JPS60229333A - Vapor growth device - Google Patents

Vapor growth device

Info

Publication number
JPS60229333A
JPS60229333A JP8524384A JP8524384A JPS60229333A JP S60229333 A JPS60229333 A JP S60229333A JP 8524384 A JP8524384 A JP 8524384A JP 8524384 A JP8524384 A JP 8524384A JP S60229333 A JPS60229333 A JP S60229333A
Authority
JP
Japan
Prior art keywords
reaction tube
gas
vapor phase
phase growth
crystal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8524384A
Other languages
Japanese (ja)
Inventor
Akihiko Okamoto
明彦 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP8524384A priority Critical patent/JPS60229333A/en
Publication of JPS60229333A publication Critical patent/JPS60229333A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate

Abstract

PURPOSE:To remove unreactive raw material gas at a vapor growth device by a method wherein a supplementary heating parts is provided to the downstream part of a crystal substrate, and a heating means is provided to the outside of a reaction tube provided with the parts thereof. CONSTITUTION:A supplementary heating parts 5 is provided as to enlarge the contact area with raw material gas to the downstream part of a crystal substrate 2 put in a vapor growth reaction tube 1. A heating means, namely a high- frequency coil 6 is provided to the outside of the reaction tube 1 provided with the parts 2. Accordingly, unreactive gas can be thermally decomposed, and possibility to cause a danger to the human body of an operator is removed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は気相成長装置に関し、特にアルシンフス ンライン等の有害ガスを使用する半導体素子の製造過程
等において用いられる気相成長装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a vapor phase growth apparatus, and in particular to a vapor phase growth apparatus used in the manufacturing process of semiconductor elements, etc., which uses harmful gases such as alcin-fusun lines. be.

(従来技術とその問題点) 高集積回路、半導体レーザー及び光検知等の微細構造を
有する素子の作成において薄膜成長はきわめて重要な工
程の一つである。薄膜成長方法としては主として気相成
長法、液相成長法及び分子線エビタクシ−法が用いられ
ているが、気相成長法は原料ガスから結晶基板への直接
成長という有利さから量産性の点で最も優れている。
(Prior art and its problems) Thin film growth is one of the extremely important steps in the production of devices with fine structures such as highly integrated circuits, semiconductor lasers, and photodetectors. Vapor phase growth, liquid phase growth, and molecular beam epitaxy are mainly used as thin film growth methods, but vapor growth has the advantage of direct growth from source gas to crystal substrates, making it easier to mass-produce. is the best.

従来の気相成長法において原料ガス及び輸送ガスはガス
導入部よシ反応管内におくられ、結晶基板はその途中に
配置され高周波等によシ加熱される。そして前記原料ガ
スの一部は前記結晶基板上及びその近傍で化学反応を起
こし該結晶基板上にエビタクシャル成長する0未反応の
原料ガスは結晶基板上を通過した後、反応管壁に付着し
たシ反応管ガス排出口よQ反応管よシ排出され、反応生
成物を捕獲するフィルターを通シ原料ガス処理塔に送ら
れる。
In the conventional vapor phase growth method, a raw material gas and a transport gas are introduced into a reaction tube through a gas introduction section, and a crystal substrate is placed in the middle and heated by high frequency or the like. A part of the raw material gas undergoes a chemical reaction on and near the crystal substrate, and grows epitaxially on the crystal substrate. After passing over the crystal substrate, the unreacted raw material gas adheres to the wall of the reaction tube. The gas is discharged from the reaction tube gas outlet through the Q reaction tube, passes through a filter that captures reaction products, and is sent to the raw material gas processing tower.

しかしながら従来の反応管を用いた場合には成長反応に
寄与するガスは全流量の一部であり残料ガスの一部は反
応管下流にてさまざまな化学反応による生成物として又
原料ガスの形においても反応管管壁や排気系の配管に付
着する。特にガリウム砒素等の有機金属気相成長法の場
合、■族原子の原料として有毒なアルシンを用いるが分
解しないアルシンガスはその一部は反応管及び排気系配
管内にアルシンとして付着したシ′またパルプ付近の袋
小路等でガスがよどみ反応管内の基板出し入れ等の際有
毒ガスが反応管外へ放出され作業者の人体に危険がおよ
ぶ可能性が生じる。そこで反応管の出口に基板交換室を
設は有毒ガスが大気中に放出することを防いでいるがそ
の際反応管と基板交換室の間の開閉の部分や基板交換室
の気密性を配慮しなければならないので装置が複雑にな
るという新たな問題が生じる〇 (発明の目的) 本発明の目的は反応系の構造に工夫を施すことによシ上
記の問題点を解決し比較的簡便な方法で未反応の原料ガ
ス金除去する気相成長装置を提供することにある。
However, when a conventional reaction tube is used, the gas that contributes to the growth reaction is a part of the total flow rate, and a portion of the residual gas is produced downstream of the reaction tube as a product of various chemical reactions or in the form of raw material gas. It also adheres to reaction tube walls and exhaust system piping. Particularly in the case of organometallic vapor phase growth of gallium arsenide, etc., poisonous arsine is used as a raw material for group III atoms, but some of the arsine gas that does not decompose is deposited as arsine in reaction tubes and exhaust system piping, and also forms pulp. Gas may stagnate in nearby dead ends, etc., and toxic gas may be released outside the reaction tube when substrates are put in or taken out of the reaction tube, potentially endangering the health of workers. Therefore, a substrate exchange chamber is installed at the outlet of the reaction tube to prevent toxic gases from being released into the atmosphere, but in doing so, consideration must be given to the opening and closing part between the reaction tube and the substrate exchange chamber and the airtightness of the substrate exchange chamber. (Objective of the Invention) The object of the present invention is to solve the above problems by devising the structure of the reaction system and to provide a relatively simple method. An object of the present invention is to provide a vapor phase growth apparatus that removes unreacted raw material gas gold.

(発明の構成) 気相成長反応管内に原料ガスを供給して結晶成長を行な
う気相成長装置において、前記気相成長反応管内に置か
れる結晶基板の下流部に原料ガスとの接触面積が大きく
なるように加熱補助部品を設けると共に、該加熱補助部
品の設けられた反応管の外側に加熱手段を設けてなるこ
と1に特徴とする気相成長装置が得られる。
(Structure of the Invention) In a vapor phase growth apparatus that performs crystal growth by supplying a source gas into a vapor phase growth reaction tube, a contact area with the source gas is large in a downstream portion of a crystal substrate placed in the vapor phase growth reaction tube. There is obtained a vapor phase growth apparatus characterized in that (1) a heating auxiliary component is provided, and a heating means is provided outside the reaction tube in which the heating auxiliary component is provided.

(#を成の詳細な説明) 次に図面を参照して本発明について説明する。(Detailed explanation of forming #) Next, the present invention will be explained with reference to the drawings.

第1図は本発明の気相成長装置の原理全説明するための
一部断面側面図である。図中横型石英反応管(以下単に
反応管)1内にはグラファイト支持台(以下単に支持台
)4上にガリウム砒素結晶基板(以下単に結晶基板)2
が配置され、結晶基板2の下流部には未反応ガス分解の
ためにカーボン製の加熱補助部品5を配置する。首だ反
応管1の外部には加熱手段として2つの高周波コイルを
設けている。上流側の高周波コイル3Fi8結晶基板2
の近傍を加熱するようにし下流側の高周波コイル6は未
反応ガス分解用の加熱補助部品5t−加熱するようにす
る。加熱補助部品5は未反応のガスとの接触する面積を
大きくするために複数のグラファイトよりなる薄い板が
ガス流の方向に垂直に設けである0 原料ガスの例えばトリメチルガリウム、アルシン及び輸
送ガスの例えは水素は反応管1のガス導入口よシ供給さ
れ結晶基板に達し一部は反応して結晶として析出し未反
応ガス及び水素は加熱補助部品5に達し該加熱補助部品
5を通過して下流方向に流れる。その際未反応のガスと
くに有毒であるアルシンは加熱補助部品5によシ加熱さ
れ熱分解し砒素分子となシ加熱補助部品5通過後冷却さ
れ固体の砒素として反応管壁に付着したシ輸送ガスとと
もに反応管よシ排気され排気系に設けられているフィル
ターに捕獲される。その結果加熱補助部品5なしに未反
応ガスを放出する従来の装置において見られるような反
応管及び排気系でのアルシンの残留をおさえることがで
きる0(実施例) 次に第2図は本発明の気相成長装置の一実施例を示す一
部断面側面図である0同図において第1図と同じ構成部
分には同じ符号が付けである。さらにガス流制御のため
に石英管内管7が設けられている。支持台4をとおして
結晶基板の近傍を通常成長温度550℃〜750℃に保
たれるように高周波コイル3によシ加熱する◎加熱補助
部品5はグラファイトによシできておシ未反応ガスとの
接触面積を大きくするためグラファイト製よ少なる薄い
板が設けられている。さらに結晶への熱的影響をおよぼ
さないために結晶基板よシ15−の間隔をもって配設さ
れ高周波コイル6によシ800〜1000℃に保たれる
。さらに反応管内の圧力は01気圧に保たれる0原料ガ
スの例えばトリメチルガリウム、アルシン及び輸送ガス
の例えば水素は反応管上流部のガス供給口8よシ供給さ
れ排気ガスはガス排出口9より排気される。このような
状態において反応管lに導ひかれたトリメチルガリウム
及びアルシンは結晶基板2に到達し熱分解反応を起こし
てガリウム砒素トシてエビタクシャル成長し未反応のガ
スは加熱補助部品5に達し分解される。
FIG. 1 is a partially sectional side view for explaining the entire principle of the vapor phase growth apparatus of the present invention. In the figure, inside a horizontal quartz reaction tube (hereinafter simply referred to as a reaction tube) 1, a gallium arsenide crystal substrate (hereinafter simply referred to as a crystal substrate) 2 is placed on a graphite support stand (hereinafter simply referred to as a support stand) 4.
is arranged, and a heating auxiliary part 5 made of carbon is arranged downstream of the crystal substrate 2 to decompose unreacted gas. Two high frequency coils are provided outside the neck reaction tube 1 as heating means. Upstream high frequency coil 3Fi8 crystal substrate 2
The high frequency coil 6 on the downstream side heats the heating auxiliary part 5t for decomposing unreacted gas. The heating auxiliary part 5 is provided with a plurality of thin plates made of graphite perpendicular to the direction of the gas flow in order to increase the contact area with the unreacted gas. For example, hydrogen is supplied through the gas inlet of the reaction tube 1, reaches the crystal substrate, and part of it reacts and precipitates as crystals, and unreacted gas and hydrogen reach the heating auxiliary part 5 and pass through the heating auxiliary part 5. Flows downstream. At this time, the unreacted gas, especially the poisonous arsine, is heated by the heating auxiliary part 5 and thermally decomposed into arsenic molecules. It is also exhausted from the reaction tube and captured by a filter installed in the exhaust system. As a result, it is possible to suppress the residual arsine in the reaction tube and exhaust system, which is seen in conventional devices that discharge unreacted gas without the need for heating auxiliary parts 5 (Example) Next, FIG. 2 shows the present invention. 1 is a partially cross-sectional side view showing an embodiment of a vapor phase growth apparatus in FIG. 1. In the same figure, the same components as in FIG. Furthermore, a quartz inner tube 7 is provided for gas flow control. The vicinity of the crystal substrate is heated through the support stand 4 by the high frequency coil 3 so that the normal growth temperature is maintained at 550°C to 750°C. The heating auxiliary part 5 is made of graphite and unreacted gas is heated. A thinner plate made of graphite is provided to increase the contact area. Further, in order to prevent thermal effects on the crystal, the crystal substrate is placed at a distance of 15 mm from the crystal substrate, and is maintained at a temperature of 800 to 1000 DEG C. by a high frequency coil 6. Further, the pressure inside the reaction tube is maintained at 01 atm. Source gases such as trimethyl gallium, arsine, and transport gases such as hydrogen are supplied through the gas supply port 8 at the upstream portion of the reaction tube, and exhaust gas is exhausted from the gas discharge port 9. be done. In such a state, trimethyl gallium and arsine guided into the reaction tube 1 reach the crystal substrate 2, cause a thermal decomposition reaction, and form gallium arsenide to evittally grow, and the unreacted gas reaches the heating auxiliary part 5 and is decomposed. .

(発明の効果) 本実施例の気相成長装置によって実験した結果、加熱補
助部品5のない場合に見られるような反応後のアルシン
の残留及び発生は全く見られ々かりたO 本実施例は本発明を制限するものではない0すなわち、
ガリウム砒素結晶基板のエビタクシャル成長について例
示したが他の結晶基板であってもまた加熱補助部品の形
状などの構造を任意に変更してガス流を制御するように
してもよい。又加熱方法も高周波コイルにかぎらない。
(Effects of the Invention) As a result of experiments using the vapor phase growth apparatus of this embodiment, it was found that no arsine remained or was generated after the reaction, as would be the case without the heating auxiliary component 5. 0 without limiting the invention, i.e.
Although the example is given for the epitaxial growth of a gallium arsenide crystal substrate, other crystal substrates may be used, and the structure such as the shape of the heating auxiliary component may be arbitrarily changed to control the gas flow. Also, the heating method is not limited to high frequency coils.

以上の説明によル明らかなように本発明の気相成長装置
によれば反応管内の簡便な構造変更により未反応ガスを
熱分解させることができ、したがって作業者の人体に危
険がおよぶ可能性がなくなるという効果はきわめて重要
である口
As is clear from the above explanation, according to the vapor phase growth apparatus of the present invention, unreacted gas can be thermally decomposed by simple structural changes within the reaction tube, and therefore there is a possibility that the human body of the worker may be in danger. The effect of eliminating

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の気相成長装置の原理を説明するための
一部断面側面図で第2図は本発明の気相成長装置の一実
施例を示す一部断面側面図である0図において、1・・
・横形石英反応管、2・・・ガリウム砒素結晶基板、3
・・・基板加熱用高周波コイル、4・・・グラファイト
支持台、訃・・未反応ガス分解用の加熱補助部品、6・
・・加熱補助部品を加熱する高周波コイル、7・・・石
英内管、8・・・ガス供給口、9・・・ガス排出口。 第1図 第2図 ^ 43/ ?7
Fig. 1 is a partially sectional side view for explaining the principle of the vapor phase growth apparatus of the present invention, and Fig. 2 is a partially sectional side view showing an embodiment of the vapor phase growth apparatus of the present invention. In, 1...
・Horizontal quartz reaction tube, 2...Gallium arsenide crystal substrate, 3
... High-frequency coil for substrate heating, 4. Graphite support stand, ... Heating auxiliary parts for unreacted gas decomposition, 6.
...High frequency coil for heating the heating auxiliary parts, 7...Quartz inner tube, 8...Gas supply port, 9...Gas discharge port. Figure 1 Figure 2 ^ 43/ ? 7

Claims (1)

【特許請求の範囲】[Claims] 気相成長反応管内に原料ガスを供給して結晶成長を行な
う気相成長装置において、前記気相成長反応管内に置か
れる結晶基板の下流部に原料ガスとの接触面積が大きく
なるように加熱補助部品を設けると共に、該加熱補助部
品の設けられた反応管の外側に加熱手段を設けてなるこ
とを特徴とする気相成長装置。
In a vapor phase growth apparatus that performs crystal growth by supplying a source gas into a vapor phase growth reaction tube, heating assistance is provided at the downstream portion of a crystal substrate placed in the vapor phase growth reaction tube to increase the contact area with the source gas. What is claimed is: 1. A vapor phase growth apparatus characterized in that a heating means is provided outside the reaction tube in which the heating auxiliary part is provided.
JP8524384A 1984-04-27 1984-04-27 Vapor growth device Pending JPS60229333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8524384A JPS60229333A (en) 1984-04-27 1984-04-27 Vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8524384A JPS60229333A (en) 1984-04-27 1984-04-27 Vapor growth device

Publications (1)

Publication Number Publication Date
JPS60229333A true JPS60229333A (en) 1985-11-14

Family

ID=13853120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8524384A Pending JPS60229333A (en) 1984-04-27 1984-04-27 Vapor growth device

Country Status (1)

Country Link
JP (1) JPS60229333A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5928426A (en) * 1996-08-08 1999-07-27 Novellus Systems, Inc. Method and apparatus for treating exhaust gases from CVD, PECVD or plasma etch reactors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5928426A (en) * 1996-08-08 1999-07-27 Novellus Systems, Inc. Method and apparatus for treating exhaust gases from CVD, PECVD or plasma etch reactors

Similar Documents

Publication Publication Date Title
JP2001323374A (en) Method and device for feeding vapor phase reactant into reaction chamber
US20090277386A1 (en) Catalytic chemical vapor deposition apparatus
KR20140138289A (en) Trap device and film formation device
JPS60229333A (en) Vapor growth device
JPS59223294A (en) Vapor phase growth device
JPS5973496A (en) Vapor-phase growth apparatus
JPS62214616A (en) Organo metallic vapor phase epitaxy equipment
JPH04202091A (en) Vapor growth device of compound semiconductor
JPH0412525A (en) Chemical vapor growth device for organic metal
JP3702403B2 (en) Vapor growth method
JPH01312833A (en) Vapor phase growth device
JPS62219917A (en) Manufacture of hydride
JPH0559080B2 (en)
JPS61242012A (en) Vapor-phase growth device
JP4427694B2 (en) Film forming apparatus and film forming method
JP2005093526A (en) Semiconductor manufacturing apparatus
JPH0364465A (en) Vapor growth method of organometallic compound
JPS5858319B2 (en) Vapor phase growth equipment
JPH04302140A (en) Vapor crystal growth device
JPS62182196A (en) Vapor growth apparatus
JPS6285422A (en) Vertical organic metal thermal decomposition vapor growth apparatus
JPH01297817A (en) Iii-v compound semiconductor vapor growth method
JPS6066418A (en) Vapor growth device for compound semiconductor
JPS6325294A (en) Chemical vapor growth of organometallic compound
JPS6369794A (en) Vapor phase epitaxy device