JPS6314108A - Fiber for coupling optical equipment - Google Patents

Fiber for coupling optical equipment

Info

Publication number
JPS6314108A
JPS6314108A JP61158965A JP15896586A JPS6314108A JP S6314108 A JPS6314108 A JP S6314108A JP 61158965 A JP61158965 A JP 61158965A JP 15896586 A JP15896586 A JP 15896586A JP S6314108 A JPS6314108 A JP S6314108A
Authority
JP
Japan
Prior art keywords
fiber
cross
section
optical
coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61158965A
Other languages
Japanese (ja)
Inventor
Takao Shioda
塩田 孝夫
Koichi Takahashi
浩一 高橋
Hiromi Hidaka
日高 啓視
Takeru Fukuda
福田 長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP61158965A priority Critical patent/JPS6314108A/en
Publication of JPS6314108A publication Critical patent/JPS6314108A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To decrease the loss of the coupling between the waveguide of an optical branching device and an optical waveguide fiber by forming the cross section of one terminal rectangularly and forming the cross section of the other circularly, and varying the cross section shape between both ends continuously. CONSTITUTION:A fiber 7 for coupling is a quartz-based or multicomponent-based glass fiber consisting of a core 7a and a clad 7b. Then, the cross section of one end part 8 is formed rectangularly and the cross section of the other end part 9 is formed circularly; and the cross section shape is varied continuously between both end parts 8 and 9. Then, the length of the fiber 7 is preferably as short as possible and normally about 60-100mm, and the refractive indexes of the core 7a and clad 7b and the specific refractive index difference between the both are equalized to the refractive indexes of the substrate 1 of an optical branching device and each board and the specific refractive index difference between the substrate 1 and boards. Consequently, the optical equipment and waveguide fiber are connected extremely easily with low loss.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、光分岐器、光集積回路(光IC)等の光機
器と、この光機器を経由した光を導波する光ファイバと
の間を接続する際に用いられる光機器結合用ファイバに
関する。
Detailed Description of the Invention "Field of Industrial Application" This invention relates to optical devices such as optical splitters and optical integrated circuits (optical ICs), and optical fibers that guide light that passes through the optical devices. The present invention relates to optical device coupling fibers used for connecting between optical devices.

「従来技術とその問題点」 光の分岐、結合、スイッチングなど光の伝搬を行なう光
機器として、例えば第3図に示すような光分岐器がある
"Prior Art and its Problems" As an optical device that propagates light, such as branching, coupling, and switching of light, there is an optical branching device as shown in FIG. 3, for example.

この光分岐器は、LiNbO3などの電気光学効果を有
するけ料からなる基板1に2本の導波路2.3を形成し
、これら導波路2.3の中央部を互いに接近させて結合
部4を形成し、この結合部4の近傍にTi掻5.6を設
けたものである。この光分岐器では、電極5.6によっ
て電界を印加し、基板lの屈折率を変化させることによ
り、例えばボートAからの光をボートBまたはボートC
にスイッチすることができるようになっている。
This optical splitter has two waveguides 2.3 formed on a substrate 1 made of a material having an electro-optic effect such as LiNbO3, and the center portions of these waveguides 2.3 are brought close to each other to form a coupling portion 4. , and a Ti plate 5.6 is provided in the vicinity of this joint portion 4. In this optical splitter, by applying an electric field through an electrode 5.6 and changing the refractive index of the substrate l, light from, for example, boat A is transferred to boat B or boat C.
It is now possible to switch to

ところで、このような光分岐器を使用するにあたっては
、各ボートの端面に導波用の光ファイバ(図示せず)を
それぞれ接合する必要がある。
By the way, when using such an optical splitter, it is necessary to respectively connect waveguide optical fibers (not shown) to the end faces of each boat.

しかしながら、上記のような光分岐器では、各ボートの
横断面が矩形であり、これらのボートの端面に横断面形
状が円形である光ファイバの端面を接続すると、接続端
面が互いに異形であるために、完全に接続することがで
きず、たとえ光ファイバのコアおよびクラッドの屈折率
が上記光分岐器のボートおよび基板lの屈折率に一致し
ていて乙結合損失が大きくなってしまうなどの問題がめ
った。
However, in the optical splitter described above, each boat has a rectangular cross section, and when the end surfaces of optical fibers with circular cross sections are connected to the end surfaces of these boats, the connected end surfaces are irregularly shaped. However, even if the refractive index of the core and cladding of the optical fiber matches the refractive index of the boat and substrate l of the optical splitter, the coupling loss will increase. I was disappointed.

「問題点を解決するための手段」 そこで、この発明の先機器結合用ファイバは、その構成
を、一端の横断面形状を矩形に形成しかつ他端の横断面
形状を円形に形成するとともに、これら両端間の横断面
形状を連続的に変化仕しめたものとし、これを上記のよ
うな光分岐器の導波路と導波用の光ファイバとの間に挿
着することにより、両者間の結合損失の低下を図れるよ
うにした。
"Means for Solving the Problems" Therefore, the fiber for coupling a device according to the present invention has a configuration in which one end has a rectangular cross-sectional shape and the other end has a circular cross-sectional shape. The cross-sectional shape between these two ends is continuously changed, and by inserting it between the waveguide of the optical splitter and the optical fiber for waveguiding, it is possible to The coupling loss can be reduced.

「実施例」 以下、図面を参照してこの発明の詳細な説明する。"Example" Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図および第2図は、この発明の光機器結合用ファイ
バの一例を示すもので、図中符号7は光機器結合用ファ
イバ(以下、結合用ファイバと略称する。)である。こ
の結合用ファイバ7は、例えば第3図に示した光分岐器
の各ボートの端面と、図示しない導波用の光ファイバの
端面との間に挿着してこれら両者間を接続するものであ
って、このものは概略コア7aとクラッド7bとからな
る石英系あるいは多成分系のガラスファイバである。
FIG. 1 and FIG. 2 show an example of the optical device coupling fiber of the present invention, and reference numeral 7 in the figures indicates the optical device coupling fiber (hereinafter abbreviated as coupling fiber). This coupling fiber 7 is inserted, for example, between the end face of each boat of the optical splitter shown in FIG. 3 and the end face of a waveguide optical fiber (not shown) to connect these two. This fiber is a quartz-based or multi-component glass fiber consisting of a core 7a and a cladding 7b.

そして、この結合用ファイバ7は、その一方の端部8の
横断面形状が矩形に形成され、かつ他方の端部9の横断
面形状が円形に形成されろととらに、これら両端部8.
9間の横断面形状が連続的に変化せしめられている。ま
た、この結合用ファイバ7の端wJ8.9のそれぞれの
形状や大きさは、接合相手の各ボートや光ファイバの端
面に応じて適宜法められ、このファイバ7の長さ寸法は
、横断面の大きさなどに左右されるか、接続の際の損失
増加なども考慮して可能な限り短いものが望ましく、通
常50〜100ix程度の範囲とされろ。
The coupling fiber 7 has one end 8 having a rectangular cross-section and the other end 9 having a circular cross-section.
The cross-sectional shape between 9 is continuously changed. In addition, the shape and size of each end wJ8.9 of this coupling fiber 7 are determined as appropriate depending on each boat to be coupled and the end face of the optical fiber, and the length dimension of this fiber 7 is It is desirable that the length be as short as possible, depending on the size of the wire, and considering increased loss during connection, and is usually in the range of about 50 to 100 ix.

そして、この結合用ファイバ7には、コア7aおよびク
ラッド7bにこれらの屈折率や両者間の比屈折率差を、
例えば第3図に示した光分岐器の基板1および各ボート
の屈折率や基板lと各ボートとの比屈折率差に合致させ
るために、予めゲルマニア(GeOz)、酸化ボロン(
B、03)およびフッ素(F)などの通常のドーパント
を適量添加しておくことができる。
In this coupling fiber 7, the core 7a and the cladding 7b have these refractive indexes and a relative refractive index difference between them.
For example, germania (GeOz), boron oxide (
Suitable amounts of conventional dopants such as B, 03) and fluorine (F) can be added.

次に、このような構成からなる結合用ファイバの製造方
法の一例を説明する。
Next, an example of a method for manufacturing a coupling fiber having such a configuration will be described.

まず、ゲルマニア等のドーパントを適量添加した石英ガ
ラス製のロッドを加熱溶融し、この溶融ガラスを横断面
形状を矩形とした中空筒状のカーボン製コア用型枠内に
流し込む。ここで、このときのガラス溶融温度は、ドー
パントの添加量などにより左右されるが、通常1550
〜1650℃程度の範囲とされ、好ましくは約1600
℃程度とされる。次に、上記のコア用型枠内を石英ガラ
スの融点以下の温度まで冷却して矩形の横断面を有する
コア用の石英ガラス製ロッドを製造する。
First, a rod made of quartz glass to which an appropriate amount of dopant such as germania has been added is heated and melted, and the molten glass is poured into a hollow cylindrical carbon core mold having a rectangular cross section. Here, the glass melting temperature at this time depends on the amount of dopant added, etc., but is usually 1550°C.
~1650°C, preferably about 1600°C
It is said to be around ℃. Next, the inside of the core mold is cooled to a temperature below the melting point of quartz glass to produce a quartz glass rod for the core having a rectangular cross section.

次に、石英ガラス製のクラッド用ロッドを用意し、この
ロッドの中央部にロッドの長手方向に沿って上記のコア
用ロッドの外形寸法と同様の内径寸法を有する孔を形成
する。
Next, a cladding rod made of quartz glass is prepared, and a hole having an inner diameter similar to the outer diameter of the core rod is formed in the center of the rod along the longitudinal direction of the rod.

次いで、このクラッド用ロッドの孔内に上記のコア用ロ
ットを挿入したのち、これらを溶融加熱することによっ
て一体化してファイバ母材とする。
Next, the above core rod is inserted into the hole of this cladding rod, and then they are melted and heated to be integrated into a fiber base material.

続いて、このファイバ母材を通常の紡糸温度より約15
0〜250℃程度、好ましくは200℃程度低い温度で
紡糸して矩形の横断面を有するファイバを製造する。こ
こで、この紡糸温度が通常の温度である場合には、紡糸
温度が高過ぎて溶融紡糸されたファイバの横断面形状が
溶融ガラスの表面張力により円形状に変化し易くなるな
どの不都合が生じる。
Subsequently, this fiber preform is heated to about 15% above the normal spinning temperature.
A fiber having a rectangular cross section is produced by spinning at a temperature lower than about 0 to 250°C, preferably about 200°C. Here, if this spinning temperature is a normal temperature, the spinning temperature is too high and the cross-sectional shape of the melt-spun fiber tends to change into a circular shape due to the surface tension of the molten glass. .

次に、このファイバを所定の長さ寸法となるように切断
する。そして、この短尺のファイバの一方の端部8(固
定端)を旋盤等にファイバの周方向に沿って回動自在に
固定するとともに、他方の端部9(自由端)が下側とな
るように鉛直状態に固定する。次いで、このファイバを
その周方向に回動させながら、例えば酸水素炎バーナな
どの加熱手段を用いて端部9を加熱する。この酸水素炎
バーナによる加熱においては、まず水素炎のみで加熱し
たのち、酸水素炎でさらに加熱するようにして、上記の
端部9側のコア部分およびクラッド部分のそれぞれ横断
面が円形となるまで、酸水素炎バーナをファイバの端部
9から徐々にかつ連続的に中央部分に向けてずらし加熱
位置を変えてながら十分に加熱する。このようにして、
ファイバの端部9から中央部分にかけて万石なく加熱す
ることにより、矩形の横断面を有する端部8と、円形の
横断面を有する端部9とをとも具備し、これら両端部8
.9間の横断面が連続的に変化せしめられた目的の結合
用ファイバ7を得る。
Next, this fiber is cut to a predetermined length. Then, one end 8 (fixed end) of this short fiber is fixed to a lathe or the like so that it can rotate freely along the circumferential direction of the fiber, and the other end 9 (free end) is on the lower side. Fix it vertically. Next, while rotating this fiber in its circumferential direction, the end portion 9 is heated using a heating means such as an oxyhydrogen flame burner. In heating with this oxyhydrogen flame burner, first heating is performed only with hydrogen flame, and then further heating is performed with oxyhydrogen flame, so that the cross sections of the core portion and cladding portion on the side of the end portion 9 described above become circular. The oxyhydrogen flame burner is gradually and continuously shifted from the end 9 of the fiber toward the center, and the heating position is changed until the fiber is sufficiently heated. In this way,
By uniformly heating the fiber from the end 9 to the center, the fiber has an end 8 having a rectangular cross section and an end 9 having a circular cross section.
.. A desired coupling fiber 7 in which the cross section between the fibers 9 and 9 is continuously changed is obtained.

このようにして得られた結合用ファイバ7にあっては、
矩形の横断面を有する端部8と、円形の横断面を有する
端部9とをともに具備し、これら両端部8.9間の横断
面が連続的に変化仕しめられたものであるので、例えば
第3図に示した光分岐器の矩形の横断面を有するボート
の端面に直接端部8を接合することができるとともに、
この光分岐器を経由した光を導波する導波用先ファイバ
の円形端部に直接端部9を接合することができろ。
In the coupling fiber 7 obtained in this way,
It has both an end portion 8 with a rectangular cross section and an end portion 9 with a circular cross section, and the cross section between these end portions 8 and 9 is continuously varied. For example, the end portion 8 can be directly joined to the end surface of a boat having a rectangular cross section of the light splitter shown in FIG.
It would be possible to join the end 9 directly to the circular end of the waveguide destination fiber that guides the light that has passed through this optical splitter.

よって、この結合用ファイバ7は、第3図に示したよう
な光機器と導波用の光ファイバとの間に挿着して両者間
を極めて小さい結合損失で接続することができる。
Therefore, this coupling fiber 7 can be inserted between an optical device as shown in FIG. 3 and a waveguide optical fiber to connect the two with extremely small coupling loss.

以下、実験例を示してこの発明の作用効果を明確にする
Hereinafter, the effects of this invention will be clarified by showing experimental examples.

(実験例) L4.8+x角の横断面を有する中空筒状のカーボン製
コア用型枠を用意した。この型枠内に、S IO2に1
ilrff1%のGem、を添加しその表面を約160
0°C程度の温度で加熱した石英ガラス製のロッドを入
れたのち、冷却して14 、8mR角の横断面を有する
コア用のロッドを製造した。
(Experimental Example) A hollow cylindrical carbon core mold having a cross section of L4.8+x angle was prepared. In this formwork, 1 to S IO2
Add 1% of ilrff Gem, and the surface becomes about 160
A rod made of quartz glass heated to a temperature of about 0° C. was inserted, and then cooled to produce a rod for a core having a cross section of 14.8 mR square.

一方、23.6xm角の横断面を有する5102からす
るクラッド用ロッドを用意し、このロッドの中央部にロ
ッドの長手方向に沿って横断面の内径寸法が14.8x
ス角の孔を形成した。
On the other hand, a cladding rod made of 5102 with a cross section of 23.6xm square is prepared, and the inner diameter of the cross section is 14.8x along the longitudinal direction of the rod.
A square hole was formed.

次に、このクラッド用ロッドの孔内に上記のコア用ロッ
ドを挿入したのち、これを通常の紡糸温度より約200
℃低い約1800℃の温度で紡糸して断面矩形のファイ
バを得た。このファイバのクラッドの外形寸法は、約7
11.tス角であり、またコアの寸法は約44.3μ肩
角であった。次いで、このファイバを60xxの長さで
切断し、このファイバの一端を回動自在状態で旋盤に固
定した。そして、このファイバを回動させながら他端に
対して酸水素炎バーナを用いて他端側のコアおよびクラ
ッドを円形となるように加工した。このときの加熱条件
は、まず始めのバーナへの水素ガス供給量が約20xQ
/min  水素炎の温度が約1400℃であり、次い
で酸水素炎による加熱時における水素ガス供給量が約2
0;Ni/min、酸素ガス供給量が約2 N/ mi
d、その酸水素炎の温度が約1600℃であった。そし
て、この加熱に要した時間は、約1時間であった。
Next, after inserting the above-mentioned core rod into the hole of this cladding rod, it is heated to about 200% higher than the normal spinning temperature.
A fiber having a rectangular cross section was obtained by spinning at a temperature as low as about 1800°C. The outer dimensions of the cladding of this fiber are approximately 7
11. The core dimensions were approximately 44.3μ and the shoulder angle. Next, this fiber was cut to a length of 60xx, and one end of this fiber was rotatably fixed to a lathe. Then, while rotating this fiber, an oxyhydrogen flame burner was used on the other end to process the core and cladding at the other end into a circular shape. The heating conditions at this time are that the initial amount of hydrogen gas supplied to the burner is approximately 20xQ.
/min The temperature of the hydrogen flame is about 1400°C, and then the amount of hydrogen gas supplied during heating with the oxyhydrogen flame is about 2
0: Ni/min, oxygen gas supply amount is approximately 2 N/mi
d. The temperature of the oxyhydrogen flame was about 1600°C. The time required for this heating was about 1 hour.

このように加工され、長さ40j1.wに切断して得た
ファイバは、一端側の外形が44.3xx角で、他端側
のクラツド径が80μm1 コア径が50μ肩であった
Processed in this way, the length is 40j1. The fiber obtained by cutting into w had an outer diameter of 44.3xx square on one end side, a clad diameter of 80 μm1 and a core diameter of 50 μm on the other end side.

また、このファイバは、その屈折率分布がグレイディラ
ドインデックス(GRIN)型のものであった。
Further, the refractive index distribution of this fiber was of the Gradyrad index (GRIN) type.

〔実施例1〕 第3図に示した光分岐器のボートの端面に上記の結合用
ファイバの矩形端部を接続し、この結合用ファイバの円
形端部に長さ10zの導波用GRIN型(クラツド径1
25μm、コア径50μ次)の光ファイバを接続して、
結合損失を測定したところ、0゜04dBであった。
[Example 1] The rectangular end of the above coupling fiber was connected to the end face of the boat of the optical splitter shown in Fig. 3, and a waveguide GRIN type with a length of 10z was connected to the circular end of the coupling fiber. (Clad diameter 1
By connecting optical fibers with a diameter of 25 μm and a core diameter of 50 μm,
When the coupling loss was measured, it was 0°04 dB.

〔実施例2〕 長さl kmの導波用GflIN型の先ファイバを用い
た他は、上記の実施例1と同様にして結合損失を測定し
たところ、0.1dBであった。
[Example 2] The coupling loss was measured in the same manner as in Example 1 above, except that a GflIN-type waveguide fiber having a length of 1 km was used, and the coupling loss was 0.1 dB.

〔比較例〕[Comparative example]

実施例2で用いた結合用ファイバを用いずに、光分岐器
のボートの端部と長さl&Rの導波用GnIN型光ファ
イバとを直接接続して、その結合損失を測定したところ
、1dBであった。
When the end of the boat of the optical splitter and the waveguide GnIN optical fiber of length 1&R were directly connected without using the coupling fiber used in Example 2, and the coupling loss was measured, it was 1 dB. Met.

これらの結果から明らかなように、実施例!および2は
、いずれら比較例に比べて光機器と導波用光ファイバと
の間の結合損失が低いことかわかる。
As is clear from these results, Example! It can be seen that the coupling loss between the optical equipment and the waveguide optical fiber is lower in both of the examples and 2 than in the comparative example.

「発明の効果」 以上説明しfこように、この発明の結合用ファイバは、
一端の横断面形状が矩形に形成されかつ他端の横断面形
状が円形に形成されるとと乙に、これら両端間の溝断面
形状が連続的に変化せしめられてなるものであるので、
矩形の端面が矩形の発光端あるいは受光端を有する光機
器に接合可能であり、また円形の端面が上記の光機器の
導波用光ファイバの受光端あるいは発光端に接合可能で
ある。また、両端間の横断面形状が連続的に変化せしめ
られたものであるので、内部を通過する光の伝送損失が
極めて小さいものとなる。
"Effects of the Invention" As explained above, the coupling fiber of the present invention has
The cross-sectional shape of one end is rectangular and the other end is circular, and the cross-sectional shape of the groove between these ends is continuously changed.
The rectangular end face can be joined to an optical device having a rectangular light emitting end or light receiving end, and the circular end face can be joined to the light receiving end or light emitting end of a waveguide optical fiber of the optical equipment. Further, since the cross-sectional shape between both ends is continuously changed, the transmission loss of light passing through the inside is extremely small.

したがって、この結合用ファイバによれば、矩形の発光
端あるいは受光端を有する光機器と円形の受光端あるい
は発光端を有する導波用光ファイバとの間を極めて容易
にかつ低損失で接続することができる。
Therefore, according to this coupling fiber, an optical device having a rectangular light emitting end or light receiving end and a waveguide optical fiber having a circular light receiving end or light emitting end can be connected extremely easily and with low loss. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の光機器結合用ファイバの一例を示
す概略構成図、第2図は、第1図の■−■線視線面断面
図3図は、光機器としての光分岐器の一例を示す概略斜
視図である。 7・・・光機器結合用ファイバ。
FIG. 1 is a schematic configuration diagram showing an example of the optical device coupling fiber of the present invention, FIG. 2 is a cross-sectional view taken along the line ■-■ in FIG. 1, and FIG. It is a schematic perspective view showing an example. 7... Fiber for coupling optical equipment.

Claims (1)

【特許請求の範囲】[Claims] 一端の横断面形状が矩形に形成されかつ他端の横断面形
状が円形に形成されるとともに、これら両端間の横断面
形状が連続的に変化せしめられてなる光機器結合用ファ
イバ。
A fiber for coupling optical equipment, in which one end has a rectangular cross-sectional shape, the other end has a circular cross-sectional shape, and the cross-sectional shape between these ends is continuously changed.
JP61158965A 1986-07-07 1986-07-07 Fiber for coupling optical equipment Pending JPS6314108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61158965A JPS6314108A (en) 1986-07-07 1986-07-07 Fiber for coupling optical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61158965A JPS6314108A (en) 1986-07-07 1986-07-07 Fiber for coupling optical equipment

Publications (1)

Publication Number Publication Date
JPS6314108A true JPS6314108A (en) 1988-01-21

Family

ID=15683234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61158965A Pending JPS6314108A (en) 1986-07-07 1986-07-07 Fiber for coupling optical equipment

Country Status (1)

Country Link
JP (1) JPS6314108A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003518272A (en) * 1999-12-20 2003-06-03 コジェント・ライト・テクノロジーズ・インコーポレイテッド High-intensity light coupling into low-melting optical fibers
KR100469702B1 (en) * 2002-06-05 2005-02-02 삼성전자주식회사 Method for fabricating optical connector
US20110292660A1 (en) * 2010-05-27 2011-12-01 Osram Opto Semiconductors Gmbh Light Guide and Semiconductor Luminaire
EP2545403A1 (en) * 2010-03-12 2013-01-16 Excelitas Technologies LED Solutions, Inc. Light guide for coupling differently shaped light source and receiver

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003518272A (en) * 1999-12-20 2003-06-03 コジェント・ライト・テクノロジーズ・インコーポレイテッド High-intensity light coupling into low-melting optical fibers
KR100469702B1 (en) * 2002-06-05 2005-02-02 삼성전자주식회사 Method for fabricating optical connector
EP2545403A1 (en) * 2010-03-12 2013-01-16 Excelitas Technologies LED Solutions, Inc. Light guide for coupling differently shaped light source and receiver
US20110292660A1 (en) * 2010-05-27 2011-12-01 Osram Opto Semiconductors Gmbh Light Guide and Semiconductor Luminaire
US8540409B2 (en) * 2010-05-27 2013-09-24 Osram Opto Semiconductors Gmbh Light guide and semiconductor luminaire

Similar Documents

Publication Publication Date Title
US4439221A (en) Method for making optical fiber couplers
US4801185A (en) Directional coupler
CA2028525C (en) Achromatic fiber optic coupler
US5074633A (en) Optical communication system comprising a fiber amplifier
JPH03504052A (en) Optical waveguide connection
EP0840148B1 (en) Optical fibre coupler and a fabrication method for the same
JPS6240403A (en) Method and apparatus for forming fiber optic coupler
JPS62192706A (en) Manufacture of light waveguide glass fiber
CN102213790B (en) Be convenient to panda type polarization-preserving fiber and the manufacture method thereof of coiling
KR20010020930A (en) Method of manufacturing polarization-maintaining optical fiber coupler
JPS6314108A (en) Fiber for coupling optical equipment
JPS627130B2 (en)
CA2326960C (en) A method for producing a fiberoptic waveguide with a phase shift segment
JPS63217314A (en) Production of optical branching filter
US4713105A (en) Method for glass fiber splicing by flame fusion
JPS61215225A (en) Production of optical fiber preserving plane of polarization
EP0150095B1 (en) Glass fiber splicing by flame fusion
JP3974106B2 (en) Broadband optical fiber coupler, manufacturing method thereof, and manufacturing apparatus thereof
JPH02123308A (en) Production of optical fiber coupler
JPS62262806A (en) Optical element such as optical coupler or the like, and its manufacture
Peng et al. Birefringent splittable composite (BISPEC) fiber and polarization-maintaining couplers
JPH01279211A (en) Polarized wave maintaining optical fiber
JP3130363B2 (en) Manufacturing method of optical fiber coupler
JP2748460B2 (en) Manufacturing method of fiber coupler
JPH1039148A (en) Production of ribbon-like multicore fiber