JPS60229941A - Glass-reinforced poly-4-methyl-1-pentene - Google Patents

Glass-reinforced poly-4-methyl-1-pentene

Info

Publication number
JPS60229941A
JPS60229941A JP8518984A JP8518984A JPS60229941A JP S60229941 A JPS60229941 A JP S60229941A JP 8518984 A JP8518984 A JP 8518984A JP 8518984 A JP8518984 A JP 8518984A JP S60229941 A JPS60229941 A JP S60229941A
Authority
JP
Japan
Prior art keywords
pentene
methyl
glass
poly
reinforcing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8518984A
Other languages
Japanese (ja)
Other versions
JPH0713163B2 (en
Inventor
Hiroichi Kajiura
梶浦 博一
Hidenori Sakai
酒井 英紀
Hiroyuki Hori
浩之 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP59085189A priority Critical patent/JPH0713163B2/en
Publication of JPS60229941A publication Critical patent/JPS60229941A/en
Publication of JPH0713163B2 publication Critical patent/JPH0713163B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To produce the titled composition having improved mechanical properties, etc. without deteriorating the transparency, by compounding a glass reinforcing material composed mainly of silicon dioxide to the base resin. CONSTITUTION:Poly-4-methyl-1-pentene is compounded with 5-40wt% glass reinforcing material containing >=95% silicon dioxide. The base resin may contain a modified poly-4-methyl-1-pentene grafted with an unsaturated carboxylic acid or its derivative. The modified resin is the one grafted with 0.1-15%, preferably 1-10% unsaturated carboxylic acid or its derivative (e.g. maleic acid, nadic acid, their anhydride, etc.) and having a melt flow rate of 1-500g/10min.

Description

【発明の詳細な説明】 〔発明の目的〕 本発明は透明性に優れたガラス強化ポリ4−メチル−1
−べブテンにBする。
[Detailed Description of the Invention] [Object of the Invention] The present invention provides a glass-reinforced poly(4-methyl-1) with excellent transparency.
- B to bebutene.

〔従来技術の問題点〕[Problems with conventional technology]

ポリオレフィンにガラス補強材を添加して引張強度、曲
げ強度、衝撃強度、表面硬度などの機械的力学性質ある
いは溶融張力などの溶融物性の改良や耐熱変形性などを
改良することは知られている。ポリオレフィンの中でも
ポリ4−メチル−1−ペンテンは、透明性と耐熱変形性
が他のポリオレフィンであるポリエチレンやポリプロピ
レン、ポリ1−ブテンに世べて特段に優れているために
、ガラス補強材を添加して前述のような機械的力学性質
を改良してやると幅広い分野で利用価値のある樹脂とな
る。しかしながら単純にガラス補強材をポリ4−メチル
−1−ペンテンに添加しても、ガラス補強材とポリ4−
メチル−1−ペンテンとの屈折率の相違によってポリ4
−メチル−1−ペンテン樹脂内部で光の散乱が生じ、白
濁したようなガラス強化ポリ4−メチル−1−ペンテン
しか得られない。これヤはポリ4−メチル−1−ペンテ
ンの大きな特徴である透明性が損われることになシ、製
品としての価値は低下する。
It is known that glass reinforcing materials are added to polyolefins to improve mechanical properties such as tensile strength, bending strength, impact strength, and surface hardness, melt properties such as melt tension, and heat deformation resistance. Among polyolefins, poly(4-methyl-1-pentene) has exceptional transparency and heat deformation resistance compared to other polyolefins such as polyethylene, polypropylene, and poly-1-butene, so glass reinforcement is added to it. If the above-mentioned mechanical properties are improved, the resin will be useful in a wide range of fields. However, even if a glass reinforcing material is simply added to poly-4-methyl-1-pentene, the glass reinforcing material and poly-4-pentene
Due to the difference in refractive index from methyl-1-pentene, poly-4
-Methyl-1-pentene Light scattering occurs inside the resin, and only a cloudy glass-reinforced poly-4-methyl-1-pentene is obtained. This will impair the transparency, which is a major feature of poly-4-methyl-1-pentene, and its value as a product will decrease.

本発明者らは以上の状況を鰺みて、透明性を損わないガ
ラス強化ポリ4−メチル−1−ペンテンが得られないか
検討を輩ねた結呆、特定の組成のガラス補強材を用いれ
ば目的を達成することができることを見い出した。
In view of the above situation, the inventors of the present invention have continued to investigate whether it is possible to obtain glass-reinforced poly-4-methyl-1-pentene that does not impair transparency, and have decided to use a glass reinforcing material with a specific composition. I found out that I can achieve my goal.

〔発明の構成〕[Structure of the invention]

すなわち本発明は、ポリ4−メチル−1−ペンテンに二
酸化ケイ素を95重量幅以上含有するガラス補強材を5
〜40重量%配合してなることを特徴とするガラス強化
ポリ4−メチル−1−ペンテンである。
That is, the present invention uses a glass reinforcing material containing 95% or more of silicon dioxide in poly-4-methyl-1-pentene.
This is glass-reinforced poly-4-methyl-1-pentene characterized by containing ~40% by weight.

本発明に用いるポリ4−メチル−1−ペンテンとは、4
−メチル−1−ペンテンの単独重合体もしくは4−メチ
ル−1−ペンテンと辿常15モル係以下、好ましくは9
モルチ以下の他のα−オレフィン、 例エバエチレン、
プロピレン、1−ブテン、1−ヘキセン、1−オクテン
、1−デセン、1−テトラデセン、1−オクタデセン等
の炭素数27いL20のα−オレフィンとの共重合体で
ある。ポリ4−メチル−1−ペンテンのメルトフロ! 
−レート(荷重5敗、温度260℃、以下IV’fFR
と略す)は、好捷しくは1ないし500f/10農[、
とくに好ましくは5ないし600り/10.i、のもの
である。MFRが500f/10111を越えるものは
、機械的強度が低く、”/10ain未満のものは成形
性に劣る。
Poly4-methyl-1-pentene used in the present invention is 4-methyl-1-pentene.
- Homopolymer of methyl-1-pentene or 4-methyl-1-pentene in a molar ratio of 15 or less, preferably 9
Other α-olefins below molti, e.g. evaporation ethylene,
It is a copolymer with an α-olefin having 27 carbon atoms and L20, such as propylene, 1-butene, 1-hexene, 1-octene, 1-decene, 1-tetradecene, and 1-octadecene. Melt flow of poly-4-methyl-1-pentene!
-Rate (load 5 losses, temperature 260℃, below IV'fFR
) is preferably 1 to 500 f/10 [,
Particularly preferably 5 to 600 l/10. It belongs to i. If the MFR exceeds 500f/10111, the mechanical strength is low, and if the MFR is less than "/10ain, the moldability is poor.

ガラス補強材は、カラスファイバー、カラスストランド
、ガラスロービング、ガラスチョツプドストランド、ガ
ラスミルドファイバー、ガラスパウダー、ガラステープ
、カラスクロス、ガラスフレークなど如何なる形状でも
よいが、好ましくはガラス補強材の一次形状がパウダー
の場合には直径100μ以下1mμ以上、繊維の場合に
は直径50μ以下1μ以上、フレークの場合には厚さが
20μ以下1μ以上である方が、透明性と力学強度のバ
ランスがとれて良好である。ガラス成分中95重量%以
上は二酸化ケイ素でなければならない。二酸化ケイ素(
Sin2)が95重量%未満のガラス補強材を使用する
と、ポリ4−メチル−1−ベンテンに混入させた場合白
濁した透明性の損われたものしか得られない。
The glass reinforcing material may be in any shape such as glass fiber, glass strand, glass roving, glass chopped strand, glass milled fiber, glass powder, glass tape, glass cloth, glass flake, etc., but it is preferably in the primary shape of the glass reinforcing material. In the case of powder, it is better to have a diameter of 100μ or less and 1μ or more, in the case of fibers, the diameter is 50μ or less and 1μ or more, and in the case of flakes, the thickness is 20μ or less and 1μ or more, which provides a good balance between transparency and mechanical strength. In good condition. At least 95% by weight of the glass component must be silicon dioxide. silicon dioxide (
If a glass reinforcing material having a Sin2) of less than 95% by weight is used, only a cloudy material with impaired transparency will be obtained when mixed with poly4-methyl-1-bentene.

しかし95重量係以上のものを使用すると透明性の優れ
た組成物が得られ、とくにパウダー形状のものを使用す
ると透明性の一段と優れたものが得られる。
However, if a weight coefficient of 95 or more is used, a composition with excellent transparency can be obtained, and in particular, if a powder-form one is used, a composition with even better transparency can be obtained.

二酸化ケイ素が95重量%以上のガラス補強材を製造す
る方法としては、たとえばカラスパウダーを例にとると
乾式法が有利である。すなわちハロゲン化ケイ素の熱分
解による方法、ケイ酸含有物の熱分解による方法、有機
ケイ素化合物の熱分解による方法などで得られるカラス
パウダーは、二酸化ケイ素含有量が高純度であって、本
発明に使用するカラス補強材としでは好適である。一方
湿式法によるガラスパウダーは二酸化ケイ素含有量が概
ね90重量忰以下であって、本発明に用いるには不適で
ある。
As a method for producing a glass reinforcing material containing 95% by weight or more of silicon dioxide, a dry method is advantageous, for example, when glass powder is used. That is, crow powder obtained by thermal decomposition of silicon halides, thermal decomposition of silicic acid-containing substances, thermal decomposition of organosilicon compounds, etc. has a high purity silicon dioxide content and is suitable for the present invention. It is suitable for use as a crow reinforcing material. On the other hand, glass powder produced by a wet method has a silicon dioxide content of approximately 90% by weight or less, and is therefore unsuitable for use in the present invention.

本発明においては、ポリ4−メチル−1−ペンテンを+
tii強するだめに前述のガラス補強材を配合するので
あるが、さらにガラス補強効果を向上させるため、すな
わち基材であるポリ4−メチル−1−ペンテンとカラス
補強材とをよシ強固に結合させるために、不飽和カルボ
ン酸またはその誘導体をグラフトした変性ポリ4−メチ
ル−1−ペンテンを用いるか、又は併用するのが好まし
い〇不飽和カルボン酸またはその誘導体をグラフトする
ポリ4−メチル−1−ペンテンは前述のポリ4−メチル
−1−ペンテンと同じ範躊のものであるが、好ましくは
メルトフローが0.3〜100f/10sinの範囲の
ものである。メルトフローレートが上記範囲外のもので
はグラフト変性した後のメルトフローレートが1ないし
5 Q Q t Anの範囲内のも0 のが得られ難い。
In the present invention, poly4-methyl-1-pentene +
In order to strengthen the glass, the above-mentioned glass reinforcing material is added, but in order to further improve the glass reinforcing effect, the base material poly-4-methyl-1-pentene and the glass reinforcing material are bonded more firmly. It is preferable to use modified poly-4-methyl-1-pentene grafted with an unsaturated carboxylic acid or a derivative thereof, or to use it in combination. -Pentene is in the same category as the poly-4-methyl-1-pentene described above, but preferably has a melt flow in the range of 0.3 to 100 f/10 sin. If the melt flow rate is outside the above range, it is difficult to obtain a melt flow rate after graft modification of 0 within the range of 1 to 5 Q Q t An.

不飽和カルボン酸またはその誘導体成分単位としては、
アクリル酸、マレイン酸、フマール酸、テトラヒドロフ
タル酸、イタコン酸、シトラコン酸、クロトン酸、イソ
クロトン酸、ナジック酸、(エンドシス−ビンクロC2
,2,1〕ヘプト5−エン−2,3−ジカルボン酸)な
どの不飽和カルボン酸、またはその誘導体、例えば酸ハ
ライド、アミド、イミド、無水物、エステルなどが誉げ
られ、具体的には、塩化マレニル、マレイミド、無水マ
レイン酸、無水シトラコン酸、マレイン酸モノメチル、
マレイン酸ジメチル、グリシジルマレエートなどが例示
される。これらの中では、不飽和ジカルボン酸またはそ
の酸無水物が好適であシ、とくにマレイン酸、ナジック
酸またはこれらの酸無水物が好適である。
As unsaturated carboxylic acid or its derivative component unit,
Acrylic acid, maleic acid, fumaric acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, nadic acid, (endocys-vinchroC2)
, 2,1] hept-5-ene-2,3-dicarboxylic acid), or derivatives thereof, such as acid halides, amides, imides, anhydrides, esters, etc. , maleyl chloride, maleimide, maleic anhydride, citraconic anhydride, monomethyl maleate,
Examples include dimethyl maleate and glycidyl maleate. Among these, unsaturated dicarboxylic acids or their acid anhydrides are preferred, and maleic acid, nadic acid, or their acid anhydrides are particularly preferred.

本発明に用いてもよい変性ポリ4−メチル−1=ペンテ
ンは、前記ポリ4−メチル−1−ペンテンに不飽和カル
ボン酸またはその誘導体をグラフト共重合したものであ
り、その基体構造は好ましくは実質上線状で三次元架橋
構造を有しないものであり、このことは有機溶媒たとえ
ばP−キシレンに溶解し、ゲル状物が存在しないことに
よって確認することができる○ 変性ポリ4−メチル−1−ペンテンは、不飽和カルボン
酸まだはその誘導体成分単位のグラフト量が好ましくは
0.1ないし15重量係、とくに好捷しくは1ないし1
0重量係の範囲にあり、メルトフローレートが好寸しく
は1々いし500f/1 10薦:n、とくに好1しく
け5ないしろOOy/10w1nの範囲である。グラフ
ト量が0,1重量φ未満のものを用いても熱変形濃度、
引張強度1曲げ強度、衝撃強度などの改善効果が充分で
なく、一方15重量%を購えるものは、組成物の耐水性
が劣るようになる。
The modified poly-4-methyl-1-pentene that may be used in the present invention is obtained by graft-copolymerizing the poly-4-methyl-1-pentene with an unsaturated carboxylic acid or a derivative thereof, and its base structure is preferably It is substantially linear and does not have a three-dimensional crosslinked structure, and this can be confirmed by the fact that it dissolves in an organic solvent such as P-xylene and the absence of a gel-like substance.○ Modified poly-4-methyl-1- Pentene is an unsaturated carboxylic acid or a derivative component thereof, preferably in a grafting amount of 0.1 to 15% by weight, particularly preferably 1 to 1% by weight.
The melt flow rate is preferably in the range of 1 to 500 f/1:n, and particularly preferably in the range of 1 to 5 to OOy/10w1n. Even if the graft amount is less than 0.1 weight φ, the thermal deformation density,
The effect of improving tensile strength, bending strength, impact strength, etc. is not sufficient, and on the other hand, if 15% by weight is used, the water resistance of the composition becomes poor.

変性ポリ4−メチル−1−ペンテンのメルトフローレー
トが500f/10組口を越えるものを本発明の組成物
に用いても、熱変形温度、引張強度、曲げ強度、衝撃強
度などの改善効果が充分でなく、一方、”/10m1n
未満のものは、溶融粘度が太きすぎてガラス補強材との
ぬれが劣るため、組成物の機械的物性の改善効果が充分
とはならない。
Even when modified poly-4-methyl-1-pentene having a melt flow rate exceeding 500 f/10 units is used in the composition of the present invention, it is not possible to improve heat distortion temperature, tensile strength, bending strength, impact strength, etc. Not enough, on the other hand, ”/10m1n
If it is less than that, the melt viscosity is too thick and the wetting with the glass reinforcing material is poor, so that the effect of improving the mechanical properties of the composition will not be sufficient.

本発明に用いる変性ポリ4−メチル−1−ペンテンは前
記範囲のものででもよいが、以下の特性を有するものを
用いることにより、更に耐熱性、機械的強度が改善され
た組成物を得ることができる。すなわち好ましくは分子
量分布(Mw/Mn)が1ないし8、融点が170ない
し245°C1結晶化度が1ないし45係の特性を有す
る変性ポリ4−メチル−1−ペンテンである。
The modified poly-4-methyl-1-pentene used in the present invention may be within the above range, but by using one having the following properties, a composition with further improved heat resistance and mechanical strength can be obtained. I can do it. That is, it is preferably a modified poly-4-methyl-1-pentene having a molecular weight distribution (Mw/Mn) of 1 to 8, a melting point of 170 to 245 DEG C., and a crystallinity of 1 to 45.

変性ポリ4−メチル−1−ペンテンの重量平均 ′分子
量/数平均分子量で表わしだ分子量分布(Mw/M n
 ) (fl ケルパーミェーションクロマドグシフイ
ー(GPC)により迎1定される。GPCによる分子量
分布の測定は次の方法に従って実施しだ。
Molecular weight distribution (Mw/M n
) (fl) The molecular weight distribution was determined by Kölpermeation chromatography (GPC). The molecular weight distribution was measured by GPC according to the following method.

すなわち、溶媒として0−ジクロロベンゼンを用い、溶
媒100重量部に対し、ポリマー0.04F(安定剤と
して2.6−シーtert−ブチル−p−クレゾールを
ポリマー100重量部に対し0.05F添加)を加え、
溶液としたあと、1μのフィルターを辿してゴミなどの
不溶物を除去する。その後。
That is, 0-dichlorobenzene was used as a solvent, and 0.04F of polymer was added to 100 parts by weight of the solvent (0.05F of 2.6-tert-butyl-p-cresol was added as a stabilizer to 100 parts by weight of the polymer). Add
After making a solution, it is passed through a 1μ filter to remove insoluble matter such as dust. after that.

カラム温度1ろ5°C1流速1.Omt/分に設定した
G ’P C測定装置を用いて測定し、数値比はポリス
チレンベースで換算した。
Column temperature: 1 to 5°C; flow rate: 1. Measurements were made using a G'PC measuring device set at Omt/min, and numerical ratios were converted on a polystyrene basis.

変性ポリ4−メチル−1−ペンテンの融点は示差走査型
熱量計(DSC)によって測定した値である。なお、こ
こで融点は次のようにして測定される。ずなわち資料を
示差走査型熱量計(duPout 990型)に仕組み
、室温から20℃/ l1flの速度で昇温い 250
℃に達しだ所で20℃/ winの速度で降温して一旦
25℃まで下げた後、再び20“C/ sinの速度で
昇温し、このときの融解ピークから融点を読み取る(多
くの場合、複数の融解ビ一りが現われるので、この場合
は高融点側の値を採用した)。また結晶化度は次のよう
な方法によって測定した。すなわち、前記したDSCに
よる融点測定時のチャートを用い、単位量当シの測定試
料の融解面1(slと、対照ザンプルであるインジウム
の単位邦当シの融解エネルギー(P o )に相当する
記録紙上の融解面@(So)を比べる。インジウムのP
oは既知量でアシ、一方ポリ4−メチルー1−ペンテン
の結晶部の単位量当シの融解エネルギー0も下記のよう
に既知であるので、測定針料の結晶化度は次式により捷
る。
The melting point of modified poly-4-methyl-1-pentene is a value measured by a differential scanning calorimeter (DSC). Note that the melting point here is measured as follows. First, the material was placed in a differential scanning calorimeter (duPout 990 model), which raised the temperature from room temperature at a rate of 20°C/l1fl 250
Once it reaches ℃, the temperature is lowered at a rate of 20℃/win to 25℃, then the temperature is raised again at a rate of 20"C/sin, and the melting point is read from the melting peak at this time (in many cases (In this case, the value on the higher melting point side was adopted because multiple melting points appeared.) The degree of crystallinity was measured by the following method. That is, the chart for measuring the melting point by DSC described above was The melting surface 1 (sl) of the measurement sample per unit amount is compared with the melting surface @ (So) on the recording paper corresponding to the melting energy (P o ) of the control sample of indium per unit amount.Indium P of
o is a known amount, and on the other hand, the melting energy 0 per unit amount of the crystalline part of poly-4-methyl-1-pentene is also known as shown below, so the crystallinity of the measuring needle can be determined by the following formula. .

ここに、Po:27J’oul/g(at 156±0
.5℃)P : 141.7Joul/g [F、C,
Frank etal、 Ph1losophical
 Magazine。
Here, Po: 27J'oul/g (at 156±0
.. 5°C) P: 141.7 Joul/g [F, C,
Frank etal, Ph1losophical
Magazine.

4.200(1959)] 本発明のカラス強化ポリ4−メチル−1−ペンテンは、
前述したポリ4−メチル−1−ペンテン95〜60重量
%に対してガラス補強材5〜40M量壬配合する。また
変性ポリ4−メチル−1−ペンテンを使用する場合には
、ガラス補強材5〜50重量%残部が変性ポリ4−メチ
ル−1−ペンテン単独またはポリ4−メチル−1−ぺ/
テンとの混合である。配合量が前記の範囲外のものは機
械的力学物性、耐熱性、成形性の劣ったものしか得られ
ない。
4.200 (1959)] The glass reinforced poly-4-methyl-1-pentene of the present invention is
A glass reinforcing material of 5 to 40 M is added to 95 to 60% by weight of the poly-4-methyl-1-pentene. In addition, when using modified poly-4-methyl-1-pentene, the balance of 5 to 50% by weight of the glass reinforcing material is modified poly-4-methyl-1-pentene alone or poly-4-methyl-1-pentene.
It is a mixture with marten. If the blending amount is outside the above range, only products with poor mechanical properties, heat resistance, and moldability can be obtained.

本発明の組成物を得るには、前述の成分を前記′の割合
内で公知の様々の方法、たとえばV−ブレングー、リボ
ンプレンダー、ヘンシェルミキサー、タンブラーブレン
ダーで混合する方法、あるいはAil記ブシブレンダ−
合後、押出機で造粒する方法、単軸押出機、複軸押出機
、ニーグー、バンバリーミキサ−等で溶融混線し、造粒
あるいは粉砕する方法を例示できる。
The compositions of the present invention can be obtained by mixing the above-mentioned components within the above-mentioned proportions in various known ways, such as in a V-blender, ribbon blender, Henschel mixer, tumbler blender, or in an Ail bush blender.
Examples include a method of granulating with an extruder, a method of melting and mixing with a single-screw extruder, a multi-screw extruder, a Nigu, a Banbury mixer, etc., and then granulating or pulverizing.

またグラフト変性を行う踪に、ポリ4−メチル−1−ペ
ンテンおよび不飽和カルボン酸またはその誘導体ならび
にガラス補強材を同時に混合し、押出機中にて反応混合
することもできる。
Furthermore, in order to carry out graft modification, poly4-methyl-1-pentene, an unsaturated carboxylic acid or its derivative, and a glass reinforcing material can be simultaneously mixed and reacted and mixed in an extruder.

そのほか公知の神々の配合剤、たとえば耐侯安定剤、耐
熱安定剤、滑剤、スリップ剤、帯電防止剤、防曇剤、核
剤、顔料、染料など通常ポリオレフィンに添加して使用
される配合剤を本発明の目的を損わない範囲で配合して
もよい。
In addition, we also introduce other well-known ingredients such as weather-resistant stabilizers, heat-resistant stabilizers, lubricants, slip agents, antistatic agents, antifogging agents, nucleating agents, pigments, dyes, etc., which are usually added to polyolefins. They may be blended within a range that does not impair the purpose of the invention.

〔発明の効果〕〔Effect of the invention〕

本発明のガラス強化ポリ4−メチル−1−ペンテンは、
ポリ4−メチル−1−ペンテン特有の透明性を損わず、
むしろ場合によっては透明性の優れたものとなると共に
、機椋的性質並びに耐熱性の向上をも計ることができ、
したがって電子レンジ用トレー類、ファン、ランプカバ
ーなどの家電用品、ビーカー、試験管などの理化学笑験
器具、など透明性と耐熱性を安来される分野に用いるこ
とができるolだ、これらの製品は、射出成形、ブロー
成形、シート成形、フィルム成形、ラミコート成形など
の各種成形方法によって成形することができる。
The glass reinforced poly-4-methyl-1-pentene of the present invention is
Without impairing the unique transparency of poly-4-methyl-1-pentene,
Rather, depending on the case, it can be made with excellent transparency, and can also improve mechanical properties and heat resistance.
Therefore, these products can be used in fields where transparency and heat resistance are required, such as home appliances such as microwave trays, fans, lamp covers, and laboratory equipment such as beakers and test tubes. It can be molded by various molding methods such as injection molding, blow molding, sheet molding, film molding, and lamic coat molding.

〔実 施例〕〔Example〕

次に実施例を挙げて本発明を切に詳しく説明するが1本
発明はその要旨を越えない限シこれらの例に何ら制約さ
れるものではない。
Next, the present invention will be explained in detail with reference to examples, but the present invention is not limited to these examples in any way as long as the gist thereof is not exceeded.

なお、実施例および比較例において使用した試験片の作
成方法ならびに緒特性の評価方法は次のとおりである。
The method for preparing the test pieces and the method for evaluating the properties of the test pieces used in the Examples and Comparative Examples are as follows.

試験片の作成 (、所定の割合からなる組成物を混合し、3Qmmφベ
ント付−軸押出機により、290℃にて混線・造粒した
。このベレットを用い、下記条件で射出成形機により物
性試験片を作成・しだ。
Preparation of test pieces (A composition consisting of a predetermined ratio was mixed and mixed and granulated at 290°C using a 3Q mmφ vented-screw extruder. Using this pellet, physical property tests were performed using an injection molding machine under the following conditions. Create a piece.

シリンダ一温度=290℃ 射出圧力 :350眩/d 射出速度 :4.Oy/sec 金型温度 :50℃ また、曇度測定のだめの1 m:rn厚さシートは、2
60℃にてプレス成形した。
Cylinder temperature = 290℃ Injection pressure: 350 dazzle/d Injection speed: 4. Oy/sec Mold temperature: 50℃ Also, the 1 m:rn thickness sheet for haze measurement is 2
Press molding was performed at 60°C.

■ MFR ASTM−D−1238に準拠し、260℃の温度で、
荷重5.0 Kりの荷重で測定した。
■ MFR Based on ASTM-D-1238, at a temperature of 260℃,
Measurement was performed under a load of 5.0 K.

■ 〔V〕(極限粘度) デカリン溶液を用い、135℃の温度により、ウベロー
ド型粘度計にて、通常の方法にょ9測定した。
(2) [V] (Intrinsic viscosity) Measurement was carried out using a decalin solution at a temperature of 135° C. using an Ubbelod viscometer in the usual manner.

■ 霞度(ヘイズ) ASTM−1746に準拠し、1 mrn 厚すノフL
/スシートにより測定した。
■ Haze: Based on ASTM-1746, 1 mrn Thickness L
/Measured by sheet.

■ 曲げ弾性率 ASTM−D790に記載された方法 ■ アイゾツト衝撃強度 ASTM−IJ−256に記載された方法■ 砿断点強
度 ASTM−Ll−638に記載された方法■ 熱変形温
度 ASTM−D−648に記載された方法で、荷重4.6
Ky/cJを使用 ■ 鉛筆硬度 JISK5400に準拠した方法 ■ 屈折率 Q、5mmプレスシートによシアツベ屈折計によシ測定 実施例1 4−メチル−1−ペンテン共重合体1:R)(1−デセ
ン含量3モル係、極限粘度〔η)=2.3d看/V、M
FR=36、Mw/Mn=4.Q、融点−235℃、結
晶化度34%、屈折率−1,465)にシリカパウダー
(日本アエロジル社製アエロジル≠300■、5iO2
= 99.5wt% )を10wt%混合し、酸化安定
剤イルガノックス1010(チバガイギー社製)0、2
 w t%、ステアリン酸カルシウム0.3 w t%
添加して、30mrn押出機で、窒素雰囲気下290 
tにて粒状試料を作成した。この試料を100℃、8時
間乾燥したのち、射出成形及びプレス成形にょシ物性評
価用試鹸片を成形した。結果を表1に示した。
■ Bending elastic modulus Method described in ASTM-D790 ■ Izod impact strength Method described in ASTM-IJ-256 ■ Crushing point strength Method described in ASTM-Ll-638 ■ Heat distortion temperature ASTM-D-648 Load 4.6 using the method described in
Using Ky/cJ ■ Method based on pencil hardness JIS K5400 ■ Measurement using a Sheartube refractometer using a 5 mm press sheet with refractive index Q Example 1 4-Methyl-1-pentene copolymer 1:R) (1- Decene content: 3 molar, intrinsic viscosity [η) = 2.3 d/V, M
FR=36, Mw/Mn=4. Q, melting point -235°C, crystallinity 34%, refractive index -1,465) with silica powder (Aerosil≠300■ manufactured by Nippon Aerosil Co., Ltd., 5iO2
= 99.5 wt%) was mixed with 10 wt%, and oxidation stabilizer Irganox 1010 (manufactured by Ciba Geigy) 0, 2
wt%, calcium stearate 0.3 wt%
290 mrn under nitrogen atmosphere in a 30 mrn extruder.
A granular sample was prepared at t. After drying this sample at 100° C. for 8 hours, it was injection molded and press molded into test soap pieces for physical property evaluation. The results are shown in Table 1.

実施例2 実施例1と同じ4−メチル−1−ペンテン共重合体〔R
〕とシリカパウダーを用い、混合量を変えて同様に行っ
た。結果を表1に示した。
Example 2 Same 4-methyl-1-pentene copolymer as Example 1 [R
] and silica powder, and the mixing amount was changed. The results are shown in Table 1.

実施例3 4−メチル−1−ペンテン共重合体[M](1−デセン
含量9モル係、極限粘度〔η) 2.4 d13/y、
M Ii’ Bth−30、Mw/M n = 4.2
、融点=230℃、結晶化度28%、屈折率−1,46
6)に実施例1記載のシリカパウダーを混合し、実施例
1と同様に行った。結果を表1に示した。
Example 3 4-methyl-1-pentene copolymer [M] (1-decene content: 9 molar ratio, intrinsic viscosity [η): 2.4 d13/y,
M Ii' Bth-30, Mw/M n = 4.2
, melting point = 230°C, crystallinity 28%, refractive index -1,46
6) was mixed with the silica powder described in Example 1, and the same procedure as in Example 1 was carried out. The results are shown in Table 1.

実施例4,5 実施例1記載の共重合体[R]にシリカ繊維(Alph
a−Quartz■泉KK、 5in2=99%、直径
10μ、長さ6mrn)を所定量混合し、実施例1と同
様に行った。シリカ繊維は、r−アミノプロピルトリメ
トキシシランで表面処理をした。
Examples 4 and 5 Silica fiber (Alph
A predetermined amount of a-Quartz Izumi KK, 5in2=99%, diameter 10μ, length 6mrn) was mixed and the same procedure as in Example 1 was carried out. The silica fibers were surface treated with r-aminopropyltrimethoxysilane.

結果を表1に示した。The results are shown in Table 1.

実施例6 無水マレイン酸をトルエン溶液中でグラフト反応させて
得たマレイン酸グラフト変性4−メチル−1−ペンテン
共重合体[XR)(1−デセン含量6モル係、マレイン
酸グラフトi1.5wt%、極限粘度−2,6dJ3/
f、Mw/Mn=4.7、融点234℃、結晶化度62
係、屈折率1,467)に、実施例4記載のシリカ繊維
を混合し、実施例1と同様に行った。結果を表1に示し
だ。
Example 6 Maleic acid graft modified 4-methyl-1-pentene copolymer [XR] obtained by grafting maleic anhydride in a toluene solution (1-decene content: 6 mol, maleic acid graft i: 1.5 wt%) , intrinsic viscosity -2,6dJ3/
f, Mw/Mn=4.7, melting point 234°C, crystallinity 62
The same procedure as in Example 1 was carried out except that the silica fiber described in Example 4 was mixed with the silica fiber having a refractive index of 1,467). The results are shown in Table 1.

実施例7 実施例6記載の共重合体(XR)と実施例1記載のシリ
カパウダーを用いる以外は、実施例1と同様に行った。
Example 7 The same procedure as in Example 1 was conducted except that the copolymer (XR) described in Example 6 and the silica powder described in Example 1 were used.

結果を表1に示しだ。The results are shown in Table 1.

比較例1〜3 表1に示した共重合体を用い、30mmφ押出機で造粒
後実施例1と同様に行った。結果を表1に示した。
Comparative Examples 1 to 3 Using the copolymers shown in Table 1, granulation was performed in the same manner as in Example 1 using a 30 mmφ extruder. The results are shown in Table 1.

比較例4 実施例1記載の共重合体[R)にホワイトカーボン(■
トクシールUR徳山曹達KK製、5in2=86旬を混
合し、実施例1と同様に行った。
Comparative Example 4 White carbon (■
Tokuseal UR manufactured by Tokuyama Soda KK, 5 in 2 = 86 pieces was mixed and the same procedure as in Example 1 was carried out.

結果を表1に示した。The results are shown in Table 1.

比較例5 実施例1記載の共重合体[R)にホワイトカーボンにツ
ブシールVN3:日本シリカKK[,5i02=86%
)を混合し、実施例1と同様に行った。結果を表1に示
しだ。
Comparative Example 5 Copolymer [R) described in Example 1, white carbon, Tsubu Seal VN3: Nippon Silica KK [,5i02=86%
) and the same procedure as in Example 1 was carried out. The results are shown in Table 1.

特に、比較例4,5の試料は、成形時に発泡現象がみら
れた。
In particular, the samples of Comparative Examples 4 and 5 exhibited a foaming phenomenon during molding.

比較例6Comparative example 6

Claims (1)

【特許請求の範囲】[Claims] (1) ポリ4−メチル−1−ペンテンに二酸化ケイ素
を95重量%以上含有するガラス補強材を5〜40重侶
チ配合してなることを特徴とするガラス強化ポリ4−メ
チル−1−ペンテン。 (2J ;’r:飽和カルボン酸またはその誘導体をグ
ラフトした変性ポリ4−メチル−1−ペンテンを併用す
る特許請求の範囲第1項記載のカラス強化ポリ4−メチ
ル−1−ペンテン。
(1) Glass-reinforced poly-4-methyl-1-pentene characterized by blending 5 to 40 polymers of glass reinforcing material containing 95% by weight or more of silicon dioxide to poly-4-methyl-1-pentene. . (2J;'r: The glass-reinforced poly-4-methyl-1-pentene according to claim 1, which is used in combination with a modified poly-4-methyl-1-pentene grafted with a saturated carboxylic acid or a derivative thereof.
JP59085189A 1984-04-28 1984-04-28 Glass-reinforced poly-4-methyl-1-pentene composition and glass-reinforced modified poly-4-methyl-1-pentene composition Expired - Lifetime JPH0713163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59085189A JPH0713163B2 (en) 1984-04-28 1984-04-28 Glass-reinforced poly-4-methyl-1-pentene composition and glass-reinforced modified poly-4-methyl-1-pentene composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59085189A JPH0713163B2 (en) 1984-04-28 1984-04-28 Glass-reinforced poly-4-methyl-1-pentene composition and glass-reinforced modified poly-4-methyl-1-pentene composition

Publications (2)

Publication Number Publication Date
JPS60229941A true JPS60229941A (en) 1985-11-15
JPH0713163B2 JPH0713163B2 (en) 1995-02-15

Family

ID=13851706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59085189A Expired - Lifetime JPH0713163B2 (en) 1984-04-28 1984-04-28 Glass-reinforced poly-4-methyl-1-pentene composition and glass-reinforced modified poly-4-methyl-1-pentene composition

Country Status (1)

Country Link
JP (1) JPH0713163B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988006610A1 (en) * 1987-03-03 1988-09-07 Mitsui Petrochemical Industries, Ltd. Fiber-reinforced heat-resistant polyolefin composition
JPH01139603U (en) * 1988-03-17 1989-09-25
JPH0313012U (en) * 1989-06-20 1991-02-08

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527469A (en) * 1975-07-02 1977-01-20 Tokyo Electric Co Ltd Kneading machine for wheat powder and like
JPS5875707A (en) * 1981-10-30 1983-05-07 旭化成株式会社 Polyolefin based electroconductive material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527469A (en) * 1975-07-02 1977-01-20 Tokyo Electric Co Ltd Kneading machine for wheat powder and like
JPS5875707A (en) * 1981-10-30 1983-05-07 旭化成株式会社 Polyolefin based electroconductive material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988006610A1 (en) * 1987-03-03 1988-09-07 Mitsui Petrochemical Industries, Ltd. Fiber-reinforced heat-resistant polyolefin composition
JPH01139603U (en) * 1988-03-17 1989-09-25
JPH0313012U (en) * 1989-06-20 1991-02-08

Also Published As

Publication number Publication date
JPH0713163B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
US5179164A (en) Thermoplastic polypropylene/polyamide molding composition
US4871805A (en) Polypropylene composition
US4113806A (en) Polypropylene impact blends having improved optical properties
KR20080048473A (en) Molding-compositions composed of filler-reinforced thermoplastic material with very good scratch resistance and soft-touch feel
JP2019163354A (en) Resin composition, method for producing resin composition, and molded body
CA2362563A1 (en) Polypropylene and polyester blends containing a graft-modified polyolefin elastomer
US4501827A (en) Glass-reinforced polymer composition comprising 4-methyl-1-pentene polymer in combination with a graft modified acid polymer of 4-methyl-1-pentene polymer
US4707505A (en) Glass fiber reinforced propylene-ethylene copolymer base resin composition
JPS6386706A (en) Diels-alder graft polymer
JPS60229941A (en) Glass-reinforced poly-4-methyl-1-pentene
JPH051184A (en) Propylene resin composition
KR20050120212A (en) Yellow earth resin composition emitting far-infrared rays and polymer articles having improved mechanical properties and esthetic surface characteristics manufactured using the same
US20040082696A1 (en) Polypropylene resin composition with improved surface hardness and scratch resistance properties
JPH03290453A (en) Polypropylene resin composition
Järvelä et al. Dynamic mechanical and mechanical properties of polypropylene/poly (vinyl butyral)/mica composites
JP3338247B2 (en) Thermoplastic polymer composition
JP3338255B2 (en) Thermoplastic resin composition
JPH08143739A (en) Fiber-reinforced polypropylene composition
JPS6333442A (en) Polyolefin composition
JP2885883B2 (en) Propylene resin composition
JPS58215439A (en) Reinforced poly-4-methyl-1-pentene composition
JPH0318661B2 (en)
JPS608346A (en) Manufacture of polyethylene molded article having excellent transparency
JPS6333440A (en) Polyolefin composition
JPS6090239A (en) Glass fiber-reinforced propylene based resin composition