JPS58129802A - Distribution coupled circuit - Google Patents

Distribution coupled circuit

Info

Publication number
JPS58129802A
JPS58129802A JP1070682A JP1070682A JPS58129802A JP S58129802 A JPS58129802 A JP S58129802A JP 1070682 A JP1070682 A JP 1070682A JP 1070682 A JP1070682 A JP 1070682A JP S58129802 A JPS58129802 A JP S58129802A
Authority
JP
Japan
Prior art keywords
coupling
line
parallel
input
projecting parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1070682A
Other languages
Japanese (ja)
Other versions
JPH0134404B2 (en
Inventor
Mitsuo Makimoto
山下貞彦
Sadahiko Yamashita
牧本三夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1070682A priority Critical patent/JPS58129802A/en
Publication of JPS58129802A publication Critical patent/JPS58129802A/en
Publication of JPH0134404B2 publication Critical patent/JPH0134404B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To increase the band of a filter which uses a distribution coupled circuit and to obtain a large impedance ratio by empolying the same photoetching technique and increasing the degree of coupling of a parallel coupled line greatly. CONSTITUTION:One input/output line (i.e. part of a resonator) 31 is divided into projecting parts 33 and 34 having narrow line width. The other line 32 is divided into projecting parts 35 and 36. They are set in parallel and adjacent projecting parts 33 and 35, and 34 and 36 form parallel coupling part consitution which has coupling length lambdag/4 and coupling intervals S1 and S2. When S1= S2<S3 where S3 is the interval between the projecting parts 35 and 36, the design of the coupling part is facilitated. Consequently, two parallel coupling parts are obtained and the line width is decreased, so the couplig is reinforced and the size of the coupling part is reduced.

Description

【発明の詳細な説明】 本発明ハ、VHF−8HF帯ニオける、TEM線路を用
いた分布結合回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a distributed coupling circuit using a TEM line in the VHF-8HF band.

2、:・ 第1図に従来より実用化されているマイクロストリップ
線路を用いた帯域通過フィルタの例を示す。(ここで説
明する線路構造は以下すべてマイクロストリップ線路で
行う。ストリップ線路の場合も同様であるので特に線路
構造を区別しての説明は行なわない。) 図において、11は誘電体基板、12は導体膜で形成さ
れる接地導体、13〜17はフォトエツチング等の技術
を利用して所定のパターンに作られた導体である。
2.: Figure 1 shows an example of a bandpass filter using a microstrip line that has been put into practical use. (The line structures explained here are all based on microstrip lines. The same applies to strip lines, so we will not specifically explain the line structures separately.) In the figure, 11 is a dielectric substrate, and 12 is a conductor. The ground conductors 13 to 17 formed of a film are conductors formed into a predetermined pattern using techniques such as photoetching.

このうち13.14は入出力線路、15,16゜合、お
よび入出力と共振器間の結合は互に平行し、区間は、共
振器間結合(たとえば共振線路15と共振線路16)は
結合度が小さいため線路間の間隔が広く、入出力の結合
(たとえば入力線路13と共振線路16)は結合度が共
振器間結合に比し1桁程度大きくなるため、線路間隔も
狭く、かつインピーダンス結合上線路の幅も狭くする必
要が3ページ ある。第2図に入力結合部の詳細を示す。第1図と同一
の番号は全く同一のものを表わす。図でわかるように入
力線路13と共振線路16との間に平行結合部間の間隔
はSで示されている。第2図に示す分布結合回路の等価
回路は第3図に示す通りである。41.42は入出力端
子、43 、44線路、46はアドミタンス・インバー
タ(パラメータJo)を表わす。(第2図および第3図
の関係は、M、Makimoto et、aj2  B
andpass FiltersUsing Para
llel Coupled 5tripline St
eppedImpedance Re5onators
  、 IEEE M、T、TVoL、MTT−28、
h112. Dec 1980.PP1413〜141
了に導出されている。
Of these, 13 and 14 are input and output lines, 15 and 16 degrees, and the coupling between the input and output and the resonator are parallel to each other, and the section between the resonators (for example, the resonance line 15 and the resonance line 16) is Since the line spacing is small, the spacing between the lines is wide, and the coupling degree of input/output coupling (for example, the input line 13 and the resonant line 16) is about an order of magnitude larger than that of the inter-resonator coupling, so the line spacing is narrow and the impedance There are three pages in which the width of the line must be narrowed for connection purposes. FIG. 2 shows details of the input coupling section. The same numbers as in FIG. 1 represent exactly the same things. As can be seen in the figure, the spacing between the parallel couplings between the input line 13 and the resonant line 16 is designated by S. The equivalent circuit of the distributed coupling circuit shown in FIG. 2 is as shown in FIG. 41 and 42 represent input/output terminals, 43 and 44 lines, and 46 an admittance inverter (parameter Jo). (The relationship between Figures 2 and 3 is M, Makimoto et, aj2 B
andpass FiltersUsing Para
llel Coupled 5tripline St
eppedImpedance Re5onators
, IEEE M,T, TVoL, MTT-28,
h112. Dec 1980. PP1413-141
It has been derived completely.

第3図の回路の1行列を〔Fa)とおくと1を虚数とこ
ろ士第2図に示した従来の分布結合回路では入力線路1
3と共振線路16の平行結合部の間隔Sであられされる
ギャップ20は、基板11の厚さH(第1図すに示す。
Letting 1 matrix of the circuit in Fig. 3 be [Fa], 1 is an imaginary number.In the conventional distributed coupling circuit shown in Fig. 2, the input line 1
The gap 20 formed by the distance S between the parallel coupling portion of the resonant line 16 and the parallel coupling portion of the resonant line 16 is the thickness H of the substrate 11 (as shown in FIG. 1).

)が一定であれば、結合度が大きくなると狭くなる。結
合度は、フィルタの通過帯域幅C2比例して増大するか
ら、ギャップ間隔Sはフィルタの通過帯域幅に0逆比例
する。ところが、ギャップ間隔Sは、フォトエツチング
の精度上限界があシ、ある一定値以下にすることはでき
ない。従って基板11の厚さHが指定されたならば、実
現できるフィルタの帯域幅の上限はフォトエツチングの
精度上決められてしまうものである。これ以上の帯域幅
のフィルタを実現するためには、基板11の厚さHを大
にしてSを大きくする必要(結合度はS/Hが一定であ
れば同一の値となる)があり、回路パターン自体も大き
くなり、コスト上昇を伴うことになる。
) is constant, it becomes narrower as the degree of coupling increases. Since the degree of coupling increases in proportion to the passband width C2 of the filter, the gap interval S is inversely proportional to the passband width of the filter. However, the gap distance S cannot be set below a certain value because there is a limit to the accuracy of photoetching. Therefore, once the thickness H of the substrate 11 is specified, the upper limit of the bandwidth of the filter that can be realized is determined by the accuracy of photoetching. In order to realize a filter with a wider bandwidth than this, it is necessary to increase the thickness H of the substrate 11 and increase S (the degree of coupling is the same value if S/H is constant). The circuit pattern itself also becomes larger, leading to an increase in cost.

本褪明は、同一のフォト・エツチング技術を用いて平行
結合線路の結合度を大幅に大きくできる6ページ 結合回路を提供するものであシ、その基本構成を第4図
に示す。図において31.32は入出力線路(あるいは
共振器の一部とみなしてもよい)で、線路31は線路幅
の狭い突出部33.34に分割され、同じく線路32は
、突出部35.36に分割される。そして互に平行し隣
接する突出部33゜S2 で結合する平行結合部構成を
とる。また図において突出部35.36の間隔を83 
とし、5l−82〈S3 とすると、結合部の設計が容
易となる。また図から明らかなように、平行結合部は、
2ケ所となり、線路幅も小さくできるため、結合の増大
とともに、結合部の小型化も実現可能となる。
The present invention provides a 6-page coupling circuit which can greatly increase the degree of coupling of parallel coupling lines using the same photo-etching technique, and its basic configuration is shown in FIG. In the figure, reference numerals 31 and 32 are input/output lines (or they may be considered as part of the resonator), and the line 31 is divided into narrow protrusions 33 and 34. Similarly, the line 32 is divided into protrusions 35 and 36. divided into Then, a parallel connecting portion structure is adopted in which the parallel connecting portions are connected at mutually parallel and adjacent protrusions 33°S2. In addition, in the figure, the interval between the protrusions 35 and 36 is 83
If 5l-82<S3 is used, the design of the joint becomes easy. Also, as is clear from the figure, the parallel joint part is
Since there are only two locations and the line width can be reduced, it is possible to increase the coupling and also to reduce the size of the coupling portion.

本発明による結合部の等価回路は、第5図のように表わ
すことができる。
The equivalent circuit of the coupling section according to the present invention can be expressed as shown in FIG.

ここで51.52は入出力端子、63〜66は特57.
58は1p なるパラメータを持つアドミタンスインバ
ータである。
Here, 51.52 are input/output terminals, and 63 to 66 are special terminals 57.
58 is an admittance inverter having a parameter of 1p.

6  −・ で表わせる。6 -・ It can be expressed as

従って(Fb)の値を0式と同じになるように選ぶこと
によシ、すなわち 0式の関係が成立するように各値を選択するならば、本
発明の結合方式は第2図に示した従来の結合方式と全く
同一に置き換えることができるので、結合方式部分を除
き、他の部分は従来の回路設計通シに行うことができ、
設計自体がきわめて容易となる利点を有する。
Therefore, if the value of (Fb) is selected to be the same as the 0 equation, that is, each value is selected so that the relationship of the 0 equation holds, then the combination method of the present invention is shown in FIG. Since it can be replaced in exactly the same manner as the conventional coupling method, except for the coupling method part, the other parts can be done in the same way as the conventional circuit design.
This has the advantage that the design itself is extremely easy.

以上の例は分岐平行結合部が2ケ所の場合を例に述べた
が本発明は分岐平行結合部が2ケ所以上の場合に適用さ
れる。
Although the above example has been described with reference to the case where there are two branching parallel coupling parts, the present invention is applied to a case where there are two or more branching parallel coupling parts.

また分岐平行結合部は第6図に示す様な形状であ7ペー
ジ っても、第4図とまったく同様に機能する。
Further, even if the branch parallel joint part has a shape as shown in FIG. 6 and there are 7 pages, it functions in exactly the same way as in FIG. 4.

第6図に示す各符号は第4図の同符号のものと対応する
Each reference numeral shown in FIG. 6 corresponds to the same reference numeral in FIG.

第7図は、3段構成の帯域通過フィルタに実施した実施
例を示す。ここで、61.62は入出力67が分布結合
部を示す。ところで第1図に示す従来例との比較を行う
。フィルタの帯域中を30〜40%、段数3段とし、比
誘電率ε、=2.5 。
FIG. 7 shows an example implemented in a three-stage bandpass filter. Here, 61 and 62 indicate a distributed coupling part with input and output 67. By the way, a comparison with the conventional example shown in FIG. 1 will be made. The band of the filter is 30% to 40%, the number of stages is 3, and the relative dielectric constant ε is 2.5.

厚さ1 、orrrlnの誘電体を用い、マイクロ・ス
トリップ線路で構成する場合を考える。
Consider a case in which a dielectric with a thickness of 1 and orrrln is used and a microstrip line is constructed.

この時第1図の従来の構成では、入出力結合部の線路間
隔は38〜40μとなるのに対し、本発明の手法を用い
るとzp−80〜90Ωに選び、最小の線路間隔(入出
力結合部)は120〜150μとなる。即ちギャップは
3〜4倍に拡大されるため製作の容易さ、製品の歩留は
格段に向上する。また逆に、入出力の線路間隔の最小値
を1150μとすると、第1図に示す従来例では帯域幅
10チ程−のフィルタしか実現できないのに対し、本発
明8 ・ −パ 即ち、本発明は製作上の規制がある場合は帯域幅を3〜
4倍に拡大することができる利点を有する。
At this time, in the conventional configuration shown in Fig. 1, the line spacing of the input/output coupling part is 38 to 40μ, but when using the method of the present invention, zp is selected to be 80 to 90Ω, and the minimum line spacing (input and output The bonding portion) is 120 to 150μ. In other words, the gap is enlarged by 3 to 4 times, which greatly improves the ease of manufacturing and the yield of products. Conversely, if the minimum value of the input/output line spacing is 1150μ, the conventional example shown in FIG. If there are production restrictions, increase the bandwidth to 3~
It has the advantage of being able to be expanded four times.

第8図は本発明の他の実施例を示すもので、インピーダ
ンス変成器に適用した場合の例である。
FIG. 8 shows another embodiment of the present invention, which is an example in which the present invention is applied to an impedance transformer.

ここで、71.72は変成器の入出力端子、73は本発
明による分布結合回路、74は出力端子に接続された負
荷インピーダンスをあられす。
Here, 71 and 72 are the input/output terminals of the transformer, 73 is the distributed coupling circuit according to the present invention, and 74 is the load impedance connected to the output terminal.

いま結合部の1行列を0式、負荷インピーダンスをZI
、とすると、入力端子71からみた入力インピーダンス
Ziは とあられせるため、インピーダンス変成器として利用で
きる。
Now, the 1 matrix of the coupling part is 0 formula, and the load impedance is ZI
, the input impedance Zi seen from the input terminal 71 is equal to . Therefore, it can be used as an impedance transformer.

この構成にすると、結合度を大きくしてグ計可能である
ため、インピーダンス変成比(Zi/ZL)が石。
With this configuration, it is possible to increase the degree of coupling and improve the impedance transformation ratio (Zi/ZL).

9ベーソ また従来方式ではインピーダンス比が与えられると線路
インピーダンスが一義的に定まるのに対し、本発明はZ
p、J、の二つのパラメータで決定されるため、回路構
成上の自由度が大きくなる利点を有する。
In addition, in the conventional system, the line impedance is uniquely determined when the impedance ratio is given, whereas the present invention
Since it is determined by two parameters, p and J, it has the advantage of increasing the degree of freedom in circuit configuration.

以上のように本発明は、ス) IJツブ線路あるいはマ
イクロストリップ線路を用いた両端開放の共振線路を2
個以上配列してなる分布結合回路において、2つの線路
をそれぞれ開、放端近くで少なくとも2つに分岐し、互
に分岐された線路の開放端が相互に逆の位置になるよう
に配置し、平行結合部を2ケ所以上もつように構成した
ことを特徴とするもので、それをフィルタ、インピーダ
ンス変成器等に適用することにより、従来方式では実現
し得なかった広帯域、あるいは、大きなインピーダンス
比が容易に実現できその工業的価値はきわめて大きいも
のである。
As described above, the present invention has the following advantages: (1) A resonant line with both ends open using an IJ tube line or a microstrip line
In a distributed coupling circuit in which two or more lines are arranged, each of the two lines is open, and the lines are branched into at least two near the open end, and the open ends of the branched lines are arranged in opposite positions. It is characterized by having two or more parallel coupling parts, and by applying it to filters, impedance transformers, etc., it is possible to achieve wide bands or large impedance ratios that could not be achieved with conventional methods. can be easily realized and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは従来のマイクロストリップ線路共振器を用い
た分布結合帯域通過フィルタの平面図、10−ζ 〕・ 同すはその側断面図、第2図は   同人力結合部の拡
大図、第3図は第1図に示す従来の分布結合回路の等価
回路を示すブロック図、第4図は本発明の分布結合回路
の一実施例を示す平面図、第6図は第4図に示す本発明
の一実施例における分布結合回路の等価回路を示すブロ
ック図、第6図は本発明の分布結合回路の他の実施例を
示す平面図、第7図は本発明の分布結合回路を用いた帯
域通過フィルタの構成例を示す平面図、第8図は本発明
をインピーダンス変成器への適用した例を示す平面図で
ある。 11・・・・・・誘電体基板、13.14・・・・・・
入出力線器、66.67・・・・・・本発明の分布結合
回路部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名11
41  図 (a )                     
      t)、ノl? 第 2 図 3 13511 第 4 図 JII51!1 a6  図 0−−3カー→ I7図
Figure 1a is a plan view of a distributed coupling bandpass filter using a conventional microstrip line resonator; 3 is a block diagram showing an equivalent circuit of the conventional distributed coupling circuit shown in FIG. 1, FIG. 4 is a plan view showing an embodiment of the distributed coupling circuit of the present invention, and FIG. A block diagram showing an equivalent circuit of a distributed coupling circuit in one embodiment of the invention, FIG. 6 is a plan view showing another embodiment of the distributed coupling circuit of the invention, and FIG. FIG. 8 is a plan view showing an example of the configuration of a band-pass filter, and FIG. 8 is a plan view showing an example in which the present invention is applied to an impedance transformer. 11...Dielectric substrate, 13.14...
Input/output line device, 66.67... Distributed coupling circuit section of the present invention. Name of agent: Patent attorney Toshio Nakao and 1 other person11
41 Figure (a)
t), Nol? 2nd Figure 3 13511 4th Figure JII51!1 a6 Figure 0--3 car → Figure I7

Claims (3)

【特許請求の範囲】[Claims] (1)  ストリップ線路あるいはマイクロストリップ
線路を用いた両端開放の共振線路を複数個配列して構成
され、2つの共振線路により構成される結合領域のうち
少なくとも1個が、互いに突出部により係合された2ケ
所以上の平行結合部によシ構成されていることを特徴と
する分布結合回路。
(1) It is constructed by arranging a plurality of resonant lines with both ends open using strip lines or microstrip lines, and at least one of the coupling regions formed by the two resonant lines is engaged with each other by a protrusion. 1. A distributed coupling circuit comprising two or more parallel coupling parts.
(2)平行結合部において、それぞれの突出部の幅が等
しく、かつ突出部間の間隙も等しく構成されたことを特
徴とする特許請求の範囲第1項記載の分布結合回路。
(2) The distributed coupling circuit according to claim 1, wherein in the parallel coupling portion, each of the protrusions has the same width and the gaps between the protrusions are also equal.
(3)平行結合部の結合長が、使用する周波数帯の中心
周波数の波長の4分の1であることを特徴とする特許請
求の範囲第1項記載の分布結合回路。
(3) The distributed coupling circuit according to claim 1, wherein the coupling length of the parallel coupling portion is one quarter of the wavelength of the center frequency of the frequency band used.
JP1070682A 1982-01-26 1982-01-26 Distribution coupled circuit Granted JPS58129802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1070682A JPS58129802A (en) 1982-01-26 1982-01-26 Distribution coupled circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1070682A JPS58129802A (en) 1982-01-26 1982-01-26 Distribution coupled circuit

Publications (2)

Publication Number Publication Date
JPS58129802A true JPS58129802A (en) 1983-08-03
JPH0134404B2 JPH0134404B2 (en) 1989-07-19

Family

ID=11757738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1070682A Granted JPS58129802A (en) 1982-01-26 1982-01-26 Distribution coupled circuit

Country Status (1)

Country Link
JP (1) JPS58129802A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60229501A (en) * 1984-04-27 1985-11-14 Matsushita Electric Ind Co Ltd Direct current blocking circuit
JPH02134706U (en) * 1989-04-13 1990-11-08
JPH03262303A (en) * 1990-03-13 1991-11-22 Tokimec Inc Distribution type coupling filter
US5825263A (en) * 1996-10-11 1998-10-20 Northern Telecom Limited Low radiation balanced microstrip bandpass filter
EP3754780A1 (en) * 2019-06-17 2020-12-23 Carrier Corporation A microstrip dc block

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60229501A (en) * 1984-04-27 1985-11-14 Matsushita Electric Ind Co Ltd Direct current blocking circuit
JPH02134706U (en) * 1989-04-13 1990-11-08
JPH03262303A (en) * 1990-03-13 1991-11-22 Tokimec Inc Distribution type coupling filter
US5825263A (en) * 1996-10-11 1998-10-20 Northern Telecom Limited Low radiation balanced microstrip bandpass filter
EP3754780A1 (en) * 2019-06-17 2020-12-23 Carrier Corporation A microstrip dc block
US11228077B2 (en) 2019-06-17 2022-01-18 Carrier Corporation Microstrip DC block

Also Published As

Publication number Publication date
JPH0134404B2 (en) 1989-07-19

Similar Documents

Publication Publication Date Title
CA2365012A1 (en) Microstrip cross-coupling control apparatus and method
GB2222312A (en) A resonator and filter including the same
US3104362A (en) Microwave filter
JPH10215102A (en) Micro strip band inhibition filter
KR950003713B1 (en) Band pass filter
US9859599B2 (en) Bandstop filters with minimum through-line length
JPH03198402A (en) Microwave circuit, bias circuit, and band stop filter
JPS58129802A (en) Distribution coupled circuit
JPS61189701A (en) Band-pass filter
JPS62193302A (en) Band pass filter
JPS585001A (en) Microwave filter
JPS62140501A (en) Mic filter
JP2516984B2 (en) ▲ Ro ▼ wave instrument
JP2000124705A (en) Double band filter
JPS6311802B2 (en)
JPS63267001A (en) Polar filter
JPS62198201A (en) Dielectric filter
JPH011305A (en) filter
JPS59147501A (en) Band-pass filter
JPS6338301A (en) High frequency filter
SU1450017A1 (en) Bandpass filter
JPH01103003A (en) Coaxial type power distribution synthesizer
JPH1168402A (en) Strip line half wavelength side combining filter
JPS6339201A (en) High frequency filter
JP2768167B2 (en) Stripline polarized filter