JPS60230048A - Field effect type semiconductor sensor - Google Patents

Field effect type semiconductor sensor

Info

Publication number
JPS60230048A
JPS60230048A JP59087215A JP8721584A JPS60230048A JP S60230048 A JPS60230048 A JP S60230048A JP 59087215 A JP59087215 A JP 59087215A JP 8721584 A JP8721584 A JP 8721584A JP S60230048 A JPS60230048 A JP S60230048A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
conductive film
semiconductor
holes
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59087215A
Other languages
Japanese (ja)
Inventor
Teruo Kido
照雄 木戸
Yasuhiro Nagata
永田 保広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Daikin Kogyo Co Ltd filed Critical Daikin Industries Ltd
Priority to JP59087215A priority Critical patent/JPS60230048A/en
Publication of JPS60230048A publication Critical patent/JPS60230048A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS

Abstract

PURPOSE:To facilitate work by forming a high-density doping area closely to the surface of a semiconductor substrate and also adhering a conductive film to the internal surface and opening peripheral edge of a hole formed at the reverse surface side by etching, and thus forming a conductor path. CONSTITUTION:When electrodes of a source 2 and a drain 3 are led out to the reverse surface side of the semiconductor substrate 1 to form conductor paths of conductors 10 and 10, high-density doping areas 5 and 6 are formed of thin layers closely to the surface of the semiconductor substrate 1. On the other hand, holes 8 and 8 reaching them from the reverse surface side are formed by etching and a conductive film 9 is adhered to internal surfaces and opening peripheral edges of the holes 8 and 8. Consequently, the high-density doping areas 5 and 6 are allowed even with the thin layers, so the formation is attained by a general thermal diffusing method and the work is facilitated.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野] 本発明にイオン濃度測定器などに使用する化学的に感受
性を持つ電界効果型半導体センサに関するO
(Industrial Application Field) The present invention relates to chemically sensitive field-effect semiconductor sensors used in ion concentration measuring instruments, etc.

【従来技術】[Prior art]

化学的に感受性を持つ電界効果変換器についてに特開昭
51−139289号公報などによって公知であるが、
これに汎用されている通常の電界効果トランジスタとに
異なり、金属製のゲー)til!極を有しない。 すなわち、前記変換器の化学的に感受性を持つ表面の薄
層に参照電極が浸漬される検査すべき物質を含む水溶液
と接触させられるのであって、この表面薄層に水溶液中
の特定の物質と相互作用を生じ、それによって半導体物
質のソースとドレインとの間に生じた電界に物質の化学
的性質に一致して変調されるから、ゲート電極を必要と
するものとハ構造が著しく異なっている。 このように化学的に感受性を持つ電界効果変換器は、多
くの場合導電性水溶液と変換器との間に導電性結合が存
在しないように前記表面薄層を水浴液と直接接触させて
使用しなければならない。 しかし、今日、普通のプレーナ技術において全てのリー
ド線は、半導体素子の1つの表面上に配置されるので、
表面に化学的に感受性を持つ層が存在していたのでに、
絶縁上問題が生じる。 そこで、その1つの解決手法としてリード線を半導体素
子の裏面
A chemically sensitive field effect transducer is known from Japanese Unexamined Patent Publication No. 139289/1989, etc.
Unlike ordinary field effect transistors that are commonly used for this purpose, they are made of metal (metal)! It has no poles. That is, a reference electrode is immersed in a thin layer of the chemically sensitive surface of the transducer and brought into contact with an aqueous solution containing the substance to be tested, and this thin layer is exposed to the specific substance in the aqueous solution. The structure differs significantly from that requiring a gate electrode because the electric field generated between the source and drain of the semiconductor material is modulated in accordance with the chemical properties of the material. . Such chemically sensitive field effect transducers are often used with the surface layer in direct contact with the bath liquid so that there is no conductive bond between the conductive aqueous solution and the transducer. There must be. However, today in common planar technology all the leads are placed on one surface of the semiconductor device, so
Because there was a chemically sensitive layer on the surface,
Insulation problems arise. Therefore, one solution to this problem is to connect the lead wires to the back side of the semiconductor element.

【化学的に感受性を持つ層が設けらnた前面に
対し反対側の面】から取り出すことが提案され、その例
が特開昭54−30896号公報によって開示されてい
る。 この公知技術に上記公報から明らかなように、ソース及
びドレインに大々結合して導体路を形成する高濃度ドー
ピング領域が半導体基板の表面から裏面に貫通した構造
であって、裏面においてリード線が接続されるようにな
っている。 そして、この高濃度ドーピング領域を表面から裏面に貫
通させて形成するのに、アルミニウムの熱移動を用いて
行わせている。 このように、アルミニウムの熱移動によって高濃度ドー
ピング領域を形成しているのに、シリコン板からなる半
導体基板が数100ミクロンの厚ざを有していて可成り
厚いので、一般の熱拡散法でに半導体基板を貫通する導
電性領域を形成することができないからであり、アルミ
ニウムの熱郡動でしか加工できないのでに複雑かつ不便
であるばかりでなく、コスト高を招いて実用面で不都合
である。 殊にアルミニウムの熱移動によったのでは、半導体基板
がシリコン板の場合、n−8i に限られる結果、Pチ
ャンネルの電界効果変換器しか作成できない不利に免t
1.得ない。
It has been proposed to take out the material from the surface opposite to the front surface on which the chemically sensitive layer is provided, and an example thereof is disclosed in JP-A-54-30896. As is clear from the above-mentioned publication, this known technology has a structure in which a highly doped region that is largely coupled to the source and drain and forms a conductor path penetrates from the front surface of the semiconductor substrate to the back surface, and a lead wire is formed on the back surface. It is now connected. The formation of this highly doped region from the front surface to the back surface is performed using heat transfer of aluminum. In this way, although the highly doped region is formed by heat transfer of aluminum, the semiconductor substrate made of silicon is quite thick with a thickness of several hundred microns, so it cannot be done using the general thermal diffusion method. This is because it is not possible to form a conductive region that penetrates the semiconductor substrate, and it can only be processed by thermal movement of aluminum, which is not only complicated and inconvenient, but also increases costs and is inconvenient from a practical point of view. . In particular, when the semiconductor substrate is a silicon plate, the heat transfer of aluminum is limited to n-8i, so there is no disadvantage that only P-channel field effect transducers can be created.
1. I don't get it.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

以上述べたように、従来のこの種電界効果型半s体セン
サでtfnチャンネルのものが作成できない問題があっ
たために、本発明にかかる制約を排除してPチャンネル
ffl l uチャンネル型のいず九 −をも容易に作
成し得て、しかも熱移動方式、という特殊な手法に頼る
ことなく通常の熱拡散方式によって裏面からのリード線
取り出しを簡単かつ確実に行なえるように改良をはから
うとするものであって、普通の半導体素子製造技術によ
り高効車下の量産を可能ならしめることにより、低コス
トで安定性のよい半導体センサを提供し得て普及の推進
をはからせる点に特徴が存する。 (問題点を解決するための手段] そこで本発明に、化学的に感受性を持つ薄層が表面に形
成されたシリコン板等の半導体基板の内層に、前記表面
から離れて一定の深ざまで拡がらせ、かつ周りの層とに
仕切らせたチャネルを形成するように対称に配置したソ
ース及びドレイン、導体路として前記ソース及びドレイ
ンに対し大々結合させて配置した2つの高濃度ドーピン
グ領域を有する電界効果型半導体センサにおいて1.前
記2つの高濃度ドーピング領域に半導体基板の表面寄り
に薄層をなして設けられ、半導体基板の裏面から前記各
高濃度ドーピング色域に大々達する孔がエツチングによ
り設けられ、ざらに前記孔の内面及び開口部周縁に導電
膜が密着さ九た槽底としたものであって、導体路として
の高濃度ドーピング領域に、化学的に感受性を持つ薄層
が設けられていない半導体基板に対し1表面から数lO
ミクロン程度の深ざまでの層に形成させnばよく、従っ
て簡単な手法の熱拡散法で所望の高濃度ドーピング領域
が゛得ら九る。 また、上記高濃度ドーピング領域と半導体基板の裏面側
に配置せしめるリード線などの導体との電気的接続に、
エツチング法によって半導体基板の裏面から前記高濃度
ドーピング領域に達するように設けた孔を利用して、蒸
着、熱拡散などの手法で導電膜を孔内面に密着せしめる
ことによって行っているので、これもまた半導体素子製
造に利用される普通の方式で量産に適したかつ容易な手
段であり、さらに半導体基板がP −Si 、u −S
iの如何を問わず加工可能である。 このように未発明に係るセンサは、製造に際して通常の
手法で行えて工程の簡素化をもたらすことにもとより、
nチャンネル、Pチャンネルどちらの半導体センサも製
作可能であって、ここに所期の目的に十分達成される。
As mentioned above, since there was a problem that it was not possible to create a tfn channel type sensor with this type of conventional field effect semi-semiconductor sensor, the limitations of the present invention were eliminated and the P channel ffl l u channel type sensor was not created. 9) can be easily produced, and the lead wires can be easily and reliably taken out from the back side using a normal heat diffusion method without relying on a special method called a heat transfer method. By making it possible to mass-produce high-efficiency vehicles using ordinary semiconductor element manufacturing technology, it is possible to provide a low-cost, highly stable semiconductor sensor, and to promote its widespread use. exists. (Means for Solving the Problems) Therefore, in the present invention, a chemically sensitive thin layer is spread to a certain depth away from the surface of the inner layer of a semiconductor substrate such as a silicon plate formed on the surface. A source and a drain arranged symmetrically to form a channel that is wide and partitioned from the surrounding layers, and two heavily doped regions arranged as conductive paths to be largely coupled to the source and drain. In a field-effect semiconductor sensor: 1. A thin layer is provided in the two high concentration doping regions near the surface of the semiconductor substrate, and holes are formed by etching that reach the respective high concentration doping color regions from the back surface of the semiconductor substrate. A conductive film is provided in close contact with the inner surface of the hole and the periphery of the opening, forming the bottom of the tank, and a chemically sensitive thin layer is provided in a highly doped region serving as a conductor path. Several 1O from one surface to a semiconductor substrate that has not been
It is sufficient to form the layer to a depth of about microns, and therefore a desired highly doped region can be obtained by a simple method of thermal diffusion. In addition, for electrical connection between the highly doped region and a conductor such as a lead wire placed on the back side of the semiconductor substrate,
This is also done by making use of holes that are formed by etching to reach the high concentration doping region from the back surface of the semiconductor substrate, and by adhering the conductive film to the inner surface of the holes using methods such as vapor deposition or thermal diffusion. In addition, it is a common method used in semiconductor device manufacturing and is a suitable and easy means for mass production.
Processing is possible regardless of i. In this way, the uninvented sensor can be manufactured using normal methods, which simplifies the process.
Both n-channel and p-channel semiconductor sensors can be fabricated and hereby serve the intended purpose satisfactorily.

【実施例】【Example】

以下、本発明の実施例を図面にもとづいて説明する。 第1図に電界効果型半導体センサの縦断面図で第2図の
A −A’断面図であり、第2図に化学的に感受性を持
つ薄層及び絶縁保護層を除いた状態の平面図である。 方形状をなすシリコン基板からなる厚ざ数100ミクロ
ンの半導体基板(1)の表面(土面]側には、ソース(
2)トドレイン(3)とが向い合って、また、その間に
亘って薄い扁平なチャネル+41を形成し得る配置をと
って設けられるが、これらソース(2)、ドレイン(3
)及びチャネル(4)に半導体技術の普通の方法ニよっ
て製造されるものである。 ざらに半導体基板(1)の表面側において、前記ソース
(21に結合させた高濃度ドーピング領域f5+と、前
記ドレイン(3]に結合させた高濃度ドーピング領域(
6)とを拡散接合により形成する。 そして、半導体構造を電気的に安定させるためにチャ〜
ネル・リミッタ圓を拡散接合により形成する。 その後に、半導体基板[11の表面に、sho、による
安定化の層を形成した後に化学的に感受性を持つ薄層(
7)を被着せしめるが、この薄層(7)ニ例えばPH感
受性ガラスなどからなる薄膜が適当なものである。 このようにして半導体基板fi+の表面の加工が終了す
ると、次にSi 異方性エツチング加工によって裏面側
から半導体基板(1)に孔f81.+8]を穿設する。 この孔+81.181に、裏面から前記高濃度ドーピン
グ領域+51.+61に達するまで穿孔させるものであ
り、穿孔が終了すると、蒸着の加工法等によって導電膜
例えばアルミニウムなどの金属膜(9」を孔(8]の内
Embodiments of the present invention will be described below based on the drawings. Figure 1 is a longitudinal cross-sectional view of a field-effect semiconductor sensor, and Figure 2 is a cross-sectional view taken along line A-A' in Figure 2. Figure 2 is a plan view with the chemically sensitive thin layer and insulating protective layer removed. It is. A source (
2) The source (2) and drain (3) are arranged so as to face each other and form a thin flat channel +41 between them.
) and the channel (4) are manufactured by conventional methods in semiconductor technology. Roughly on the surface side of the semiconductor substrate (1), a heavily doped region f5+ coupled to the source (21) and a heavily doped region f5+ coupled to the drain (3) are formed.
6) are formed by diffusion bonding. In order to electrically stabilize the semiconductor structure, a cha~
The channel limiter circle is formed by diffusion bonding. Thereafter, a stabilizing layer is formed on the surface of the semiconductor substrate [11], followed by a chemically sensitive thin layer (
7), this thin layer (7) being suitably a thin film of, for example, PH-sensitive glass. When the surface processing of the semiconductor substrate fi+ is completed in this way, the holes f81. +8] is drilled. This hole +81.181 is filled with the heavily doped region +51. The hole is drilled until it reaches +61, and after the hole is finished, a conductive film, such as a metal film (9) such as aluminum, is coated on the inner surface of the hole (8) using a process such as vapor deposition.

【底面及び側周面】と、開口周縁とに密着形成せしめ
る〇 そして、この導電Mt91において裏面にあられf″1
.)ている開口周縁の部分に、リード線などの導体(1
0)を熱圧看などにより接合せしめる。 かくして製造された半導体センサを絶縁ガラス04が被
覆されてなる絶縁枠021に接着し一体化せしめて電界
効果型半導体センサが得られる。 上記半導体センサにイオン濃度、還元性気体濃度などの
化学的特性を測定するのに使用されることは特開昭51
−1392139号公報などによって開示される通りで
ある。 (発明の効果] 本発明にソース(2)電極、ドレイン[3]’IE極を
半導体基板+11の裏面側に取り出すための導体路を、
半導体基板+11の表面寄りに薄層をなし設けた高濃度
ドーピング領域151. [61と、裏面側から前記両
ドーピング領域+5L [6+に大々達するようにエツ
チングによって設けた孔+81. +8]の周面に密着
せしめた導電膜(9〕とから形成したから、高濃度ドー
ピング領域151.161[比較的浅い層でよいので一
般的な熱拡散方法によって形成し得るので、容易に加工
し得る。 また、孔f8+、+81の穿設についてもエツチングに
より行うことができるので、こ九もまた半導体素子製造
技術における普通の加工法であって簡単であり、従って
低コストのセンサを量産的に能車よく製造し得る。 本発明に特に、一般的な熱拡散方法により製造可能であ
るので、アルミニウムの熱移動によった従来のものがP
チャンネルのものしか製造し得なかったのに対して、P
チャンネル、nチャンネルいずnの半導体センサも製造
可能であって、この種電界効果型半導体センサの利用範
囲の拡大がはかれるすぐれた効果を奏する。
[Bottom surface and side circumferential surface] and the opening periphery are formed in close contact with each other. Then, in this conductive Mt91, there is f''1 on the back surface.
.. ), place a conductor such as a lead wire (1
0) are joined by heat and pressure. The thus manufactured semiconductor sensor is bonded and integrated with an insulating frame 021 covered with an insulating glass 04 to obtain a field effect semiconductor sensor. The use of the above-mentioned semiconductor sensor to measure chemical properties such as ion concentration and reducing gas concentration was disclosed in Japanese Patent Laid-Open No. 51
This is as disclosed in, for example, Japanese Patent Publication No. -1392139. (Effects of the Invention) The present invention includes a conductor path for taking out the source (2) electrode and the drain [3]'IE electrode to the back side of the semiconductor substrate +11.
A heavily doped region 151 is formed as a thin layer near the surface of the semiconductor substrate +11. [61, and a hole +81. etched so as to reach both the doped regions +5L and [6+] from the back surface side. Since the conductive film (9) is closely attached to the circumferential surface of the conductive film (9), the highly doped regions 151 and 161 can be easily processed because they can be formed using a relatively shallow layer and can be formed by a general thermal diffusion method. In addition, since the holes f8+ and +81 can be formed by etching, this is also a common processing method in semiconductor device manufacturing technology and is simple, making it possible to mass-produce low-cost sensors. The present invention is particularly advantageous because it can be manufactured by a general heat diffusion method, so that the conventional one using heat transfer of aluminum can be easily manufactured.
Whereas it was possible to manufacture only channel ones, P
Channel, n-channel, and n-channel semiconductor sensors can also be manufactured, and this type of field effect semiconductor sensor has an excellent effect of expanding the range of use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の1実施例に係る縦断面図及
び一部省略示平面図である。 il+・・・半導体基板、(21・・・ソース。 (3]・・・ドレイン、 (4)・・・チャネル。 +51 +6し・高濃度ドーピング領域、(7)・・・
薄層。 (8)・・・孔、(9j・・・導電膜、[+01・・・
導体。
1 and 2 are a longitudinal sectional view and a partially omitted plan view according to an embodiment of the present invention. il+... Semiconductor substrate, (21... Source. (3)... Drain, (4)... Channel. +51 +6 High concentration doping region, (7)...
Thin layer. (8)...hole, (9j...conductive film, [+01...
conductor.

Claims (1)

【特許請求の範囲】[Claims] 1、化学的に感受性を持つ薄層(71が表面に形成され
たシリコン板等の半導体基板(11の内層に、前記表面
から離れて一定の深ざまで拡がらせ、かつ、周りの層と
に仕切らせたチャネル(4)を形成するように対称に配
置したソース(2)及びドレイン(3)、導体路として
前記ソース[21及び前記ドレイン[31に対し大々結
合させて配置した2つの高濃度ドーピング領域151.
161を有する電界効果型半導体センサにおいて、前記
2つの高濃度ドーピング領域[1i1.[61は半導体
基[(11の表面寄りに薄層をなして設けられる一万、
半導体基板(11f)裏面力1ら前記各高濃度ドーピン
グ領域(5)、(6)に大々達する孔+84 、 +8
+がエツチングにより設けられ、ざらに前記孔+81.
18)の内面及び開口周縁に導電膜+97が密着されて
いて、前記導電膜(9)が高濃度ドーピング1511+
61と半導体基板ロンの裏面側に配!された導体ll0
1.001とを接続するための導体路を形成しているこ
とを特徴とする電界効果型半導体センサ。
1. A chemically sensitive thin layer (71) is formed on the inner layer of a semiconductor substrate such as a silicon plate (11), which is spread away from the surface to a certain depth, and is in contact with surrounding layers. A source (2) and a drain (3) arranged symmetrically to form a channel (4) partitioned into Highly doped region 151.
161, wherein the two heavily doped regions [1i1. [61 is a semiconductor base [(11,000, which is provided in a thin layer near the surface of 11,
Semiconductor substrate (11f) backside holes +84 and +8 reaching each of the high concentration doping regions (5) and (6) from the back surface 1
+ is provided by etching, and the holes +81.
A conductive film +97 is closely attached to the inner surface and the periphery of the opening of the conductive film (9), and the conductive film (9) is doped with a high concentration of 1511+.
61 and placed on the back side of the semiconductor substrate Ron! conductor ll0
1.001 A field-effect semiconductor sensor, characterized in that it forms a conductor path for connecting with 1.001.
JP59087215A 1984-04-27 1984-04-27 Field effect type semiconductor sensor Pending JPS60230048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59087215A JPS60230048A (en) 1984-04-27 1984-04-27 Field effect type semiconductor sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59087215A JPS60230048A (en) 1984-04-27 1984-04-27 Field effect type semiconductor sensor

Publications (1)

Publication Number Publication Date
JPS60230048A true JPS60230048A (en) 1985-11-15

Family

ID=13908696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59087215A Pending JPS60230048A (en) 1984-04-27 1984-04-27 Field effect type semiconductor sensor

Country Status (1)

Country Link
JP (1) JPS60230048A (en)

Similar Documents

Publication Publication Date Title
US4505799A (en) ISFET sensor and method of manufacture
JP2610294B2 (en) Chemical sensor
JPS5870155A (en) Semiconductor device responding to ion
US4232326A (en) Chemically sensitive field effect transistor having electrode connections
JPH1062383A (en) Electrochemical sensor
JPH049727A (en) Capacity type pressure sensor
TWI253174B (en) Ion sensitive field effect transistor and fabrication method of the same
EP0149330B1 (en) Isfet sensor and method of manufacture
JPS60230048A (en) Field effect type semiconductor sensor
EP0211609A2 (en) Chemically sensitive semiconductor devices and their production
JPH0518935A (en) Diamond thin-film ion sensor
JPS61120958A (en) Ion sensor having glass response film
TWI342392B (en) Ph-ion selective field effect transistor (ph-isfet) with a miniaturized silver chloride reference electrode
JPH0196548A (en) Sensor element
JPS62123348A (en) Chemical sensor
JPH0315974B2 (en)
JPH0339585B2 (en)
JPS62135760A (en) Production of semiconductor ion sensor
JPH0241581Y2 (en)
JP2003066000A (en) Semiconductor chemical sensor
JPH0584070B2 (en)
JPH02170044A (en) Ion sensor
JPS62250353A (en) Semiconductor chemical sensor
JPH0868710A (en) Capacitive pressure sensor and fabrication thereof
JPH0320768Y2 (en)