JPS6285422A - Vertical organic metal thermal decomposition vapor growth apparatus - Google Patents

Vertical organic metal thermal decomposition vapor growth apparatus

Info

Publication number
JPS6285422A
JPS6285422A JP22465685A JP22465685A JPS6285422A JP S6285422 A JPS6285422 A JP S6285422A JP 22465685 A JP22465685 A JP 22465685A JP 22465685 A JP22465685 A JP 22465685A JP S6285422 A JPS6285422 A JP S6285422A
Authority
JP
Japan
Prior art keywords
gas
chamber
growth
vapor phase
lower chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22465685A
Other languages
Japanese (ja)
Inventor
Yuhei Muto
武藤 雄平
Minoru Sagara
相良 実
Motoi Suhara
須原 基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22465685A priority Critical patent/JPS6285422A/en
Publication of JPS6285422A publication Critical patent/JPS6285422A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the exchanging frequency of a filter by first accumulating fine powder in exhaust gas on a partition plate provided on the bottom of a growing furnace, and then removing only dusts having been forcibly accumulated on the side wall of a cooled lower chamber and not able to be processed by a filter provided at the rear. CONSTITUTION:Parts of thermally decomposed gas or undecomposed AsH3 gas thermally decomposed near a substrate but not grown are accumulated on the inner wall of a growing furnace of a partition plate 6. They are further guided through a hole 31 opened concentrically with the inner wall of the lower chamber 8 through the plate 6 to the chamber 8. Since the heated gas is water- cooled in the chamber 8, the gas is quickly cooled to be secured to the inner wall of the chamber. To protect an O-ring 21 formed at the lower end of the chamber, a collar 22 is provided on a shaft 4 so that the ring 21 is not damaged by fine powder in the exhaust gas. The thermally decomposed gas not able to be processed even in the chamber 8 is fed through a 3-way valve 14 into a filter housing to be filtered. Undecomposed AsH3 gas is purified by an exhaust gas processor, and then exhausted.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、有機金属熱分解気相成長装置に係わり、特に
化合物半導体に適した有機金属熱分解気相成長装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an organometallic pyrolysis vapor phase growth apparatus, and particularly to an organometallic pyrolysis vapor phase growth apparatus suitable for compound semiconductors.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

半導体レーザ、例えばガリウムアルミニウム砒素(Ga
A−eAs )半導体レーザ用化合物半導体薄膜結晶成
長法としては、有機金属の一種であるトリメチルガリウ
ム(TMG)、)リメチルとルミニウム(TM人)と砒
素の水素化合物であるフルシン(入IH,)との熱分解
を利用して行な5有機金属熱分解気相成長法(Meta
l Organic Chemical VaporD
eposltlorB MOCVD)が知られている。
Semiconductor lasers, such as gallium aluminum arsenide (Ga
A-eAs) Compound semiconductor thin film crystal growth method for semiconductor lasers uses trimethyl gallium (TMG), which is a type of organic metal, trimethyl gallium (TMG), which is a type of organic metal, flusine (IH), which is a hydrogen compound of arsenic, and The 5-organic metal pyrolysis vapor phase growth method (Meta
l Organic Chemical VaporD
eposltlorB MOCVD) is known.

MOCVD法は、原料を全てガス状で供給するため組成
の制御が容易でかつ、大面積基板上に均一に結晶成長が
できるので半導体レーザの量産技術として、期待されて
い・る。
The MOCVD method is expected to be a mass production technology for semiconductor lasers because it supplies all raw materials in gaseous form, making it easy to control the composition, and allowing uniform crystal growth on a large-area substrate.

MO(uD法を実施するに際しては、原料ガス節約の観
点から、縦屋の気相成長炉が多く使用されている。すな
わち、縦部の成長炉においては、試料である結晶基板の
上面に略垂直に原料ガスが供給されるので、ガスの供m
方面と結晶の成長方向が一致し、このため少ないガスの
供給量で気相成長を行なうことができる。
When carrying out the MO (uD method), a vertical vapor phase growth furnace is often used from the viewpoint of saving raw material gas.In other words, in a vertical growth furnace, approximately Since the raw material gas is supplied vertically, the gas supply m
The direction of crystal growth coincides with that of the crystal, and therefore vapor phase growth can be performed with a small amount of gas supplied.

有機金属の熱分解による気相成長においては、基板近傍
以外での熱分解を避けるため一般に熱源としては、高周
波加熱による方法がとられる。このため、試料支持台は
、高周波加熱の熱源となるのでカーボン等で作られこの
上に試料を載せ結晶成長を行なう。結晶成長は、所定の
組成をもつ原料ガスが成長炉上部より導入され、結晶成
長を行なう基板上部近傍で熱分解することにより行なわ
れると考えられている。この過程は、以下のように表わ
される。
In vapor phase growth by thermal decomposition of organic metals, a method using high frequency heating is generally used as a heat source in order to avoid thermal decomposition outside the vicinity of the substrate. For this reason, the sample support stand serves as a heat source for high-frequency heating, and is made of carbon or the like, and the sample is placed on it to perform crystal growth. It is believed that crystal growth is carried out by introducing a raw material gas having a predetermined composition from the upper part of the growth furnace and thermally decomposing it near the upper part of the substrate on which crystal growth is to be performed. This process is expressed as follows.

にsJ (V)→4 A!14(V)+ 2 Hz (
V)そして、気−固相の界面で G a(V) +4 A 5(v)4 G a A 8
(S)となる。(文献、例えば、J、Cryst、Gr
owth、 62225−229(1983> )結晶
成長に寄与しなかった熱分解したガスは、完全に除毒後
排出される、ところで、熱分解したガス中には、未反応
のA s HBガスや数μm以下の微粉末が含Iれてい
る。
ni sJ (V) → 4 A! 14 (V) + 2 Hz (
V) And at the gas-solid interface Ga(V) +4 A 5(v)4 Ga A 8
(S). (References, e.g. J. Cryst, Gr.
owth, 62225-229 (1983>) The thermally decomposed gas that did not contribute to crystal growth is completely detoxified and then discharged.By the way, the thermally decomposed gas contains unreacted As HB gas and several Contains fine powder of μm or less.

通常、これらの廃ガス中の微粉末は、フィルタで収集さ
れその後、未反応のAsH,は、塩化第二鉄を主成分と
する処理剤で酸化し、入5O5(酸化砒素)の状態で上
記処理剤内に定着させ除去する(酸化定着方式)、、こ
の微粒子をトラップするフィルタは、使用回数が増える
と目詰りを起こし、成長炉内の圧力上昇をもたらす。常
圧で結晶成長を行なう場合、この圧力上昇は、結晶の品
質を著しく低下させる。すなわち、圧力が高い状態で成
長したものは、常圧で成長したものに比べGa −r 
Ieh異常層が生成することが判明した、Ga−ric
h層は、正常に成長したG a k−g A B層に較
ベキヤリ7′濃度が高くなり、著しい場合には、導電型
まで変わり、異常なφ−n接合が生じることになる。こ
の現象は、デバイスにとって致命的であり、良好な品質
のGaAJAs結晶を得るためには、成長中の圧力を一
定にすることが極めて重要である。このため圧力上昇を
防ぐためフィルタの孔径の最適化をはかるとともに、フ
ィルタの交換を小まめに行なうことが必要であった。
Normally, these fine powders in the waste gas are collected by a filter, and then unreacted AsH is oxidized with a treatment agent containing ferric chloride as a main component, and the above-mentioned AsH is oxidized in the state of 5O5 (arsenic oxide). The filter that traps these fine particles, which are fixed in the processing agent and removed (oxidation fixation method), becomes clogged as the number of times it is used increases, leading to an increase in the pressure inside the growth furnace. When crystal growth is carried out at normal pressure, this pressure increase significantly reduces the quality of the crystal. In other words, those grown under high pressure have a lower Ga −r value than those grown under normal pressure.
Ga-ric, which was found to generate Ieh abnormal layer
The h layer has a higher average 7' concentration than the normally grown G a k g A B layer, and in severe cases, the conductivity type changes, resulting in an abnormal φ-n junction. This phenomenon is fatal to the device, and in order to obtain GaAJAs crystals of good quality, it is extremely important to keep the pressure constant during growth. For this reason, it is necessary to optimize the pore diameter of the filter and to replace the filter frequently in order to prevent pressure rise.

また、排ガス中に含まれる微粉末は、反応炉底部やフィ
ルタに到達するまでの間の配管内に堆積し、配管の途中
に設けたバルブが詰まるという不都合が発生した。
Further, the fine powder contained in the exhaust gas accumulates at the bottom of the reactor and in the piping before reaching the filter, causing the inconvenience that a valve provided in the middle of the piping is clogged.

〔発明の目的〕[Purpose of the invention]

本発明は、上記事情を考慮してなされたもので、その目
的とするところは、化合物半導体薄膜の結晶成長を行な
うに際し、排ガス中の微粉末を効率的に集塵することに
より、排ガス配管中に堆積する量を少なくしかつ、フィ
ルタの目詰りを抑制し、成長炉中の圧力の安定化をはか
り、結晶組成の均質化を行なって良好な結晶を得ること
のできる有機金属熱分解法による気相成長装置を提供す
ることにある。
The present invention has been made in consideration of the above circumstances, and its purpose is to efficiently collect fine powder in exhaust gas during crystal growth of a compound semiconductor thin film. The metal-organic pyrolysis method reduces the amount deposited on the growth furnace, suppresses filter clogging, stabilizes the pressure in the growth reactor, and homogenizes the crystal composition to obtain good crystals. An object of the present invention is to provide a vapor phase growth apparatus.

〔発明の概要〕[Summary of the invention]

本発明は、上部に原料ガス導入部を、下部に原料ガス排
出部を有する成長炉内に原料ガスを導入し熱分解を行な
い、成長炉内に配置された結晶基板上に単結晶を成長す
る縦型有機金属熱分解法気相成長装置において、前記成
長炉の下部に冷却手段を有する下部室を、また前記成長
炉と前記下部室との間に開孔部を有する仕切板を設け、
結晶成長に寄与しなかった原料ガスを前記下部室を介し
て排出することを特書値する縦型有機金属熱分解法気相
成長装置であり、排ガス中の微粉末を効率的に集塵する
ことができる。
In the present invention, a raw material gas is introduced into a growth furnace having a raw material gas inlet in the upper part and a raw material gas discharge part in the lower part, thermal decomposition is performed, and a single crystal is grown on a crystal substrate placed in the growth furnace. In a vertical metal organic pyrolysis vapor phase growth apparatus, a lower chamber having a cooling means is provided at the lower part of the growth furnace, and a partition plate having an opening is provided between the growth furnace and the lower chamber,
This vertical organometallic pyrolysis vapor phase growth apparatus is particularly noteworthy in that the raw material gas that does not contribute to crystal growth is discharged through the lower chamber, and the fine powder in the exhaust gas is efficiently collected. I can do it.

〔発明の効果〕 本発明によれば、排ガス中の微粉末は成長炉底部に設置
すられた仕切板上にまず堆積し、次に、冷却された下部
室の側壁に強制的に堆積され、処理しきれなかったもの
のみが後方に設けられたフィルタにより除塵されるので
、フィルタの目詰りが少なく交換頻度が低減でき、成長
の効率化をはかることができる。また、圧力の上昇が極
めて小さいので、組成の均質化をはかることができる。
[Effects of the Invention] According to the present invention, the fine powder in the exhaust gas is first deposited on the partition plate installed at the bottom of the growth furnace, and then forcibly deposited on the side wall of the cooled lower chamber, Since only the unprocessed dust is removed by the filter provided at the rear, the filter is less likely to be clogged, the frequency of replacement can be reduced, and growth efficiency can be improved. Furthermore, since the increase in pressure is extremely small, the composition can be homogenized.

本発明に基づく結晶成長を行なった基板を用いて、例え
ば半導体レーザを作成した場合には、歩留りの向上をは
かり得る。
For example, when a semiconductor laser is manufactured using a substrate subjected to crystal growth according to the present invention, the yield can be improved.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細を図示の実施例によって説明する。 Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図は、本発明の一実施例に係わる縦型気相成長装置
の成長炉の概略構成を示す図である。第2図は、排ガス
処理系統を示す図である。
FIG. 1 is a diagram showing a schematic configuration of a growth furnace of a vertical vapor phase growth apparatus according to an embodiment of the present invention. FIG. 2 is a diagram showing the exhaust gas treatment system.

第1図において、成長炉l内には試料IJよび試料を載
置する試料支持台3が配置されている。
In FIG. 1, a sample IJ and a sample support stand 3 on which the sample is placed are arranged in a growth furnace l.

試料支持台3は、カーボン製で高周波誘導により加熱さ
れ熱分解成長の熱源となる。試料支持台3はシャフト4
を介して回転機構5により回転できるようになっている
。成長炉底部には、第3図に示すような同心的に窄孔さ
れた開孔31を有する着を介して気密的に接している。
The sample support stand 3 is made of carbon and is heated by high frequency induction and serves as a heat source for pyrolysis growth. The sample support stand 3 is connected to the shaft 4
It can be rotated by the rotation mechanism 5 via. It is in airtight contact with the bottom of the growth reactor via a jacket having concentric openings 31 as shown in FIG.

下部室8は、冷却、例えば水冷され排ガスの導出孔10
と冷却水入口1工と出口12で構成される。なお、第1
図中、符号19は高周波加熱するためのRFコイルであ
る。
The lower chamber 8 is cooled, for example, by water, and has exhaust gas outlet holes 10.
It consists of 1 cooling water inlet and 12 outlets. In addition, the first
In the figure, reference numeral 19 is an RF coil for high frequency heating.

成長炉lの上部には、原料ガスの導入ダクト13が接続
されている。原料ガス導入ダクト13から導入されたガ
スは、成長炉l内で加熱分解され、試料(基板)2上に
結晶を成長せしめガス導出孔l。
A raw material gas introduction duct 13 is connected to the upper part of the growth furnace I. The gas introduced from the raw material gas introduction duct 13 is thermally decomposed in the growth furnace 1, grows crystals on the sample (substrate) 2, and passes through the gas outlet hole 1.

から排出され三方弁14を介してフィルタハクジング1
5に導びかれる。フィルタハウジング15内にはフィル
タ16が装着され排ガス中の微粉末が瀘過され、排ガス
処理装置で除毒後屋外へ排気される。
is discharged from the filter through the three-way valve 14
5. A filter 16 is installed inside the filter housing 15 to filter out fine powders in the exhaust gas, and after detoxification by an exhaust gas treatment device, the exhaust gas is exhausted outdoors.

三方弁14には真空ポンプ18が接続されて、にり結晶
成長に先立ち成長炉内のガスを排出できる。
A vacuum pump 18 is connected to the three-way valve 14 so that the gas in the growth furnace can be exhausted prior to the growth of the Ni crystal.

ガス導入ダク) 13には、原料ガス源、流量制御弁(
ともに図示せず)が取り付けられている。この実施例で
は、ガス源として水素で希釈したアルシン(&@H1)
ガス、水素で希釈したnuドーピングガスとなる水素化
上レン(I(、Se)ガスと水素ガスの供給源とに接続
されており、この水素ガスにより蒸気化されて供給され
るトリメチルガリウム(TMG)、)リメチルrルミ=
 ウA (TMA)とp温ドーピングガスとなるジエチ
ルジンク(DBZ)が接続されている。前記rルシン、
トリメチルガリウム、トリメチルアルミニウムは成長炉
内で熱分解されてガリウム・アルミニウム・砒素の気相
成長を果し、前記水素ガスはキャリアガスとして働らく
Gas introduction duct) 13 includes a raw material gas source and a flow rate control valve (
(both not shown) are attached. In this example, arsine (&@H1) diluted with hydrogen as the gas source
Trimethyl gallium (TMG) is vaporized by this hydrogen gas and supplied to the nu doping gas (I(,Se)), which becomes the nu doping gas. ),) remethylrlumi=
C A (TMA) and diethyl zinc (DBZ), which serves as a p-temperature doping gas, are connected. the r lucin,
Trimethylgallium and trimethylaluminum are thermally decomposed in a growth furnace to achieve vapor phase growth of gallium, aluminum, and arsenic, and the hydrogen gas serves as a carrier gas.

次に、上記のような構成の気相成長装置を使用してガリ
ウムアルミニウム砒素の薄膜結晶を成長する場合につい
て説明する。まず、鏡面研摩した略10crItの面積
を有する面方位が(100)のGaにsJl。
Next, a case will be described in which a thin film crystal of gallium aluminum arsenide is grown using the vapor phase growth apparatus configured as described above. First, sJl was applied to mirror-polished Ga having an area of approximately 10 crIt and having a plane orientation of (100).

板2を有機洗浄し、次に硫酸系エツチング液で化学エッ
チする。次いで上記基板を試料支持台3に載置する。次
いで成長炉内を真空排気し、その後、水素ガスで成長炉
1内を置換する。成長炉l内のガス置換を十分に行なっ
た後RFコイル19により約750Cに加熱する。そし
て、所望の組成に混合された原料ガスをガス導入ダクト
18より流入する。
Plate 2 is organically cleaned and then chemically etched with a sulfuric acid based etchant. Next, the substrate is placed on the sample support stand 3. Next, the inside of the growth furnace 1 is evacuated, and then the inside of the growth furnace 1 is replaced with hydrogen gas. After the gas in the growth furnace 1 has been sufficiently replaced, it is heated to about 750C by the RF coil 19. Then, raw material gas mixed to a desired composition is introduced from the gas introduction duct 18.

導入された原料ガスは、成長炉上部に設けられた拡散板
20によって拡散され成長炉の上方から下方に向って流
れる。混合されたガスは、基板近傍で熱分解され基板上
で結晶となり成長する。成長層の膜厚は、1族ガスすな
わち、トリメチルガリウム、トリメチルアルミニウムの
流量によって決まるので予め成長時間と膜厚の関係を調
べて暦き、成長時間を制御することで膜厚を制御する。
The introduced raw material gas is diffused by a diffusion plate 20 provided at the upper part of the growth furnace and flows from the top to the bottom of the growth furnace. The mixed gas is thermally decomposed near the substrate and grows as crystals on the substrate. The thickness of the grown layer is determined by the flow rate of Group 1 gases, ie, trimethylgallium and trimethylaluminum, so the relationship between growth time and film thickness is investigated in advance, and the film thickness is controlled by controlling the growth time.

基板近傍で熱分解して、成長にあずからなかった熱分解
ガスや未分解のA s Hsガスのうち一部は、成長炉
内壁や仕切板6の上面に堆積する。さらに、仕切板6に
下部室8の内壁と同心的に窄孔された開孔31を通過し
下部室8に導びかれる。下部室8は水冷されているので
、加熱されたガスは急冷さ4には鍔22が設けられ排ガ
ス中の微粉末によりYリング21が傷つかぬようになっ
ている。下部室8内でも処理できなかった熱分解ガスは
、三方パルプ14通過後フィルタハウジング内に導入さ
れ瀘過される。一方、未分解のAsH1ガスは、排ガス
処理装置で除毒後放出される。     ′なお、仕切
板6の上面に堆積したデポジット物は、王水等で簡単に
除去でき、再使用することが可能である。また、下部室
内壁に堆積したデポジット物は、真空掃除機等で容易に
とることができる。これによりフィルタの目詰りが著し
く低減でき、フィルタの交換頻度を少なくすることがで
きる。
A portion of the pyrolysis gas and undecomposed A s Hs gas that is thermally decomposed near the substrate and does not participate in the growth is deposited on the inner wall of the growth furnace and the upper surface of the partition plate 6 . Furthermore, it passes through an opening 31 formed in the partition plate 6 concentrically with the inner wall of the lower chamber 8 and is guided to the lower chamber 8 . Since the lower chamber 8 is water-cooled, the heated gas is rapidly cooled with a collar 22 to prevent the Y-ring 21 from being damaged by fine powder in the exhaust gas. The pyrolysis gas that cannot be treated even in the lower chamber 8 passes through the three-way pulp 14 and is then introduced into the filter housing and filtered. On the other hand, undecomposed AsH1 gas is detoxified by an exhaust gas treatment device and then released. 'The deposits accumulated on the upper surface of the partition plate 6 can be easily removed with aqua regia or the like, and can be reused. Furthermore, deposits accumulated on the lower chamber wall can be easily removed with a vacuum cleaner or the like. As a result, clogging of the filter can be significantly reduced, and the frequency of filter replacement can be reduced.

本発明による装置を使用して結晶成長を行なったもので
は、圧力上昇による異常層がみられず、これらの基板を
使用して作成した半導体レーザの歩留りが高くその工業
的価値は極めて大である。
In the crystals grown using the apparatus according to the present invention, no abnormal layer due to pressure increase is observed, and the yield of semiconductor lasers made using these substrates is high, and their industrial value is extremely large. .

なお5本発明は上述した実施例に限定されるものではな
い。前記実施例では、有機金属と砒素の水素化合物とに
よるGa入1NSの気相成長に適用したが、他の物質に
よるGa1LJIAsの気相成長法或いはGiA、dA
a以外の化合物半導体の気相成長に適用することも可能
である。その他、本発明の要旨を逸脱しない範囲で種々
変形しても実施することができる。
Note that the present invention is not limited to the embodiments described above. In the above embodiment, the method was applied to the vapor phase growth of Ga-containing 1NS using an organic metal and a hydrogen compound of arsenic.
It is also possible to apply to the vapor phase growth of compound semiconductors other than a. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係わる気相成長装置の成長
炉の断面を示す図、第2図は排ガス処理の系統を表わす
概略図で、第3図は仕切板の平面を表わす図である。 l・・・成長炉    2・・・試料(基板)3・・・
試料支持台  6・・・仕切板8・・・水冷下部室  
13・・・原料ガス導入孔15・・・フィルタハウジン
グ 17・・・排ガス処理装置18・・・真空ポンプ 代理人 弁理士  則 近 憲 信 局  大胡典夫 第  1  図 第  2  図
FIG. 1 is a diagram showing a cross section of a growth furnace of a vapor phase growth apparatus according to an embodiment of the present invention, FIG. 2 is a schematic diagram showing an exhaust gas treatment system, and FIG. 3 is a diagram showing a plane of a partition plate. It is. l... Growth furnace 2... Sample (substrate) 3...
Sample support stand 6... Partition plate 8... Water-cooled lower chamber
13... Raw material gas inlet hole 15... Filter housing 17... Exhaust gas treatment device 18... Vacuum pump agent Patent attorney Noriyuki Chika Shinshin Bureau Norio Ogo Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)上部に原料ガス導入部を、下部に原料ガス排出部
を有する成長炉内に原料ガスを導入し熱分解を行ない、
成長炉内に配置された結晶基板上に単結晶を成長する縦
型有機金属熱分解気相成長装置において、前記成長炉の
下部に冷却手段を有する下部室を、また前記成長炉と前
記下部室との間に開孔部を有する仕切板を設け、結晶成
長に寄与しなかつた原料ガスを前記下部室を介して排出
することを特徴とする縦型有機金属熱分解気相成長装置
(1) Introducing the raw material gas into a growth furnace that has a raw material gas introduction part in the upper part and a raw material gas discharge part in the lower part, and performing thermal decomposition,
In a vertical metal-organic pyrolysis vapor phase growth apparatus for growing a single crystal on a crystal substrate placed in a growth furnace, a lower chamber having a cooling means is provided at a lower part of the growth furnace, and a lower chamber including a cooling means is connected to the growth furnace and the lower chamber. 1. A vertical metal-organic pyrolysis vapor phase growth apparatus, characterized in that a partition plate having an opening is provided between the metal organic pyrolysis vapor phase growth apparatus and the material gas which does not contribute to crystal growth is discharged through the lower chamber.
(2)前記仕切板は着脱可能であることを特徴とする特
許請求の範囲第1項記載の縦型有機金属熱分解気相成長
装置。
(2) The vertical metal organic pyrolysis vapor phase growth apparatus according to claim 1, wherein the partition plate is removable.
(3)前記仕切板の開孔部は前記下部室に対し同心的に
形成されていることを特徴とする特許請求の範囲第1項
記載の縦型有機金属熱分解気相成長装置。
(3) The vertical metal-organic pyrolysis vapor phase growth apparatus according to claim 1, wherein the opening of the partition plate is formed concentrically with respect to the lower chamber.
JP22465685A 1985-10-11 1985-10-11 Vertical organic metal thermal decomposition vapor growth apparatus Pending JPS6285422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22465685A JPS6285422A (en) 1985-10-11 1985-10-11 Vertical organic metal thermal decomposition vapor growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22465685A JPS6285422A (en) 1985-10-11 1985-10-11 Vertical organic metal thermal decomposition vapor growth apparatus

Publications (1)

Publication Number Publication Date
JPS6285422A true JPS6285422A (en) 1987-04-18

Family

ID=16817141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22465685A Pending JPS6285422A (en) 1985-10-11 1985-10-11 Vertical organic metal thermal decomposition vapor growth apparatus

Country Status (1)

Country Link
JP (1) JPS6285422A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040743A (en) * 2004-07-28 2006-02-09 Matsushita Electric Ind Co Ltd Plasma processing method and plasma processing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040743A (en) * 2004-07-28 2006-02-09 Matsushita Electric Ind Co Ltd Plasma processing method and plasma processing device
JP4604591B2 (en) * 2004-07-28 2011-01-05 パナソニック株式会社 Plasma processing method

Similar Documents

Publication Publication Date Title
JP2001323374A (en) Method and device for feeding vapor phase reactant into reaction chamber
JPS6285422A (en) Vertical organic metal thermal decomposition vapor growth apparatus
TW201439367A (en) Cvd device and method for cleaning a processing chamber of a cvd device
JP3772621B2 (en) Vapor phase growth method and vapor phase growth apparatus
CN205821448U (en) A kind of cleaning systems for MOCVD reative cell
JP2007088295A (en) Method and device for manufacturing semiconductor
JPS59223294A (en) Vapor phase growth device
JPS62188217A (en) Vertical type organic metal thermal decomposition vapor growth equipment
JP2004327893A (en) Phosphorus trap for semiconductor production system
JP3702403B2 (en) Vapor growth method
CN205956645U (en) Scale deposit is prevented to pipeline structure for MOCVD vent gas treatment system in
JPH04202091A (en) Vapor growth device of compound semiconductor
JPH05217910A (en) Vapor growing apparatus for compound semiconductor and vapor growing method
JPH08310896A (en) Vapor growth apparatus
JPH0235814Y2 (en)
JPH0715131Y2 (en) Metalorganic vapor phase growth equipment
JPH10237655A (en) Exhausting system for thin coating producing device and exhausting method
JP4427694B2 (en) Film forming apparatus and film forming method
JPH08306623A (en) Vapor growth equipment
JPS63190327A (en) Vapor growth device
JPH05251360A (en) Film-forming device
JPH05243164A (en) Vapor growth device and method thereof
JPS61242994A (en) Vertical unit for vapor growth
JPH01319929A (en) Crystal growth apparatus
JPH01139125A (en) Exhaust treatment equipment