an alignment jig for softening the optical fiber of the coating removal portion. Elongating a predetermined length using a low-temperature heat source disposed between the components, and rotating at least one of the alignment jigs by an angle such that the thinnest portions of the coating removal portions formed by the elongation come into contact with each other. A step of bringing the stretched portion into close contact with each other, a step of fusing the contacted stretched portion with a high-temperature heat source having a high temperature of the low-temperature heat source, and a step of lowering the temperature of the high-temperature heat source to make it a low-temperature heat source again; Stretching the portion until a desired connection is obtained.
伸する工程において、少なくとも1本の光ファイバを他
の光ファイバと異なる速度で延伸することを特徴とす
る、請求項第1項記載の光ファイバカプラの製造方法。2. The method according to claim 1, wherein, in the step of stretching the coating removing section by a predetermined length using a low-temperature heat source, at least one optical fiber is stretched at a different speed from other optical fibers. Of manufacturing an optical fiber coupler.
接するようになる角度だけ整列治具を回転させ延伸部を
密着する工程において、対向する整列治具をそれぞれ逆
方向に所望の回転角の2分の1づつ回転させることを特
徴とする、請求項第1項および第2項記載の光ファイバ
カプラの製造方法。3. In the step of rotating the alignment jig by an angle such that the narrowest diameter portions of the coating removing portions come into contact with each other and bringing the extension portion into close contact, the opposing alignment jigs are rotated in the opposite directions by a desired rotation angle. 3. The method of manufacturing an optical fiber coupler according to claim 1, wherein the optical fiber coupler is rotated by a half.
ァイバで、2本の最細径部の半径の和が で、整列治具の所望の回転角を90度とすることを特徴と
する、請求項第3項記載の光ファイバカプラの製造方
法。4. A method according to claim 1, wherein the plurality of optical fibers are two optical fibers having a radius R, and the sum of the radii of the two thinnest portions is 4. The method according to claim 3, wherein the desired rotation angle of the alignment jig is set to 90 degrees.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14305891A JP2866502B2 (en) | 1991-06-14 | 1991-06-14 | Manufacturing method of optical fiber coupler |
US07/748,856 US5171345A (en) | 1990-08-25 | 1991-08-23 | Manufacturing method of an optical fiber coupler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14305891A JP2866502B2 (en) | 1991-06-14 | 1991-06-14 | Manufacturing method of optical fiber coupler |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04366904A JPH04366904A (en) | 1992-12-18 |
JP2866502B2 true JP2866502B2 (en) | 1999-03-08 |
Family
ID=15329935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14305891A Expired - Fee Related JP2866502B2 (en) | 1990-08-25 | 1991-06-14 | Manufacturing method of optical fiber coupler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2866502B2 (en) |
-
1991
- 1991-06-14 JP JP14305891A patent/JP2866502B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04366904A (en) | 1992-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4979972A (en) | Method of making fiber optic couplers | |
US4439221A (en) | Method for making optical fiber couplers | |
EP1285294B1 (en) | Optical waveguide lens and method of fabrication | |
US4902324A (en) | Method of reproducibly making fiber optic coupler | |
JPH0283505A (en) | Optical fiber-coupler and manufacture thereof | |
US5171345A (en) | Manufacturing method of an optical fiber coupler | |
JPH09159859A (en) | Optical fiber connection member, and its manufacture and connecting method | |
JPH06214135A (en) | Fiber optic coupler and its formation method | |
EP0148863A1 (en) | Polarization-insensitive, evanescent-wave, fused coupler with minimal environmental sensitivity. | |
EP0352957B1 (en) | Method of reproducibly making fiber optic coupler | |
JP2866502B2 (en) | Manufacturing method of optical fiber coupler | |
US5883992A (en) | Method for making optical waveguide couplers with low wavelength sensitivity and couplers thereby produced | |
JPH0574804B2 (en) | ||
JPH11305065A (en) | Fusion splicing method for optical fiber | |
JP3974106B2 (en) | Broadband optical fiber coupler, manufacturing method thereof, and manufacturing apparatus thereof | |
US5104434A (en) | Method of making fiber optic couplers | |
JP2918585B2 (en) | Optical fiber coupler manufacturing equipment | |
JP2879266B2 (en) | Broadband optical fiber coupler | |
JP2930685B2 (en) | Manufacturing method of optical fiber coupler | |
JP2883183B2 (en) | Method and apparatus for manufacturing optical fiber coupler | |
JPS62111213A (en) | Production of optical fiber coupler | |
JPH027008A (en) | Apparatus for producing optical fiber coupler | |
JPH02130506A (en) | Manufacture of fiber type optical coupler | |
JP2002328252A (en) | Optical fiber body and method for manufacturing the same | |
JP2000206361A (en) | Optical fiber type multi-branch coupler, and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |