JPS60229501A - Direct current blocking circuit - Google Patents

Direct current blocking circuit

Info

Publication number
JPS60229501A
JPS60229501A JP59086417A JP8641784A JPS60229501A JP S60229501 A JPS60229501 A JP S60229501A JP 59086417 A JP59086417 A JP 59086417A JP 8641784 A JP8641784 A JP 8641784A JP S60229501 A JPS60229501 A JP S60229501A
Authority
JP
Japan
Prior art keywords
impedance
input
output
circuit
blocking circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59086417A
Other languages
Japanese (ja)
Inventor
Mitsuo Makimoto
三夫 牧本
Sadahiko Yamashita
山下 貞彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59086417A priority Critical patent/JPS60229501A/en
Publication of JPS60229501A publication Critical patent/JPS60229501A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguides (AREA)

Abstract

PURPOSE:To relax the prescribed precision of geometric size and to improve the yield of manufacture by widening the line width of a coupling part and widening a line interval. CONSTITUTION:A distribution coupled circuit is expressed by the thickness H of a substrate, specific dielectric constant Er, line width W, and line interval S in terms of structure. Then, a load (ZL) 32 is connected to the output terminal 16 of the distribution coupled circuit 21 and a power source 24 with power source impedance (ZO) 22 is connected to the input terminal 15. The distribution coupled circuit functions as an impedance transformer as shown by an equation I. Then, the distribution coupled circuit is provided with the function of the impedance transformer as well as a DC cutoff function and ZOe-ZOO is decreased. The input/output impedance of a semiconductor is normally <=50OMEGA, so the addition of the impedance transformer function is suitable for practical circuit design. When ZL=12.5OMEGA and ZO=50OMEGA, an equation II holds. When an alumina substrate is used and S=W in design, W/H=S/H=0.34, which is about three times as large as before, so the design and manufacture are extremely easy.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ストl)ノブ線路分布結合直流阻止回路に関
するもので、マイクロ波・ミリ波集積回路の能動回路に
用いられるものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a (1) knob line distributed coupling DC blocking circuit, which is used in an active circuit of a microwave/millimeter wave integrated circuit.

従来例の構成とその問題点 最近、マイクロ波・ミリ波回路の集積回路化が活発に行
なわれ、数多くの・・イブリッドIC,モノリシックI
Cが開発されている。1だ]゛ランジスタ、ダイオード
等の能動素子を用いる場合仁1、直流電圧・電流を素子
に供給する必要があるが、外部回路に対してこれが印加
されては不都合なことが多く必ず能動回路の入出力には
直流閉止回路を設けることが要求される。周波数が低い
場合は、集中定数容量を用いれば問題はないが、周波数
がマイクロ波領域に達すると波長に比し、素子の大きさ
が無視できなくなるとともに、容量として機能しなくな
るため通常の小型のチノプキャパシタでも用いることは
できない。また集中定数素子を小型化したインターディ
ジタル構造のキャパシタ31\−7 を基板上にパターン成形して用いる場合もある力(実現
できる容量値に限界があり、また容量値を大きくするた
めに微細構造とすると歩留りが極端に悪くなるために適
用範囲にも限界があった。
Conventional configurations and their problems Recently, microwave and millimeter wave circuits have been actively integrated into integrated circuits, and a large number of... hybrid ICs, monolithic ICs, etc.
C has been developed. 1] When using active elements such as transistors and diodes, it is necessary to supply DC voltage and current to the element, but if this is applied to the external circuit, it is often inconvenient and will always cause damage to the active circuit. It is required to provide a DC closed circuit for input and output. When the frequency is low, there is no problem if a lumped constant capacitor is used, but when the frequency reaches the microwave region, the size of the element becomes impossible to ignore compared to the wavelength, and it no longer functions as a capacitor, so a normal small capacitor cannot be used. Even tinopucapacitors cannot be used. In addition, capacitors with an interdigital structure in which lumped constant elements are miniaturized31\-7 are sometimes used by patterning them on the substrate (there is a limit to the capacitance value that can be achieved, and in order to increase the capacitance value, a fine structure is used). If so, the yield would be extremely poor and there would be a limit to the range of application.

以上より、集中定数キャパシタの適用が困難となるマイ
クロ波帯においては直流阻止回路としてしばしば用いら
れるのは、第1図(&) 、 (b)に示す先端開放型
の分布結合回路である。
From the above, in the microwave band where it is difficult to apply lumped constant capacitors, the open-ended distributed coupling circuit shown in FIGS. 1(&) and (b) is often used as a DC blocking circuit.

第1図に示すこの回路の厚さHの誘電体基板13に接地
導体14と線路中W2間隔Sの二つの導体11.12i
設けて構成される。二つの線路の一端はそれぞれ反対側
で開放されており一他端は入力端子16.出力端子16
となり、二つの線路を分布結合させると同時に直流阻止
の機能をもたせている。
In this circuit shown in FIG. 1, a dielectric substrate 13 with a thickness H, a ground conductor 14, and two conductors 11.12i with a distance W2 in the line S.
provided and configured. One end of the two lines is open on the opposite side, and the other end is connected to the input terminal 16. Output terminal 16
This provides distributed coupling between the two lines and at the same time has a DC blocking function.

壕だ、結合長は使用する中・0周波数で四分の一波長と
なるように選定される。
However, the coupling length is selected to be a quarter wavelength at the mid-zero frequency used.

第1図に示した分布結合回路は構造的には基板の厚さH
2比誘電率Or および線路中W、線路間隔Sで表現す
る。また、線路中1量隔は厚さHで規格化してW/H、
S/H(i7用いることも多い。
The distributed coupling circuit shown in Fig. 1 is structurally based on the substrate thickness H.
It is expressed by 2 relative permittivity Or, line length W, and line spacing S. In addition, the interval in the line is standardized by the thickness H, W/H,
S/H (i7 is often used.

電気的なパラメータとしては偶モード・インピーダンス
Z。oI奇モード・インピーダンス2゜0であられされ
る。
Even mode impedance Z is an electrical parameter. The oI odd mode impedance is 2°0.

さて、第2図に示すように、分布結合回路21の出力端
16に負荷(Zb)23’(rつなぎ、入力端15に電
源インピーダンス(Zo)22をもつ電源24が接続さ
れている場合を考える。
Now, as shown in FIG. 2, consider the case where a load (Zb) 23' (r connection is connected to the output terminal 16 of the distributed coupling circuit 21, and a power supply 24 having a power supply impedance (Zo) 22 is connected to the input terminal 15. think.

分布結合回路21の電気長を900 (結合長が四分の
一波長)に選択するとき、その基本行列CF)は ・・・・ (1) となる。出力側にZL なる負荷を接続し、入力端子1
6からみたインピーダンスヲZよ とするとZi−(コ
(Zoo−Zoo)/21/lコ ZLa2し/【Zo
s −200)1−(ZOo−Z。0V4ZL ・・・
・ 俊)となる。
When the electrical length of the distributed coupling circuit 21 is selected to be 900 (coupling length is a quarter wavelength), its fundamental matrix CF) becomes... (1). Connect the load ZL to the output side, and connect the input terminal 1
If the impedance seen from 6 is Z, then Zi-(ko(Zoo-Zoo)/21/lko ZLa2/[Zo
s -200)1-(ZOo-Z.0V4ZL...
・Shun).

入力端で整合をとるためにはZ工=Zoでなければなら
ない。したがって、 Zo8−Zo。−ヘ電入=2h評互 ・・・・・・ (
3)通常の直流素子回路ではZ0=zL二60Ωとして
設計される。すなわち、 z。、−’Z、、。: 2Zo:100 (Ω) 、、
、・(4)が、通常の直流素子回路の設計条件である。
In order to achieve matching at the input end, Z must be equal to Zo. Therefore, Zo8-Zo. - Power input = 2h evaluation ...... (
3) A normal DC element circuit is designed with Z0=zL260Ω. That is, z. ,−'Z,,. : 2Zo:100 (Ω) ,,
, (4) are the design conditions for a normal DC element circuit.

い1、マイクロ波帯でもつともよく利用されているアル
ミナ基板(比誘電率Cr=9.ei)で、S−Wなる条
件で設計すると、W/H=S /H−0,12となる。
1. If an alumina substrate (relative dielectric constant Cr=9.ei), which is often used in the microwave band, is designed under the condition of S-W, W/H=S/H-0,12.

(但し、このときZ。。=154.Zoo:54Ω)基
板厚がI MM程度であると、W−8−0,12鞘とな
り精度よく製作できる。しかしながら、ミリ波帯では0
.2ff厚の基板も利用するため、この場合には5=W
=0.02411111となり、精度よく実現するには
、高度の技術が要求され、さらには、生産歩留も悪く、
コスト高の要因ともなる。また線路間隔が十分とれない
ために耐圧の点でも問題を有していた。
(However, in this case, Z..=154.Zoo: 54Ω) If the substrate thickness is about IMM, it becomes a W-8-0,12 sheath and can be manufactured with high precision. However, in the millimeter wave band, 0
.. Since a 2ff thick substrate is also used, in this case 5=W
= 0.02411111, and achieving it with high precision requires advanced technology, and furthermore, the production yield is poor.
It also causes high costs. Furthermore, because the lines were not spaced sufficiently apart, there was also a problem in terms of withstand voltage.

発明の目的 本発明は、上記欠点に鑑み、結合部の線路rIJを広く
、線路間隔を広げることにより、幾例学的−j−法に対
する要求精度を緩和し、製作歩留りを向上させる直流阻
止回路を捉供するものである。
Purpose of the Invention In view of the above-mentioned drawbacks, the present invention provides a direct current blocking circuit which widens the line rIJ of the coupling part and widens the line spacing, thereby relaxing the precision required for the geometrical -j- method and improving the manufacturing yield. It is intended to capture and provide information.

のストリップ導体と、一端が出力端子、他端が開放とな
っている第2のストリップ導体との中および長さを略等
しくシ、かつ入出力が逆になるように平行に配置した分
布結合線路の偶モードインピーダンスと奇モードインピ
ーダンスとの差が入出力インピーダンスの2倍よりも小
さくすることにより、上記目的を達するものである。
A distributed coupling line in which a strip conductor is arranged in parallel with a second strip conductor having an output terminal at one end and an open end at the other end so that the inside and length are approximately equal and the input and output are reversed. The above objective is achieved by making the difference between the even mode impedance and odd mode impedance of the input/output impedance smaller than twice the input/output impedance.

実施例の説明 以下本発明の第1の実施例について説明する。Description of examples A first embodiment of the present invention will be described below.

1ず第(3)式で示したように分布結合線路はインピー
ダンス変成器としての機能をもつ。そこで、7 べ−2 分布結合部(路を直流阻止の機能と同時にインピーダン
ス変成器としての機能をもたせてZ。e−Zo。
First, as shown in equation (3), the distributed coupled line has a function as an impedance transformer. Therefore, the 7-be-2 distributed coupling section (Z.

を小さくする。半導体素子の入出力インピーダンスは一
般に50Ωより小さくなるので、インピーダンス変成機
能を付加することは、現実の回路設計にとっても好都合
となる。い1第2図でZL−12,60,zo=6oΩ
とすると zos ”oo = 2E♂に12.5−5o(、Q)
となる。アルミナ基板(Or=9.s)i用い、S=W
で設計するとW/H=S/H=0.34 (この時Z0
6== 103 、 zoo = 53となる。)とな
り、従来に比し、約3倍となるため設計・製作はきわめ
て容易となる。
Make smaller. Since the input/output impedance of a semiconductor element is generally smaller than 50Ω, adding an impedance transformation function is convenient for actual circuit design. 1 In Figure 2, ZL-12, 60, zo=6oΩ
Then, zos ”oo = 2E♂ to 12.5-5o(,Q)
becomes. Using alumina substrate (Or=9.s) i, S=W
When designing with W/H=S/H=0.34 (at this time Z0
6==103, zoo=53. ), which is approximately three times as large as before, making design and production extremely easy.

以下、本発明の第2の実施例について説明する。A second embodiment of the present invention will be described below.

第3図は本発明の第2の実施例における直流阻止回路の
平面図である。第4図に示すように分布結合線路36の
入出力に線路インピーダンスがZTなる四分の一波長変
成器33.34を設ける。このように入出力に変成器が
構成されると、結合部の(Zoa ”oo )を低くで
きるので前述のように結合部の設計が容易となる。
FIG. 3 is a plan view of a DC blocking circuit in a second embodiment of the present invention. As shown in FIG. 4, quarter-wavelength transformers 33 and 34 whose line impedance is ZT are provided at the input and output of the distributed coupling line 36. When transformers are configured at the input and output in this manner, the (Zoa ``oo'') of the coupling section can be lowered, so that the design of the coupling section becomes easier as described above.

第3図において、入出力インピーダンス(200Ω、変
成器インピーダンスZt’に2tsΩとすると、結合部
での入出力インピーダンスはzT/60:25150;
12.5ΩとなるためZ。、ZOO=2V「ラ−「又コ
ーΣ5=25(Ω)となり、その差を極めて小さくでき
る。前記同様に、アルミナ基板を用い、W=5なる条件
で設計すると、W/H−S/H=0.63となり、従来
に比し、線路間隔。
In Fig. 3, if the input/output impedance is 200Ω and the transformer impedance Zt' is 2tsΩ, the input/output impedance at the coupling part is zT/60:25150;
Z because it becomes 12.5Ω. , ZOO=2V "R" and C Σ5=25 (Ω), and the difference can be made extremely small.Similarly to the above, if an alumina substrate is used and designed under the condition of W=5, W/H-S/H = 0.63, which means that the line spacing is lower than before.

線路中とも約6倍にして設計が可能となり、製作がさら
に容易となる。
It is now possible to design the inside of the track by about 6 times as large, making manufacturing even easier.

以下、本発明の第3の実施例について説明すも第4図は
本発明の第3の実施例における直流阻止回路の平面図で
ある。
A third embodiment of the present invention will be described below, and FIG. 4 is a plan view of a DC blocking circuit in the third embodiment of the present invention.

第3図の実施例では入出力インピーダンスが等しく50
Ωにした場合のものであるが、本実施例では入出力イン
ピーダンスが異なった場合のものである。(ただし、分
布結合部はインピーダンス変成機能はもたない。) 9 ヘーノ 第4図において、41は高入力インピーダンス側の入力
端子、33は四分の一波長変成器、35は分布結合部、
42は低インピーダンス側の出力端子である。前述した
ように、半導体素子は一般に60Ωより低くなることが
多いから、直流阻止機能をもつ分布結合回路の能動素子
側は60Ω以下となることが望しい。第1の実施例では
分布結合回路自体にインピーダンス変成機能をもたせた
が、第4図に示すごとく広帯域化する場合は四分の一波
長変成器を用いるほうが有利で、かつ分布結合部の設計
も容易となる。
In the embodiment shown in FIG. 3, the input and output impedances are equal to 50.
Ω, but in this embodiment, the input and output impedances are different. (However, the distributed coupling section does not have an impedance transformation function.) 9 In Fig. 4, 41 is the input terminal on the high input impedance side, 33 is the quarter wavelength transformer, 35 is the distributed coupling section,
42 is an output terminal on the low impedance side. As described above, since semiconductor elements generally have a resistance of less than 60Ω, it is desirable that the resistance of the active element side of a distributed coupling circuit having a DC blocking function be 60Ω or less. In the first embodiment, the distributed coupling circuit itself has an impedance transformation function, but as shown in Fig. 4, when widening the band, it is more advantageous to use a quarter-wavelength transformer, and the design of the distributed coupling section is also easier. It becomes easier.

発明の効果 以上述べたように本発明は、線路中1間隔とも数倍に広
げて設計可能となるため、パターン精度に対する要求が
緩和され製品歩留りに大きく寄与するとともに、インピ
ーダンス変換機能をもつため回路設計の自由度が拡大す
るものであり、その工業的価値はきわめて大きい。
Effects of the Invention As described above, the present invention enables designing with each spacing in the line several times wider, which eases the requirement for pattern accuracy and greatly contributes to product yield. The degree of freedom in design is expanded, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(IL) 、 (b)は従来のストリップ線路分
布結合直流阻止回路の断面図、第2図は分布結合回路の
入出力インピーダンスをめるための概略図、第3図は本
発明の第2の実施例における直流阻止回路の平面図、第
4図は本発明の第3の実施例における直流阻止回路の平
面図である。 21.35・・・・・・分布結合回路、33.34・・
・・・四分の一波長インピーダンス変成器、15,31
゜41・・・・・・入力端子、18.32.42・・・
・・出力端子。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名(Z
oo) 2へ 手続補正書 昭和69年// 月/lI[1 特許庁長官殿 ネ l事件の表示 昭和69年15″許願第 86417rL2発明の名称 直流阻止回路 3補正をする者 事件との関係 1,1゛ 許 出 願 人任 所 大阪
府門真市大字門真1006番地名 称 (5g2)松下
電器産業株式会ン14代表者 111 下 俊 彦 4代理人 〒571 住 所 大阪府門真市大字門真1006番地松下電器産
業株式会社内 5補正の対象 6、補正の内容 (1)明細書第3頁第19行の「比誘電率Cr」を[比
誘電率ErJ に補正し筐す。 (2)同第8頁第9行の[w = 5 Jを1w=sj
に補正します。 (3)図面の第1図を別紙のとおり補正し捷す。 第1図 (α) 7 (ZN) (i!to ) (bン −P
Figures 1 (IL) and (b) are cross-sectional views of a conventional stripline distributed coupling DC blocking circuit, Figure 2 is a schematic diagram for determining the input and output impedance of the distributed coupling circuit, and Figure 3 is a diagram of the present invention. FIG. 4 is a plan view of the DC blocking circuit in the second embodiment of the present invention, and FIG. 4 is a plan view of the DC blocking circuit in the third embodiment of the present invention. 21.35...distributed coupling circuit, 33.34...
... Quarter wavelength impedance transformer, 15, 31
゜41... Input terminal, 18.32.42...
...Output terminal. Name of agent Patent attorney Toshio Nakao and one other person (Z
oo) Procedural amendment to 2 1986//Mon/lI [1 Indication of the case by the Commissioner of the Patent Office 1988 15'' Patent Application No. 86417rL2 Name of the invention Direct current blocking circuit 3 Relationship with the amended person case 1 ,1゛ Application Person Address 1006 Kadoma, Kadoma City, Osaka Name (5g2) Matsushita Electric Industrial Co., Ltd. 14 Representative 111 Toshihiko Shimo 4 Agent 571 Address 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. 5 Target of amendment 6, Contents of amendment (1) Correct the "relative permittivity Cr" on page 3, line 19 of the specification to [relative permittivity ErJ]. (2) [w = 5 J to 1w = sj on page 8, line 9]
will be corrected. (3) Figure 1 of the drawings shall be corrected and edited as shown in the attached sheet. Figure 1 (α) 7 (ZN) (i!to) (bn-P

Claims (3)

【特許請求の範囲】[Claims] (1)一端が人出端子、他端が開放となっている第1の
ストリップ導体と、一端が出力端子、他端が開放となっ
ている第2のストリップ導体との「1]および長さを略
等しくし、かつ入出力が逆になるように平行に配置した
分布結合線路の偶モードインビーダンスト奇モードイン
ピーダンスとの差が入出力インピーダンスの2倍より小
さくした直流阻止回路。
(1) "1" and length of the first strip conductor, which has an output terminal at one end and is open at the other end, and the second strip conductor, which has an output terminal at one end and is open at the other end. A direct current blocking circuit in which the difference between the even mode impedance and the odd mode impedance of distributed coupled lines arranged in parallel so that the input and output impedances are substantially equal and the input and output are reversed is less than twice the input and output impedance.
(2)分布結合線路の入出力端子にそれぞれ四分の一波
長インピーダンス変成器を設けたことを特徴とする特許
請求の範囲第1項記載の直流阻止回路。
(2) A DC blocking circuit according to claim 1, characterized in that a quarter wavelength impedance transformer is provided at each of the input and output terminals of the distributed coupling line.
(3)分布結合線路の入力、あるいは出力のいずれか一
方に四分の一波長インピーダンス変成器を有することを
特徴とする特許請求の範囲第1項記載の直流阻止回路。 2べ
(3) The DC blocking circuit according to claim 1, further comprising a quarter-wavelength impedance transformer at either the input or output of the distributed coupling line. 2be
JP59086417A 1984-04-27 1984-04-27 Direct current blocking circuit Pending JPS60229501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59086417A JPS60229501A (en) 1984-04-27 1984-04-27 Direct current blocking circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59086417A JPS60229501A (en) 1984-04-27 1984-04-27 Direct current blocking circuit

Publications (1)

Publication Number Publication Date
JPS60229501A true JPS60229501A (en) 1985-11-14

Family

ID=13886299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59086417A Pending JPS60229501A (en) 1984-04-27 1984-04-27 Direct current blocking circuit

Country Status (1)

Country Link
JP (1) JPS60229501A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5528202A (en) * 1992-08-27 1996-06-18 Motorola, Inc. Distributed capacitance transmission line
EP1011166A1 (en) * 1998-12-07 2000-06-21 Robert Bosch Gmbh Microwave coupling element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037990A (en) * 1973-08-09 1975-04-09
JPS58129802A (en) * 1982-01-26 1983-08-03 Matsushita Electric Ind Co Ltd Distribution coupled circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037990A (en) * 1973-08-09 1975-04-09
JPS58129802A (en) * 1982-01-26 1983-08-03 Matsushita Electric Ind Co Ltd Distribution coupled circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5528202A (en) * 1992-08-27 1996-06-18 Motorola, Inc. Distributed capacitance transmission line
EP1011166A1 (en) * 1998-12-07 2000-06-21 Robert Bosch Gmbh Microwave coupling element
US6388538B1 (en) * 1998-12-07 2002-05-14 Robert Bosch Gmbh Microwave coupling element

Similar Documents

Publication Publication Date Title
US5497137A (en) Chip type transformer
TrifunoviC et al. Review of printed Marchand and double Y baluns: Characteristics and application
US5025232A (en) Monolithic multilayer planar transmission line
US5109205A (en) Millimeter wave microstrip shunt-mounted pin diode switch with particular bias means
US4479100A (en) Impedance matching network comprising selectable capacitance pads and selectable inductance strips or pads
US9673504B2 (en) Miniaturized multi-section directional coupler using multi-layer MMIC process
US3965445A (en) Microstrip or stripline coupled-transmission-line impedance transformer
JPH0783217B2 (en) Fine line structure
US4484156A (en) Transistor microwave oscillators
US4547745A (en) Composite amplifier with divider/combiner
US6351192B1 (en) Miniaturized balun transformer with a plurality of interconnecting bondwires
US4275364A (en) Resonant element transformer
JPS58115901A (en) Strip line type power divider/combiner with resistance element
US3678433A (en) Rf rejection filter
US3735267A (en) Balanced mixer
US4288761A (en) Microstrip coupler for microwave signals
KR100529581B1 (en) Wilkinson power divider with compensation capacitor/inductor
KR930004493B1 (en) Planar airstripline stripline magic tee
JP2840814B2 (en) Chip type transformer
Sahoo et al. Design of an ultrawideband planar Guanella balun
US4749969A (en) 180° hybrid tee
JPS60229501A (en) Direct current blocking circuit
JP3175876B2 (en) Impedance transformer
JPS5930323B2 (en) Reflection-free termination for strip line
US4251784A (en) Apparatus for parallel combining an odd number of semiconductor devices