JPH0320768Y2 - - Google Patents

Info

Publication number
JPH0320768Y2
JPH0320768Y2 JP6368684U JP6368684U JPH0320768Y2 JP H0320768 Y2 JPH0320768 Y2 JP H0320768Y2 JP 6368684 U JP6368684 U JP 6368684U JP 6368684 U JP6368684 U JP 6368684U JP H0320768 Y2 JPH0320768 Y2 JP H0320768Y2
Authority
JP
Japan
Prior art keywords
semiconductor substrate
insulating
electrode
film
sealant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6368684U
Other languages
Japanese (ja)
Other versions
JPS60174855U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6368684U priority Critical patent/JPS60174855U/en
Publication of JPS60174855U publication Critical patent/JPS60174855U/en
Application granted granted Critical
Publication of JPH0320768Y2 publication Critical patent/JPH0320768Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea] 【産業上の利用分野】[Industrial application field]

本考案は気相中、液相中の酸素など検知物質の
量を定量的に直接測定することができる半導体ポ
ーラロセンサに関し特に該センサに用いる電極構
造体に係る。
The present invention relates to a semiconductor polaro sensor that can directly and quantitatively measure the amount of a detection substance such as oxygen in a gas phase or a liquid phase, and particularly relates to an electrode structure used in the sensor.

【従来技術】[Prior art]

半導体基板例えばシリコン板の表面に電極膜と
絶縁膜とを形成して、この電極膜を酸素などの検
知物質を検知するための検出電極として用いるポ
ーラロセンサ用電極はIC製作技術によつて小型
のものが簡単に量産されるようになつているが、
従来のこの種電極は第4図に示す構造であつて、
シリコン平板からなる半導体基板1′の表面を
SiO2の絶縁膜4で絶縁した後に、表面の所要個
所をエツチング処理して絶縁膜4を取り除いて、
この部分に蒸着等によつて金属膜などの電極膜3
を密着せしめ、この半導体基板1′を導線6が貫
通して裏面側に取り出されてなるセラミツク板等
の絶縁基台2上に接平によつて添着せしめること
により、電極膜3と導線6とを半導体基板1′を
介して電気的に連絡せしめ、さらに、半導体基板
1′の側周縁部と前記絶縁基台2とにわたらせて
エポキシ樹脂やガラスなどの絶縁封止剤5′を盛
り上げるようにして被覆せしめて半導体基板1′
を絶縁保護せしめていた。 かかる構造の電極としては、「G.Eden.etal
“Miniaturized Erectrode for on−Line PO2
Measurements”I EEE Trans.Biom.Eng.
VOL.BME−22,NO4,JULY 1975.P.275〜
280」の文献によつてその技術内容が明らかにさ
れている。 そして図示しないが、半導体基板1′の表面に
覆わせて検知物質透過膜を基板周囲に密着させて
この透過膜と半導体基板1′とで囲繞される室内
に電解液を充填してポーラロセンサが構成され
る。 このポーラロセンサは前記電解液内に浸入して
くる検知物質
Electrodes for polaro sensors, in which an electrode film and an insulating film are formed on the surface of a semiconductor substrate such as a silicon plate, and this electrode film is used as a detection electrode for detecting substances such as oxygen, can be made small using IC manufacturing technology. are now easily mass-produced,
A conventional electrode of this type has a structure shown in FIG.
The surface of the semiconductor substrate 1' made of a silicon flat plate is
After insulating with an SiO 2 insulating film 4, the required parts of the surface are etched and the insulating film 4 is removed.
An electrode film 3 such as a metal film is formed on this part by vapor deposition or the like.
The electrode film 3 and the conductor 6 are bonded to each other by attaching the semiconductor substrate 1' to an insulating base 2, such as a ceramic plate, through which the conductor 6 passes and is taken out on the back side. are electrically connected via the semiconductor substrate 1', and further, an insulating sealant 5' such as epoxy resin or glass is raised over the side peripheral edge of the semiconductor substrate 1' and the insulating base 2. The semiconductor substrate 1' is coated with
was provided with insulation protection. As an electrode with such a structure, “G.Eden.etal
“Miniaturized Erectrode for on−Line PO 2
Measurements”I EEE Trans.Biom.Eng.
VOL.BME−22, NO4, JULY 1975.P.275~
280'', the technical contents are clarified. Although not shown, a polaro sensor is constructed by covering the surface of the semiconductor substrate 1' with a sensing substance permeable membrane in close contact with the periphery of the substrate, and filling a chamber surrounded by this permeable membrane and the semiconductor substrate 1' with an electrolytic solution. be done. This polaro sensor detects substances that enter the electrolyte.

【この場合は酸素】が前記電極膜3
に接すると、この電極膜3の表面における電気抵
抗が変化するので前記導線6に流れる電流を測定
することで酸素濃度を測定可能である。 ところで、上記センサにおける電極構造体はチ
ツプに切り出した半導体基板1′における側周縁
部の絶縁処理が問題であつて、一般的には側周縁
を樹脂かガラスで封止せしめているが、絶縁封止
剤を盛りすぎると電極膜3をも塞いでしまつて電
極として使いものにならないし、前述した検知物
質透過膜の密着が困難であると共に、電解液の液
層が厚くなつて検出感度に悪影響を与える。 一方、肉盛りが少なくて封止状態が浅いと、半
導体基板1′周囲の角部分の絶縁が十分とれなく、
この部分での漏洩電流が増してこれがノイズとな
る結果、検知精度が低下するなどの不都合があ
る。
[In this case, oxygen] is the electrode film 3
Since the electrical resistance on the surface of the electrode film 3 changes when it comes into contact with the conductive wire 6, the oxygen concentration can be measured by measuring the current flowing through the conductive wire 6. By the way, the problem with the electrode structure in the above-mentioned sensor is the insulation treatment of the side periphery of the semiconductor substrate 1' cut out into chips.Generally, the side periphery is sealed with resin or glass, but insulation sealing If too much blocking agent is applied, it will also block the electrode membrane 3, rendering it useless as an electrode. In addition, it will be difficult for the aforementioned detection substance permeable membrane to adhere tightly, and the liquid layer of the electrolyte will become thick, which will adversely affect the detection sensitivity. give. On the other hand, if the overlay is small and the sealing state is shallow, the corners around the semiconductor substrate 1' cannot be sufficiently insulated.
The leakage current in this part increases and this becomes noise, resulting in problems such as a decrease in detection accuracy.

【考案が解決しようとする問題点】[Problem that the invention attempts to solve]

このように、従来の電極構造体が周縁部の絶縁
処理に難点があるのに鑑みで本考案は成されたも
のであつて、半導体基板を側周縁部の絶縁処理が
容易な特定の形状とすることによつて、絶縁封止
剤の盛り上げ量を少くしながらも確実な絶縁処理
を簡単に行ない得るに至り、半導体ポーラロセン
サの小形化、高検知精度を保持しながら低コスト
の実現をはからせることを本考案は目的としてい
る。
As described above, the present invention has been developed in view of the fact that conventional electrode structures have difficulty in insulating the peripheral edges. By doing so, we have been able to easily perform reliable insulation treatment while reducing the amount of insulating sealant applied, making it possible to miniaturize semiconductor polaro sensors and achieve low cost while maintaining high detection accuracy. The purpose of this invention is to

【問題点を解決するための手段】[Means to solve the problem]

そこで本考案は、半導体基板を周辺部が該周辺
部に囲まれる中央部に比して低い断面凸形の段付
板に形成して絶縁基台上に添着すると共に、半導
体基板の中央部表面には電極膜と絶縁膜とを、周
辺部表面には絶縁膜を夫々形成せしめる一方、絶
縁封止剤を前記半導体基板の側周縁部と前記絶縁
基台とにわたらせて被覆せしめてなる構成をポー
ラロセンサ用電極構造体に持たせたものであつ
て、絶縁封止剤が被覆される部分の半導体基板を
電極膜が形成される中央部分に比して薄肉形状と
なして被覆を容易かつ確実ならしめ、しかも絶縁
封止剤の盛り上り量を少なくしながらも絶縁効果
を高めることが可能である。 なお、半導体基板における周辺部を中央部に比
して低く形成するのに、シリコン平板の周辺部を
異方性エツチングなどの処理をすることによつて
簡単に行うことが可能である。
Therefore, in the present invention, the semiconductor substrate is formed into a stepped plate with a convex cross section whose peripheral part is lower than the central part surrounded by the peripheral part, and is attached to an insulating base, and the central part of the semiconductor substrate is An electrode film and an insulating film are formed on the surface of the semiconductor substrate, an insulating film is formed on the surface of the peripheral part, and an insulating sealant is applied over the side peripheral part of the semiconductor substrate and the insulating base. This is provided in an electrode structure for a polaro sensor, and the part of the semiconductor substrate coated with the insulating sealant is thinner than the central part where the electrode film is formed, so that the coating can be easily and reliably coated. Moreover, it is possible to improve the insulation effect while reducing the amount of swelling of the insulation sealant. Note that forming the peripheral portion of the semiconductor substrate to be lower than the central portion can be easily done by subjecting the peripheral portion of the silicon flat plate to a treatment such as anisotropic etching.

【実施例】【Example】

以下、本考案の実施例を図面にもとづいて説明
する。 第1図及び第2図は本考案の各実施例を拡大断
面示した図であつて、図示の電極構造体は検出側
の電極のみを有する単極形でセラミツク板からな
る絶縁基台2上に、これよりも稍小さい形の半導
体基板1を載せて密着一体させ、シリコン板から
なる半導体基板1の裏面に対して絶縁基台2を貫
通させた導線6を接触せしめている。 前記半導体基板1は厚さが一定の平板と素材と
して、中央部1Aを囲む周辺部1Bを異方性エツ
チングによつて適当の深さまで抉り取らせ、各図
に示す如く周辺部1Bが中央部1Aに比して低く
なつた縦断面凸形の段付板に形成せしめる。 なお、シリコン平板の結晶軸の方位の関係から
異方性エツチングを行なうと、中央部1Aと周辺
部1Bの境目部分は直立壁とならなくて急斜面壁
となるものである。 かく構成した段付板の表面全部に、SiO2等の
絶縁膜4を形成せしめた後、中央部1Aの所定個
所をエツチング処理により絶縁膜4の切除を行な
い、次いで、この絶縁膜4が切除された部分に蒸
着処理等によつて導電性を有する電極膜3,3を
形成せしめる。 なお、この電極膜3は10ミクロン程度の小径の
角度、丸形等をなす小片状膜を中央部1Aに分散
させて設けることが、検知対象の酸素の流れの影
響を受けにくく検知精度を高める上で好ましい手
段である。 このように表面処理された半導体基板1の側周
縁部1Cと絶縁基台2の張り出している部分とに
わたらせて絶縁封止剤5例えばエポキシ樹脂を被
覆せしめるが、その場合、周辺部1Bが中央部1
Aに比して一段下つているので、絶縁封止剤5が
盛り過ぎて電極膜3を塞いで潰してしまうなどの
問題はなくなり、簡単、確実に封止処理を行なえ
る。 また、絶縁封止剤5が半導体基板1に対して盛
り上りの高さが低いので、第1図において破線示
するように検知物質透過膜7を電極構造体の前面
に配設する場合に該透過膜7を電極膜3に近付け
ることが可能であり、従つて、この透過膜7によ
つて掩われる室内に充填する電解液Lの液量を少
なくさせて小形化をはかり得ると共に、検知速度
を速くさせることが可能である。 しかして、半導体基板1がシリコン板である場
合、中央部1A及び周辺部1Bにおける板厚と直
交して延びる表面を有する層は、結晶軸の方位が
100であるのに対して、両部1A,1Bの境目と
なる急斜面壁を有する層は結晶軸の方位が111で
あつて、前者の層に比して酸化膜を形成しにく
く、また、中央部1Aの平坦面と前記急斜面とが
交わる角の部分も酸化膜が形成しにくくて薄くな
るおそれがあり、従つて膜の成長が遅くて孔があ
き易くなる。 その結果、この部分で漏洩電流が発生するおそ
れがあるが、第2図々示例はこの急斜面壁部と周
辺部1Bとの表層に酸化膜からなる絶縁膜4を形
成するに先立つて、P型シリコンからなる半導体
基板1に拡散処理を行なつて拡散層8を形成せし
めて該拡散層8との間にPN接合を行なわせる。 そしてその後に絶縁膜4を設けると、この電極
構造体が電極膜3、半導体基板1を極として用
い、これに接する電解液が電位である使用状態
の場合に拡散層8がn型であるので、第3図に示
す如く逆方向の十分高い耐圧(数10ボルト)を有
する特性が発揮されることとなり、かくして絶縁
膜4が形成しにくくて絶縁性の悪い個所を補強す
ることが可能となり、かかるPn接合形態をとら
せることは好ましい手段である。
Hereinafter, embodiments of the present invention will be described based on the drawings. 1 and 2 are enlarged cross-sectional views of each embodiment of the present invention, and the illustrated electrode structure is a monopolar type having only a detection side electrode, and is mounted on an insulating base 2 made of a ceramic plate. A semiconductor substrate 1 of a slightly smaller size than this is placed on and closely integrated with the semiconductor substrate 1, and a conductive wire 6 passed through an insulating base 2 is brought into contact with the back surface of the semiconductor substrate 1 made of a silicon plate. The semiconductor substrate 1 is a flat plate with a constant thickness, and the peripheral part 1B surrounding the central part 1A is gouged out to an appropriate depth by anisotropic etching, so that the peripheral part 1B is the central part as shown in each figure. It is formed into a stepped plate with a convex vertical section that is lower than that of 1A. If anisotropic etching is performed due to the orientation of the crystal axes of the silicon flat plate, the boundary between the central portion 1A and the peripheral portion 1B will not be an upright wall, but will be a steeply sloped wall. After forming an insulating film 4 such as SiO 2 on the entire surface of the stepped plate constructed in this manner, the insulating film 4 is removed at a predetermined location in the central portion 1A by etching, and then this insulating film 4 is removed. Conductive electrode films 3 are formed on the exposed portions by vapor deposition or the like. It should be noted that this electrode film 3 is provided with small pieces of angular, round, etc. films with a small diameter of about 10 microns distributed in the central part 1A, so that the detection accuracy is less affected by the flow of oxygen to be detected. This is a preferable means to increase this. The side periphery 1C of the semiconductor substrate 1 surface-treated in this way and the protruding portion of the insulating base 2 are coated with an insulating sealant 5, for example, an epoxy resin. In this case, the periphery 1B is in the center. Part 1
Since it is one step lower than A, there is no problem such as the insulating sealant 5 filling up too much and blocking and crushing the electrode film 3, and the sealing process can be performed easily and reliably. In addition, since the height of the bulge of the insulating sealant 5 is low relative to the semiconductor substrate 1, this is not the case when the sensing substance permeable film 7 is disposed on the front surface of the electrode structure, as shown by the broken line in FIG. It is possible to bring the permeable membrane 7 closer to the electrode membrane 3, and therefore, the amount of electrolyte L filled in the chamber covered by the permeable membrane 7 can be reduced, making it possible to achieve downsizing, and the detection speed can be increased. It is possible to make it faster. Therefore, when the semiconductor substrate 1 is a silicon plate, a layer having a surface extending perpendicularly to the thickness of the central part 1A and the peripheral part 1B has a crystal axis that is
100, whereas the layer with a steeply sloped wall that forms the boundary between both parts 1A and 1B has a crystal axis orientation of 111, making it difficult to form an oxide film compared to the former layer, and It is also difficult to form an oxide film at the corner where the flat surface of the portion 1A intersects with the steep slope, and there is a possibility that the film will become thin, and therefore the growth of the film will be slow and holes will easily form. As a result, there is a possibility that a leakage current may occur in this part. However, in the example shown in FIG. A semiconductor substrate 1 made of silicon is subjected to a diffusion process to form a diffusion layer 8, and a PN junction is formed between the semiconductor substrate 1 and the diffusion layer 8. Then, when the insulating film 4 is provided after that, the diffusion layer 8 is n-type when the electrode structure uses the electrode film 3 and the semiconductor substrate 1 as poles and the electrolyte in contact with them is at a potential. As shown in Fig. 3, the property of having a sufficiently high withstand voltage (several tens of volts) in the opposite direction is exhibited, and thus it becomes possible to reinforce areas where it is difficult to form the insulating film 4 and where the insulation is poor. It is a preferable means to adopt such a Pn junction form.

【考案の効果】[Effect of the idea]

以上述べたように、本考案ポーラロセンサは電
極構造体における周辺部1Bを中央部1Aに比し
一段低くさせた段付板に形成して、この低段の周
辺部1Bにおける側周縁部1Cを絶縁封止剤5に
よつて被覆した構成としたものであり、電極膜3
が形成される中央部1Aまで製造過程において絶
縁封止剤5が盛り上つて電極膜3を潰してしまう
ような不都合は全く解消される。 また、検知物質透過膜7を電極構造体の前面に
配設する場合に該透過膜7を電極膜3に近付ける
ことが可能であり検知速度を速くさせセンサを小
型化できる。 しかも、絶縁封止剤5で掩われる半導体基板1
の導電性表面部分が小面積となるので、絶縁封止
剤5の盛り上りを小さくして電極構造体を小形化
し得ることはもとより、漏洩電流を極力抑制して
検知精度を向上することが可能であり、正に一石
二鳥の効果を奏する。
As described above, in the polaro sensor of the present invention, the peripheral part 1B of the electrode structure is formed into a stepped plate that is lower than the central part 1A, and the side peripheral parts 1C of the lower peripheral part 1B are insulated. The structure is such that the electrode film 3 is coated with a sealant 5.
The inconvenience that the insulating sealant 5 bulges up to the central portion 1A where the electrode film 3 is formed during the manufacturing process and crushes the electrode film 3 is completely eliminated. Furthermore, when the sensing substance permeable membrane 7 is disposed in front of the electrode structure, it is possible to bring the permeable membrane 7 close to the electrode membrane 3, thereby increasing the detection speed and downsizing the sensor. Moreover, the semiconductor substrate 1 covered with the insulating sealant 5
Since the area of the conductive surface portion of is small, it is possible not only to reduce the swelling of the insulating sealant 5 and downsize the electrode structure, but also to suppress leakage current as much as possible and improve detection accuracy. This truly kills two birds with one stone.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本考案の各実施例に係る拡
大示縦断面正面図、第3図はシリコン板の耐圧特
性線図、第4図は従来のポーラロセンサ用電極構
造体の拡大示縦断面正面図である。 1……半導体基板、1A……中央部、1B……
周辺部、2……絶縁基台、3……電極膜、4……
絶縁膜、5……絶縁封止剤。
1 and 2 are enlarged vertical cross-sectional front views of each embodiment of the present invention, FIG. 3 is a voltage resistance characteristic diagram of a silicon plate, and FIG. 4 is an enlarged longitudinal cross-sectional view of a conventional polaro sensor electrode structure. FIG. 1...Semiconductor substrate, 1A...Central part, 1B...
Peripheral part, 2... Insulating base, 3... Electrode film, 4...
Insulating film, 5... Insulating sealant.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 半導体基板1を周辺部1Bが該周辺部1Bに囲
まれる中央部1Aに比して低い断面凸形の段付板
に形成して絶縁基台2上に添着すると共に、半導
体基板1の中央部1A表面には電極膜3と絶縁膜
4とを、周辺部1B表面には絶縁膜4を夫々形成
せしめる一方、絶縁封止剤5を前記半導体基板1
の側周縁部1Cと前記絶縁基台2とにわたらせて
被覆せしめてなることを特徴とするポーラロセン
サ。
The semiconductor substrate 1 is formed into a stepped plate having a convex cross section in which the peripheral portion 1B is lower than the central portion 1A surrounded by the peripheral portion 1B, and is attached onto the insulating base 2. An electrode film 3 and an insulating film 4 are formed on the surface of the semiconductor substrate 1A, and an insulating film 4 is formed on the surface of the peripheral part 1B, while an insulating sealant 5 is formed on the surface of the semiconductor substrate 1.
A polaro sensor characterized by being coated over the side peripheral edge 1C of the insulating base 2.
JP6368684U 1984-04-27 1984-04-27 polaro sensor Granted JPS60174855U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6368684U JPS60174855U (en) 1984-04-27 1984-04-27 polaro sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6368684U JPS60174855U (en) 1984-04-27 1984-04-27 polaro sensor

Publications (2)

Publication Number Publication Date
JPS60174855U JPS60174855U (en) 1985-11-19
JPH0320768Y2 true JPH0320768Y2 (en) 1991-05-07

Family

ID=30594068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6368684U Granted JPS60174855U (en) 1984-04-27 1984-04-27 polaro sensor

Country Status (1)

Country Link
JP (1) JPS60174855U (en)

Also Published As

Publication number Publication date
JPS60174855U (en) 1985-11-19

Similar Documents

Publication Publication Date Title
US4668374A (en) Gas sensor and method of fabricating same
US4143177A (en) Absolute humidity sensors and methods of manufacturing humidity sensors
JP4312379B2 (en) Reference electrode
US4203087A (en) Absolute humidity sensors and methods of manufacturing humidity sensors
JP4027460B2 (en) Electrochemical sensor
FR2510260A1 (en) ION-SENSITIVE SEMICONDUCTOR DEVICE
US7211459B2 (en) Fabrication method of an ion sensitive field effect transistor
JP2003021565A (en) Electrical capacitance type pressure sensor, method of manufacturing the same and sensor structure body used for the same
US4232326A (en) Chemically sensitive field effect transistor having electrode connections
JPH0320768Y2 (en)
JPH0765985B2 (en) ISFET and ISFET probe and ISFET pH sensor using the same
US4786396A (en) Ion electrode and method of making it
CA1250020A (en) Ambient sensing devices with isolation
Poghossian Method of fabrication of ISFETs and CHEMFETs on an Si-SiO2-Si structure
JPS6312252B2 (en)
JPH0339585B2 (en)
JPH0241581Y2 (en)
JPH0351740Y2 (en)
JPS5878470A (en) Detecting device for semiconductor pressure
JPH0315974B2 (en)
JPH0429974B2 (en)
JPH0220850Y2 (en)
JP2003066000A (en) Semiconductor chemical sensor
JPS60209162A (en) Chemical sensing field-effect transistor and manufacture thereof
JPS60230048A (en) Field effect type semiconductor sensor