JPS60232208A - Treatment of filter module using hollow fiber - Google Patents

Treatment of filter module using hollow fiber

Info

Publication number
JPS60232208A
JPS60232208A JP8832184A JP8832184A JPS60232208A JP S60232208 A JPS60232208 A JP S60232208A JP 8832184 A JP8832184 A JP 8832184A JP 8832184 A JP8832184 A JP 8832184A JP S60232208 A JPS60232208 A JP S60232208A
Authority
JP
Japan
Prior art keywords
fibers
hollow
hydrophilic
cylinder
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8832184A
Other languages
Japanese (ja)
Other versions
JPH0410371B2 (en
Inventor
Osami Kato
修身 加藤
Kazuto Kawashima
川島 一人
Hiroshi Kitagawa
浩 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP8832184A priority Critical patent/JPS60232208A/en
Publication of JPS60232208A publication Critical patent/JPS60232208A/en
Publication of JPH0410371B2 publication Critical patent/JPH0410371B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To surely and simply make a hollow fiber hydrophilic or hydrophobic in a desired ratio at a desired place, by pressing a nozzle to the partial region of the opening end of a module and introducing a hydrophilicity or hydrophobicity imparting medium into said module under pressure. CONSTITUTION:In a filter module wherein the bundle of hydrophobic hollow fibers comprising polyethylene is received in a cylinder 3 and fixed to the inner wall of the cylinder 3 by a potting material 2, a hydrophilicity imparting medium such as an ethyl alcohol solution is introduced into a module under pressure prior to use and, subsequently, water is introduced thereinto under pressure to make the fibers hydrophilic. Next, a nozzle 7 is pressed to the partial region of the outlet end of the cylinder 3 to supply pressurized air through the hollow parts of the fibers. Pressurized air is substituted with water in the walls of fibers when transmitted to the outside from said walls to make said substituted parts hydrophobic. After this treatment, air in water is made easy to be able to permeate through the hollow parts of the fibers through the hydrophobicity imparted part and water filtering efficiency is prevented from receiving obstruction by the stay of air bubbles.

Description

【発明の詳細な説明】 技術分野 本発明は多孔質中空繊維を用いた濾過用モノ−〜ルの処
理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for treating filtration monomers using porous hollow fibers.

更に詳しくは疎水性多孔質中空繊維を用いたモノー−ル
の任意の部分の中空繊維のみを親水化する方法に関する
More specifically, the present invention relates to a method using hydrophobic porous hollow fibers to hydrophilize only the hollow fibers in an arbitrary portion of a monol.

従来技術 従来、水性液体c以下水と略称する)の濾過には微細孔
を有する多孔質中空繊維を集束したものを筒内に封入し
たp過モノー−ルが用いられ、水は該微細孔を通して濾
過され、該微細孔を通過できない水中の成分は戸別され
る。水が微細孔を通過できるためには中空繊維がもとも
と親水性であるか、又は疎水性素材からなる場合は中空
繊維の管壁が親水化されている必要がある。しかし通常
の被処理水中には空気を主体とする気体(以下空気と略
称する)が混入されていることが多く、これが親水化さ
れた管壁に達すると通常の圧力例えば1ゆ/鳶一度では
管壁を透過することができず気泡として中空繊維の管壁
に滞留し被処理水の浸透を阻害する。従って七ノーール
の濾過効率は時間と共に低下し、最後には全く濾過不能
の状態に陥ることもある。
PRIOR ART Conventionally, a p-permonol in which a bundle of porous hollow fibers having fine pores is enclosed in a cylinder is used to filter aqueous liquid (hereinafter referred to as water), and water passes through the fine pores. It is filtered and components in the water that cannot pass through the micropores are separated. In order for water to pass through the micropores, the hollow fibers must originally be hydrophilic, or if they are made of a hydrophobic material, the tube walls of the hollow fibers must be made hydrophilic. However, ordinary water to be treated often contains gases mainly composed of air (hereinafter referred to as air), and when this reaches the hydrophilic pipe wall, it is exposed to normal pressures such as 1 yu/tori. It cannot pass through the pipe wall and remains as bubbles on the hollow fiber pipe wall, inhibiting the permeation of the water to be treated. Therefore, the filtration efficiency of heptanols decreases over time, and may eventually become completely unfilterable.

かかる状態を改善するためにモソーールを構成する中空
繊維の一部を疎水性として前記混入気泡が該疎水性部分
を通じて中空内部へ浸透、前記開口端から系外に脱出し
得るようにすることが考えられている。このように一部
の繊維のみを疎水性となし、他の繊維を親水性となすに
は予じめ親水性の中空繊維と疎水性の中空繊維を所望の
比率で混合し、たものを繊維束としてモノー−ルを作る
方法が考えられている。この方法は親水性素材からなる
中空繊維と疎水性素材からなる中空繊維の両方を準備す
る必要があり、製造コストは割高となる欠点がある。ま
たもともと親水性の素材は微生物により劣化され易いと
いう欠点もある。
In order to improve this situation, it is considered that a part of the hollow fibers constituting Mosol is made hydrophobic so that the entrained air bubbles can penetrate into the hollow interior through the hydrophobic part and escape from the system through the open end. It is being In this way, to make only some fibers hydrophobic and other fibers hydrophilic, mix hydrophilic hollow fibers and hydrophobic hollow fibers in the desired ratio in advance, and then mix the mixture into fibers. A method of making monols in bundles is being considered. This method requires the preparation of both hollow fibers made of a hydrophilic material and hollow fibers made of a hydrophobic material, and has the disadvantage that the manufacturing cost is relatively high. Another drawback is that materials that are naturally hydrophilic are easily degraded by microorganisms.

勿論疎水性繊維を親水化処理によって親水性となし、こ
れと元の疎水性繊維とを所望の比率で混合して繊維束と
なすことも可能であるが、繊維束(3) をモジュールに封入し繊維束の端部を/ッティング材で
ハウジングに固定する際は乾保状態で行なう必要がある
ため、この場合の親水化処理は乾燥状態でも親水性を保
つような恒久親水化処理であることが必要である。この
方法としては親水性モノマーグラフト、特殊条件でのプ
ラズマ処理等が知られているが面倒な方法であり、相当
なコストアップになる。
Of course, it is also possible to make the hydrophobic fibers hydrophilic through a hydrophilic treatment and mix this with the original hydrophobic fibers in a desired ratio to form a fiber bundle, but it is also possible to make a fiber bundle by enclosing the fiber bundle (3) in the module. When fixing the ends of the fiber bundles to the housing with the tatting material, it is necessary to keep it dry, so the hydrophilic treatment in this case must be a permanent hydrophilic treatment that maintains its hydrophilicity even in dry conditions. is necessary. Hydrophilic monomer grafting, plasma treatment under special conditions, and the like are known as methods for this, but these methods are troublesome and result in a considerable increase in cost.

発明の目的 本発明はこのような従来技術の欠点を克服するためにな
されたものであり疎水性中空繊維からなるp過モジュー
ルを簡便に部分親水化する方法を提供することにある。
OBJECTS OF THE INVENTION The present invention has been made to overcome the drawbacks of the prior art, and it is an object of the present invention to provide a method for easily partially hydrophilizing a p-permeable module made of hydrophobic hollow fibers.

発明の構成 本発明の要旨は多数本の疎水性多孔質中空繊維を集束し
てなる繊維束を筒内に収容し、該繊維束の少なくとも一
方の端部は鏡筒の一端においてその中空内部が筒の外部
と連通しているが繊維同士の間及び繊維と筒内壁との間
は水密に保持されるようにポツティング材によって充填
固定された開口端を形成し、前記筒の一部を通じて筒内
に供給(4) される被処理流体が繊維の多孔質管壁のみを通してその
中空内部に浸透する際に濾過され、該濾過水は該中空内
部を経て前記開口端から部外へ排出されるようになされ
たp過モゾー−ルにおいて、使用に先立って前記開口端
面の一部領域を通じて適宜の親水化媒体を繊維束を構成
する一部の中空繊維の中空内部に圧入するか、又は親水
化媒体を中空繊維の中空内部に圧入して繊維束を親水化
した後、適宜の疎水化媒体を前記開口端面の一部領域を
通じて一部の中空繊維の中空内部に圧入しこれによって
親水性部分と疎水性部分を有する濾過モジュールを得る
ことを特徴とする中空繊維を用いた濾過七ノーールの処
理方法にある。
Structure of the Invention The gist of the present invention is that a fiber bundle formed by bundling a large number of hydrophobic porous hollow fibers is housed in a cylinder, and at least one end of the fiber bundle has a hollow interior at one end of the lens barrel. An open end is formed that communicates with the outside of the cylinder, but is filled and fixed with a potting material so as to maintain watertightness between the fibers and between the fibers and the inner wall of the cylinder. (4) When the fluid to be treated permeates into the hollow interior of the fiber through only the porous pipe wall of the fiber, it is filtered, and the filtered water is discharged from the open end through the hollow interior. In the p-permozole produced, prior to use, an appropriate hydrophilic medium is press-fitted into the hollow interior of some of the hollow fibers constituting the fiber bundle through a partial region of the open end surface, or a hydrophilic medium is is press-fitted into the hollow interior of the hollow fiber to make the fiber bundle hydrophilic, and then an appropriate hydrophobizing medium is press-fitted into the hollow interior of some of the hollow fibers through a partial area of the open end surface, thereby converting the hydrophilic portion and the hydrophobic portion. The present invention provides a method for processing filtered heptanols using hollow fibers, which is characterized by obtaining a filtration module having a filtration portion.

本発明において疎水性中空繊維としては疎水性素材から
なるものであればどのようなものでも用いることが可能
であり、ポリエチレン、ポリプロピレン等のポリオレフ
ィン、ポリテトラフルオロエチレン、ポリ弗化ビニリデ
ン等の弗紫化ポリオレフィン等を例示することができる
In the present invention, any hydrophobic hollow fiber can be used as long as it is made of a hydrophobic material. For example, polyolefins such as

本発明の対象となるp過モノー−ルとしては全量濾過型
モノニールと部分濾過型モノー−ルのいずれも含まれる
The p-filtered monols to which the present invention is applied include both fully filtered monoyls and partially filtered monols.

本発明の親水性媒体としてはメチルアルコール。The hydrophilic medium of the present invention is methyl alcohol.

エチルアルコール、プロピルアルコール等の低級アルコ
ール、界面活性斎匪水溶液等を用いることができるが、
モノー−ルが医療用、飲食用の液体処理用の場合は毒性
、水置換後の親水性媒体の除去の容易性等の点からエチ
ルアルコールを用いることが好ましい。
Lower alcohols such as ethyl alcohol and propyl alcohol, surfactant aqueous solutions, etc. can be used, but
When the monol is used for treating liquids for medical use or food and drink, it is preferable to use ethyl alcohol from the viewpoints of toxicity, ease of removal of the hydrophilic medium after water replacement, and the like.

疎水性媒体としてはフルオロカー?ン等の化学物質を用
いることもできるが空気を用いるのが最も簡便である。
Fluorocar as a hydrophobic medium? It is also possible to use chemical substances such as air, but it is easiest to use air.

実施例 以下図面を参照して本発明を更に詳細に説明する。Example The present invention will be explained in more detail below with reference to the drawings.

本発明の対象とする濾過用モソーールの構造の一例を第
1図及び第2図に示す。
An example of the structure of a Mosol for filtration, which is the object of the present invention, is shown in FIGS. 1 and 2.

第1図は全量p過型モジュールの開口端面の一部に親水
化媒体又は疎水化媒体を注入するためにノズルを押し当
てた状態である。この七ジーールは中空構造を有する複
数本の繊維1を平行に束ねて繊維束となしたものを筒3
内に軸方向に収容し筒の一端において該繊維束の一方の
端部をポツティング材2によって筒内壁に固定している
。この時各繊維1はその中空内部が閉塞されないようへ
即ちその中空内部が出口5において外部と連通可能に保
持されると共に各繊維同士の間及び繊維と筒内壁との間
は完全に水密に充填固定されていることが必要である。
FIG. 1 shows a state in which a nozzle is pressed against a part of the open end face of a full p-type module in order to inject a hydrophilic medium or a hydrophobic medium. This Seven Zeal is a tube 3 in which multiple fibers 1 having a hollow structure are bundled in parallel to form a fiber bundle.
The fiber bundle is accommodated in the tube in the axial direction, and one end of the fiber bundle is fixed to the inner wall of the tube by a potting material 2 at one end of the tube. At this time, each fiber 1 is held so that its hollow interior is not blocked, that is, its hollow interior can communicate with the outside at the outlet 5, and the spaces between each fiber and between the fibers and the inner wall of the cylinder are completely watertightly filled. It needs to be fixed.

又繊維束の他端部は筒3の他端において密閉的に筒3に
固定されている。又部3の外壁の一部には給水口4が設
けられている。
The other end of the fiber bundle is hermetically fixed to the tube 3 at the other end of the tube 3. Also, a water supply port 4 is provided in a part of the outer wall of the portion 3.

第2図はこの七ジーールの出口側から見た平面図である
FIG. 2 is a plan view of the seven wheels as seen from the exit side.

゛中空繊維1の管壁は多数の微細孔を有しており、前記
給水口4から筒3内に注入された被処理水はこの微細孔
を通して中空繊維1の中空部内に浸透しその際管壁によ
って不純物を濾過され、清浄化された水は中空部を経て
出口5から系外に排出される。
゛The pipe wall of the hollow fiber 1 has a large number of micropores, and the water to be treated injected into the cylinder 3 from the water supply port 4 permeates into the hollow part of the hollow fiber 1 through these micropores. Impurities are filtered by the wall, and the purified water is discharged out of the system from the outlet 5 through the hollow section.

第3図に示すものはp過モノー−ルの別の例で(7) あり、中空繊維束は直線状ではなくU字状に湾曲させら
れた状態で筒3内に収容され、両端部共その中空内部が
出口5において外部と連通可能に筒3の一端において固
定されている。この場合にも、繊維同士の間及び繊維と
筒内壁との間は水密にポツティング材2によって充填さ
れている。この例においては給水口4は筒3の下端に設
けられており、前述の例と同様に筒内に供給された水は
繊維1の多孔質管壁を透過する際に濾過され、出口5か
ら系外に排出される。
The one shown in Fig. 3 is another example of p-permonol (7), in which the hollow fiber bundle is housed in the tube 3 in a U-shape rather than a straight line, and both ends are curved in a U-shape. The hollow interior is fixed at one end of the tube 3 so that it can communicate with the outside at the outlet 5. Also in this case, the spaces between the fibers and between the fibers and the inner wall of the cylinder are filled with the potting material 2 in a watertight manner. In this example, the water supply port 4 is provided at the lower end of the tube 3, and as in the previous example, the water supplied into the tube is filtered when it passes through the porous tube wall of the fibers 1, and then exits from the outlet 5. Exhausted from the system.

いずれの場合においても前述の通りモジュール内の中空
繊維はその管壁の一部、具体的には管壁総面積の数−程
度が疎水性であシ、残シの部分は親水性であることが被
処理水中の混入空気を系外に排出するために必要でおる
In either case, as mentioned above, the hollow fibers in the module must be hydrophobic in a portion of the tube wall, specifically, approximately the total area of the tube wall, and the remaining portion must be hydrophilic. This is necessary to discharge the air mixed in the water to be treated to the outside of the system.

かかる親疎比率を中空繊維に付与するため本発明の一態
様においては中空繊維として疎水性のものを用いてモノ
エールを作製した後公知の方法で親水化処理を行なう。
In order to impart such a hydrophobicity ratio to the hollow fibers, in one embodiment of the present invention, monoale is prepared using hydrophobic hollow fibers, and then hydrophilization treatment is performed by a known method.

これを用いて通常の方法で濾過作業を行なうと前述のよ
うに混入空気が管壁(8) に滞溜し次第にp過能力が低下し、気泡は順次成長して
筒内の空気だまり6(第3図)に蓄積され濾過効率が低
下する。この欠点を防ぐため水を充填したモノー−ルを
あらかじめ、又はν過速中の気泡がたまった時点で加圧
空気供給源(図示しない)と接続された一定の出口断面
積を有するノズル7を筒3の出口端5の一部の領域に押
しつけて加圧空気を繊維の中空部を通じて筒内に供給す
る。
When filtration is carried out in the usual manner using this, as mentioned above, mixed air accumulates on the tube wall (8), the p-filtration capacity gradually decreases, and air bubbles grow one after another, resulting in air pockets 6 (6) inside the cylinder. (Fig. 3), and the filtration efficiency decreases. To avoid this drawback, a nozzle 7 with a constant outlet cross-section is connected to a pressurized air supply source (not shown) by filling the monomer with water in advance or at the point when the air bubbles accumulate during overspeeding. Pressurized air is forced into a region of the outlet end 5 of the cylinder 3 and fed into the cylinder through the hollow part of the fiber.

加圧空気はノズル7の押当てられた領域内の中空繊維の
管壁を内から外へ透過して筒内に排出されその際に中空
繊維の管壁内の水を排除しこれと置換される。疎水性の
素材からなる多孔質中空繊維の特性として一旦封入され
た空気は微細孔の壁面に付着して捕捉されその部分が疎
水化される。従ってこの処理後該疎水化部分を通じて水
中の空気が容易に繊維の中空部に透過し得るようになり
、気泡の滞溜のために他の部分の水濾過効率が阻害され
ることが防止される。
The pressurized air passes through the tube wall of the hollow fiber in the area pressed by the nozzle 7 from inside to outside and is discharged into the cylinder, at which time water in the tube wall of the hollow fiber is removed and replaced with water. Ru. As a characteristic of porous hollow fibers made of a hydrophobic material, once the air is encapsulated, it adheres to the walls of the micropores and is captured, making that part hydrophobic. Therefore, after this treatment, the air in the water can easily permeate into the hollow part of the fiber through the hydrophobized part, and the water filtration efficiency of other parts is prevented from being inhibited due to the accumulation of air bubbles. .

本発明の方法によれば加圧空気を供給するためのノイル
7の出口面積を変えることによって確実に疎水化率をコ
ントロールすることができ、又ノズル7を押当てる領域
を変えることによって所望の個所の中空繊維を疎水化す
ることができる。
According to the method of the present invention, by changing the outlet area of the nozzle 7 for supplying pressurized air, it is possible to reliably control the hydrophobization rate, and by changing the area to which the nozzle 7 is pressed, it is possible to control the hydrophobicity at a desired location. The hollow fibers of can be made hydrophobic.

叙上の態様は次に示す実施例において更に明らかにされ
る。
The above aspects will be further elucidated in the following examples.

実施例1゜ 中空繊維としてポリエチレンからなる外径038瓢、孔
径0.27mnのものを用い、これを960本束ねたも
のを長さ120調のU字型に曲げ、内径25 +m 、
厚さ3鴫、長さ150調のポリカーボネート製の筒に収
容し両者をポリウレタン系樹脂のポツティング材によっ
て固定して第3図に示す濾過七ジーールを作製した。使
用に先立ってアルコール70%、水30%のアルコール
溶液を該モノーール内に圧入し次いで水を圧入してこれ
と置換して繊維を親水化した後、直径2.0 mのノズ
ルを2個、モノニールの出口5の#細束の開口端に押し
つけ、圧力4 kg7cm”、温度約23℃の加圧空気
を3分間供給した。これによってノズルが押しつけられ
た部分に開口端のある繊維が・・疎水化された。
Example 1 Hollow fibers made of polyethylene with an outer diameter of 0.38 mm and a hole diameter of 0.27 mm were used. A bundle of 960 fibers was bent into a U-shape with a length of 120 mm, and an inner diameter of 25 + m.
The filter was housed in a polycarbonate tube with a thickness of 3 mm and a length of 150 mm, and both were fixed with a polyurethane resin potting material to produce a filtration tube shown in FIG. 3. Prior to use, an alcohol solution of 70% alcohol and 30% water was injected into the monole, and then water was injected to replace this to make the fibers hydrophilic, and then two nozzles with a diameter of 2.0 m were installed. It was pressed against the open end of the #fine bundle at outlet 5 of the monoyl, and pressurized air at a pressure of 4 kg 7 cm" and a temperature of about 23°C was supplied for 3 minutes. As a result, the fibers with the open end were placed in the area where the nozzle was pressed. Hydrophobized.

本発明の別の一態様は七ソーールを構成するもともと疎
水性の繊維をそのままの状態で残し、残りの繊維のみを
親水化して所定の親疎比率をもたせるものである。即ち
使用に先立って一定の出口断面積を有するノズル7を筒
3の出口端5の一部の領域に押しつけて該ノズル7から
アルコールを供給する。アルコールは該領域に開口を有
する繊維の中空部を通じて筒内に供給され、繊維の管壁
を透過してその微細孔を充填した上中空部外へ排出され
、給水口4から系外へ排出される。次にノズル7から水
を圧入すると繊維管壁内に残留していたアルコールは水
と混じて排出され、管壁内は水と置換されて親水性が付
与される。かかる親水化処理はノズル7が適用されてい
る領域に開口を有する繊維のみに対して施こされ、他の
繊維は疎水性のまま残されるので、前述の第1態様と同
じくノズル7の出口面積を変えることによって確実に親
疎比率をコントロールすることができ、又所望の個所の
中空繊維のみを選択的に親水化するとCl2) とができる。
Another embodiment of the present invention is to leave the originally hydrophobic fibers constituting the heptadole as they are, and only the remaining fibers are made hydrophilic to provide a predetermined affinity/homophobicity ratio. That is, prior to use, a nozzle 7 having a constant outlet cross-sectional area is pressed against a part of the outlet end 5 of the cylinder 3, and alcohol is supplied from the nozzle 7. Alcohol is supplied into the cylinder through the hollow part of the fibers having openings in this region, passes through the pipe wall of the fibers, is discharged outside the upper hollow part filled with the fine pores, and is discharged to the outside of the system from the water supply port 4. Ru. Next, when water is injected from the nozzle 7, the alcohol remaining in the fiber tube wall is mixed with water and discharged, and the inside of the tube wall is replaced with water, thereby imparting hydrophilicity. This hydrophilic treatment is performed only on the fibers that have openings in the area where the nozzle 7 is applied, and the other fibers are left hydrophobic, so the exit area of the nozzle 7 is reduced as in the first embodiment. By changing the ratio, the affinity ratio can be reliably controlled, and by selectively making only the hollow fibers at desired locations hydrophilic, Cl2) can be obtained.

この第2態様は次に示す実施例において更に明らかにさ
れる。
This second aspect will be further elucidated in the following examples.

実施例2 中空繊維としてポリエチレンからなる外径038鰭、孔
径0.27m+のものを用い、これを1920本束ねた
ものを直線状のまま、内径25覇、厚さ3 m 、長さ
250■のポリカーメネート製の筒に収容し、両者をポ
リウレタン系樹脂のポツティング材によ占て固定し第1
図に示す濾過モノー−ルを作製した。使用に先立って内
径8聾のノズル4個をモジュールの出口5の繊維束の開
口端に押しつけ、200dのアルコール70%、水30
チのアルコール溶液を圧入した後、水500m1を圧入
してアルコール溶液と置換し親水性となした。
Example 2 Hollow fibers made of polyethylene with an outer diameter of 038 fins and a hole diameter of 0.27 m+ were used, and 1,920 of them were bundled in a straight line with an inner diameter of 25 cm, a thickness of 3 m, and a length of 250 cm. The first tube is housed in a polycarmenate tube, and both are fixed with polyurethane resin potting material.
The filtration monol shown in the figure was prepared. Prior to use, press four nozzles with an inner diameter of 8 mm onto the open end of the fiber bundle at the outlet 5 of the module, and add 200 d of alcohol 70% and water 30 d.
After injecting the alcohol solution (1), 500 ml of water was injected to replace the alcohol solution to make it hydrophilic.

との比率と略々一致した。゛ 発明の効果 ・ ・ 以上詳述した如く本発明によればモジュールの開口端の
一部領域にノズルを押し当てて親水化媒体、又は疎水化
媒体を圧入するのみで確実に所望の比率で、且つ所望の
個所の中空繊維を親水化又は疎水化することが可能であ
り、従来の方法に比し品質、コストの両面で癌かに優れ
たものである。
The ratio was almost the same as that of [Effects of the Invention] As detailed above, according to the present invention, by simply pressing the nozzle against a partial area of the open end of the module and pressurizing the hydrophilic medium or the hydrophobic medium, the hydrophilic medium or the hydrophobic medium can be reliably produced in the desired ratio. In addition, it is possible to make the hollow fibers at desired locations hydrophilic or hydrophobic, and this method is significantly superior to conventional methods in terms of both quality and cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施態様を示すモジーールの側断
面図である。 第2図は第1図のA−A線に沿う平断面図である。 第3図は本発明の第2実施態様を示すモジュールの側断
面図である。 1・・・中空繊維、2・・・ポツティング材、3・・・
筒λ4・・・給水口、5・・・出口、6・・・空気だま
り、7・・・ノズル (14) 第3箇 【0
FIG. 1 is a side sectional view of a module showing a first embodiment of the present invention. FIG. 2 is a plan sectional view taken along line A--A in FIG. 1. FIG. 3 is a side sectional view of a module showing a second embodiment of the invention. 1...Hollow fiber, 2...Potting material, 3...
Cylinder λ4... Water supply port, 5... Outlet, 6... Air pool, 7... Nozzle (14) 3rd item [0

Claims (1)

【特許請求の範囲】 1、多数本の疎水性多孔質中空MR維を集束してなる繊
維束を筒内に収容し、該繊維束の少なくとも一方の端部
は鉄筒の一端においてその中空内部が筒の外部と連通し
ているが繊維同士の間及び繊維と筒内壁との間は水密に
保持されるようにポツティング材によって充填固定され
た開口端全形成し、前記筒の一部を通じて筒内に供給さ
れる被処理流体が繊維の多孔質管壁のみを通してその中
空内部に浸透する際に濾過され、該濾過水は該中空内部
を経て前記開口端から部外へ排出されるようになされた
濾過モノニールにおいて、使用に先立って前記開口端面
の一部領域を通じて適宜の親水化媒体を繊維束を搗成す
る一部の中空繊維の中空内部に圧入するか、又は親水化
媒体を中空繊維の中空内部に圧入して繊維束を親水化し
た後適宜の疎水化媒体を前記開口端面の一部領域を通じ
て一部の中空繊維の中空内部に圧入し、これによって親
水性部分と疎水性部分を有する濾過モジュールを得るこ
とを特徴とする中空繊維を用いた濾過モジュールの処理
方法。 2、繊維束の前記開口端以外の端部が水密に密封されて
いる特許請求の範囲第1項に記載された処理方法。 3、繊維束がU字状をなして筒内に収容され、該繊維束
の両端が共に前記開口端を形成しでいる特許請求の範囲
第1項に記載された処理方法。 4、処理媒体として先ずアルコール類又は界面活性剤を
用いて繊維を処理した後、水と置換して疎水性七ジーー
ルの一部を特徴とする特許請求の範囲第1項から第3項
までのいずれか一項に記載された処理方法6 5、処理媒体として空気を用いて親水化されたモソーー
ルの一部を特徴とする特許請求の範囲第1項から第3項
までのいずれか一項に記載された処理方法。
[Claims] 1. A fiber bundle formed by bundling a large number of hydrophobic porous hollow MR fibers is housed in a cylinder, and at least one end of the fiber bundle is connected to the hollow interior of the iron cylinder at one end. The entire open end is filled and fixed with a potting material so that the fibers communicate with the outside of the cylinder, but the spaces between the fibers and between the fibers and the inner wall of the cylinder are maintained watertight. The fluid to be treated is filtered when it permeates into the hollow interior through only the porous pipe wall of the fibers, and the filtrated water is discharged from the open end through the hollow interior. In the case of filtered monoyl, prior to use, an appropriate hydrophilic medium is press-fitted into the hollow interior of some of the hollow fibers forming the fiber bundle through a partial region of the open end surface, or a hydrophilic medium is inserted into the hollow fibers to form a fiber bundle. After making the fiber bundle hydrophilic by press-fitting it into the hollow interior, an appropriate hydrophobizing medium is press-fitted into the hollow interior of some of the hollow fibers through a partial region of the open end surface, thereby forming a hydrophilic portion and a hydrophobic portion. A method for processing a filtration module using hollow fibers, the method comprising obtaining a filtration module. 2. The processing method according to claim 1, wherein the ends of the fiber bundle other than the open end are watertightly sealed. 3. The processing method according to claim 1, wherein the fiber bundle is housed in a cylinder in a U-shape, and both ends of the fiber bundle form the open end. 4. The fibers are first treated with alcohol or a surfactant as a treatment medium, and then the water is replaced with a part of the hydrophobic heptadyl. Claims 1 to 3 The treatment method described in any one of claims 6 to 3, characterized in that a part of Mosol is made hydrophilic using air as a treatment medium. Processing method described.
JP8832184A 1984-05-04 1984-05-04 Treatment of filter module using hollow fiber Granted JPS60232208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8832184A JPS60232208A (en) 1984-05-04 1984-05-04 Treatment of filter module using hollow fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8832184A JPS60232208A (en) 1984-05-04 1984-05-04 Treatment of filter module using hollow fiber

Publications (2)

Publication Number Publication Date
JPS60232208A true JPS60232208A (en) 1985-11-18
JPH0410371B2 JPH0410371B2 (en) 1992-02-25

Family

ID=13939648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8832184A Granted JPS60232208A (en) 1984-05-04 1984-05-04 Treatment of filter module using hollow fiber

Country Status (1)

Country Link
JP (1) JPS60232208A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02227123A (en) * 1989-02-28 1990-09-10 Material Eng Tech Lab Inc Microfiltration element
EP1473073A1 (en) * 2003-05-02 2004-11-03 Norit Proces Technologie Holding B.V. Membrane filter with deaeration and method for the manufacture thereof
JP2011072900A (en) * 2009-09-30 2011-04-14 Toray Ind Inc Hollow fiber membrane module, method for manufacturing hollow fiber membrane module, cartridge for water purifier, and water purifier
WO2018146309A1 (en) 2017-02-13 2018-08-16 Merck Patent Gmbh A method for producing ultrapure water
US11629071B2 (en) 2017-02-13 2023-04-18 Merck Patent Gmbh Method for producing ultrapure water
US11680239B2 (en) 2018-12-31 2023-06-20 Repligen Corporation Filter for mammalian cell culture perfusion and clarification with hydrophobic hollow fiber
US11807556B2 (en) 2017-02-13 2023-11-07 Merck Patent Gmbh Method for producing ultrapure water
US11820676B2 (en) 2017-02-13 2023-11-21 Merck Patent Gmbh Method for producing ultrapure water

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02227123A (en) * 1989-02-28 1990-09-10 Material Eng Tech Lab Inc Microfiltration element
EP1473073A1 (en) * 2003-05-02 2004-11-03 Norit Proces Technologie Holding B.V. Membrane filter with deaeration and method for the manufacture thereof
NL1023332C2 (en) * 2003-05-02 2004-11-03 Norit Proces Technologie Holdi Membrane filter with venting and method for its manufacture.
JP2005131629A (en) * 2003-05-02 2005-05-26 Norit Proces Technologie Holding Bv Membrane filter with deaeration and method for manufacturing the same
US7465393B2 (en) 2003-05-02 2008-12-16 Norit Proces Technologie Holding B.V. Membrane filter with deaeration and method for the manufacture thereof
JP2011072900A (en) * 2009-09-30 2011-04-14 Toray Ind Inc Hollow fiber membrane module, method for manufacturing hollow fiber membrane module, cartridge for water purifier, and water purifier
WO2018146309A1 (en) 2017-02-13 2018-08-16 Merck Patent Gmbh A method for producing ultrapure water
JP2020507466A (en) * 2017-02-13 2020-03-12 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Method for producing ultrapure water
US11629071B2 (en) 2017-02-13 2023-04-18 Merck Patent Gmbh Method for producing ultrapure water
US11807556B2 (en) 2017-02-13 2023-11-07 Merck Patent Gmbh Method for producing ultrapure water
US11820676B2 (en) 2017-02-13 2023-11-21 Merck Patent Gmbh Method for producing ultrapure water
US11680239B2 (en) 2018-12-31 2023-06-20 Repligen Corporation Filter for mammalian cell culture perfusion and clarification with hydrophobic hollow fiber

Also Published As

Publication number Publication date
JPH0410371B2 (en) 1992-02-25

Similar Documents

Publication Publication Date Title
AU2002212156B2 (en) Membrane filter for water treatment
US3526001A (en) Permeation separation device for separating fluids and process relating thereto
US4075100A (en) Dialysis unit and dialysis apparatus employing the dialysis unit
US4547289A (en) Filtration apparatus using hollow fiber membrane
US4623460A (en) Fluid separation element
US7083726B2 (en) Hollow thread film cartridge, hollow thread film module using the cartridge, and tank type filter
CN100448517C (en) Method for producing hollow yarn film
US3616928A (en) Permeation separation device for separating fluids
JP4382294B2 (en) Method for producing hollow fiber membrane bundle
CA1151020A (en) Reverse osmosis composite fiber membrane
KR970705431A (en) Cleaning of Hollow Fiber Membranes
US4187180A (en) Hollow-fiber permeability apparatus
JP2003135935A (en) Method for manufacturing hollow fiber membrane module
JPS60232208A (en) Treatment of filter module using hollow fiber
US20200016544A1 (en) Method for washing hollow fiber membrane module and hollow fiber membrane filtration device
CA1106770A (en) Hollow fiber dialysis
WO1984001522A1 (en) Filter
US4707261A (en) Tubular membrane ultrafiltration module
JP2000288357A (en) Manufacture of hollow-fiber membrane module, hollow- fiber membrane module, and hollow-fiber membrane module unit using the same
JPS5782515A (en) Hollow fibrous membrane and its preparation
JPS6160165B2 (en)
JPS5678601A (en) Selective permeability hollow fiber assembly
JP3694535B2 (en) Hollow fiber membrane module and manufacturing method thereof
CA1106774A (en) Hollow fiber dialysis
JPH08257558A (en) Water treatment membrane module