JPS60227463A - Manufacture of semiconductor memory device - Google Patents

Manufacture of semiconductor memory device

Info

Publication number
JPS60227463A
JPS60227463A JP59084589A JP8458984A JPS60227463A JP S60227463 A JPS60227463 A JP S60227463A JP 59084589 A JP59084589 A JP 59084589A JP 8458984 A JP8458984 A JP 8458984A JP S60227463 A JPS60227463 A JP S60227463A
Authority
JP
Japan
Prior art keywords
film
substrate
groove
impurity
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59084589A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ishijima
石嶋 俊之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59084589A priority Critical patent/JPS60227463A/en
Publication of JPS60227463A publication Critical patent/JPS60227463A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/038Making the capacitor or connections thereto the capacitor being in a trench in the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To increase memory capacitance while preventing punch-through phenomenon appearing between each of grooves to serve as memory capacitance sections also to fine memory cells by surrounding the inner walls of the grooves by impurity layers having the same conduction type as a substrate. CONSTITUTION:An isolation region 22 is formed on a P type Si single crystal substrate 21, and an SiO2 film 23, an Si3N4 film 24 and an SiO2 film 25 are shaped on the whole surface in succession. The film 25, the film 24 and the film 23 are removed while using a resist 26 as a mask, and grooves A, A' are formed to the substrate 21. The film 25, the film 24 and the film 23 are removed, and an epitaxial layer 27 containing a P type impurity is shaped on the surface from which the substrate 21 is exposed. The P type impurity included in the layer 27 is pushed into the substrate 21 through heat treatment to form impurity diffusion layers 28, and an epitaxial layer 29 containing an N type impurity is grown on the surface from which the substrate 21 is exposed. The film 23 is removed, a thin SiO2 film 30 is shaped on the whole surface, and an electrode 31 is formed so as to contain a capacitance forming region.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体記憶getIkの製造方法に関し、さ
らに詳しくはよシ大きな記憶容量を実現する半導体記憶
装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a semiconductor memory getIk, and more particularly to a method of manufacturing a semiconductor memory device that achieves a much larger storage capacity.

(従来技術とその問題点) 電荷の形で2進情報を貯蔵する半導体メモリセルはセル
面積が小きいため、筒集積メモリセルとして秀れている
、従来烏集積化に適したメモリセルとして、たとえは日
経エレクトロニクス1983年7月18日号169ペー
ジから194ページに「高集積ダイナミックRAM実現
の基礎となるメモリセルの設計」と亀して発表された解
説記事においては第1図に示した如く1つのトランジス
タと1つのコンデンサとからなるメモリセル(以下IT
ICセルと略す)が示されている。このITICセルは
構成要素も少なくセル面積も小さいため高集積メモリ用
メモリセルとして現在広く用いられている。
(Prior art and its problems) Semiconductor memory cells that store binary information in the form of charges have a small cell area, so they are excellent as cylindrical integrated memory cells. For example, in an explanatory article published in the July 18, 1983 issue of Nikkei Electronics, pages 169 to 194, entitled ``Design of memory cells as the basis for realizing highly integrated dynamic RAM'', as shown in Figure 1. A memory cell (hereinafter referred to as IT) consisting of one transistor and one capacitor
(abbreviated as IC cell) is shown. This ITIC cell has few components and has a small cell area, so it is currently widely used as a memory cell for highly integrated memories.

第1図において3はキヤ/4’シタ電極で反転層6との
間に記憶容量を形成する。2はスイッチングトランジス
タのf−)電極で、ワード巌に接続されておシ、ビット
巌に接続されている拡散層4と反転層6との間の電荷の
移動を制碑する。又7は隣接メモリセルとの分離領域で
ある。この従来例において記憶容量はキャノ臂シタを極
3の面積と、絶縁膜5の誘電率及びその膜厚によって決
定される。
In FIG. 1, reference numeral 3 denotes a capacitor/4' capacitor electrode which forms a storage capacitor between it and the inversion layer 6. Reference numeral 2 denotes the f-) electrode of the switching transistor, which controls the movement of charges between the diffusion layer 4 and the inversion layer 6, which are connected to the word and bit holes. Further, 7 is an isolation region from an adjacent memory cell. In this conventional example, the storage capacity is determined by the area of the canopy pole 3, the dielectric constant of the insulating film 5, and its film thickness.

すなわち大きな記憶容量を確保する手段として以下の3
つの方法がおる。
In other words, the following three methods can be used to secure large storage capacity.
There are two ways.

(1) キャパシタ電極の面積を大きくする。(1) Increase the area of the capacitor electrode.

(2)絶縁膜の膜厚を薄くする。(2) Reduce the thickness of the insulating film.

(3) 高−′電率の絶縁膜を用いる。(3) Use an insulating film with high -' electrical conductivity.

ところで一般にメモリの高集積化は微細加工技術の進展
に伴うメモリセルサイズの縮小によって達成されておシ
、従来例で示したITICセル構造ではキャパシタ電極
の面積は減少する。それ故従来例のITICセルでは絶
縁膜の膜厚を薄くすることによシ記憶容量の大幅な減少
を防でいた。しかし絶縁膜の膜厚はもはや限界に近ずい
ている。一方セルの微細化は進展するばかシで従来構造
のITIC−15ルでは高誘電率の絶縁膜を採用しない
限9記憶容量は減少する一方である。筒誘電率の絶縁膜
は模索段階で近いうちに実用化される目途はない。
Incidentally, high integration of memories is generally achieved by reducing the memory cell size as microfabrication technology advances, and in the ITIC cell structure shown in the conventional example, the area of the capacitor electrode is reduced. Therefore, in conventional ITIC cells, a significant decrease in storage capacity has been prevented by reducing the thickness of the insulating film. However, the thickness of the insulating film is approaching its limit. On the other hand, as the miniaturization of cells continues to progress, the storage capacity of conventional ITIC-15 cells will continue to decrease unless an insulating film with a high dielectric constant is used. Insulating films with a cylindrical dielectric constant are at the exploratory stage and there is no prospect that they will be put to practical use in the near future.

このような現状において、たとえは1982年秋季第4
3回応用物理学会学術講演会(講演予稿集、434ペー
ジ)において「深い溝のキャパシタ形成への応用」と題
して発表された講演において、第2図にボした如くキャ
パシタ電極領域の表面積を震えることなくキャパシタ電
極の面積を増加させる手段が示されている。これは第2
図からもわかるようにキャパシタ電極佃域に溝を設ける
ことによシキャパシタ電楡の面積を大きくしている。な
お、第2図において、11はシリコン基板、12 、1
2’はワード線に接続しているスイッチングトランジス
タのダート電極、13はキャパシタ電極、1.4.14
’はビット輯に接続しているN型拡散層、15 、15
’はキャパシタを形成する絶縁膜、16は空乏層、17
は分離領域でおる。動作原理は第1図と同じであるため
、ここではその説明を省略する。このように溝を形成し
てキャパシタ電極面積を増加させる方法は、メモリセル
の微細化が進んでも溝の深さを深くすることにより十分
な記憶容量を確保することが可能となる。しかしながら
従来のこのような構造においては、メモリセルの微細化
に伴い記憶容量を形成する溝と嬶との間隔が狭はまると
、この二つの容量を形成する溝の間でパンチスルー現象
がおこシ記憶情報が破壊されるという欠点があった。
In this current situation, an analogy can be drawn from the 1982 Fall 4
In a lecture titled "Application of deep trenches to capacitor formation" at the 3rd Annual Conference of the Japan Society of Applied Physics (Presentation Proceedings, page 434), the surface area of the capacitor electrode region was oscillated as shown in Figure 2. Means are shown for increasing the area of the capacitor electrode without increasing the area of the capacitor electrode. This is the second
As can be seen from the figure, by providing a groove in the capacitor electrode area, the area of the capacitor electrode area is increased. In addition, in FIG. 2, 11 is a silicon substrate, 12, 1
2' is the dirt electrode of the switching transistor connected to the word line, 13 is the capacitor electrode, 1.4.14
' is an N-type diffusion layer connected to the bit line, 15, 15
' is an insulating film forming a capacitor, 16 is a depletion layer, 17
is in a separate area. Since the operating principle is the same as that in FIG. 1, its explanation will be omitted here. This method of increasing the capacitor electrode area by forming grooves makes it possible to ensure sufficient storage capacity by increasing the depth of the grooves even as memory cells become smaller. However, in conventional structures like this, when the distance between the groove that forms the storage capacitor and the groove becomes narrower as memory cells become smaller, a punch-through phenomenon occurs between the two grooves that form the capacitor. The drawback was that stored information was destroyed.

(発明の目的) 本発明の目的は、このような従来の欠点を除去し、さら
に従来型よシ大きな記憶容量を制御性よく傅ることがで
きる信頼性の高い半導体記憶装置の製造方法を提供する
ことにある。
(Object of the Invention) An object of the present invention is to provide a method for manufacturing a highly reliable semiconductor memory device that eliminates such conventional drawbacks and can handle a larger storage capacity with better controllability than the conventional type. It's about doing.

(発明の構成) 不発明は、第1導電型半導体基板上に溝を形成する工程
と、該溝の内壁の前記半導体基板が露出している部分に
のみ選択的に第1導電型半導体層を形成する工程と、該
第14電型半導体層上にのみ選択的に第2導電型半導体
層を形成する工程と、該第2導電型半導体層上に薄い絶
縁膜を形成する工程と、該絶縁膜上の少なくとも前記第
2導電型半導体層上を被うように導電性の電極を形成す
る工程と紮行うことを特徴とする半導体記憶装置の製造
方法である。
(Structure of the Invention) The non-invention includes a step of forming a groove on a first conductivity type semiconductor substrate, and selectively forming a first conductivity type semiconductor layer only on a portion of the inner wall of the groove where the semiconductor substrate is exposed. a step of forming a second conductivity type semiconductor layer selectively only on the fourteenth conductivity type semiconductor layer; a step of forming a thin insulating film on the second conductivity type semiconductor layer; This method of manufacturing a semiconductor memory device is characterized by performing a step of forming a conductive electrode so as to cover at least the second conductive type semiconductor layer on the film, and a step of plating.

(発明の原理と作用) 本発明はまず第1導電型半導体基板上に容量部となる溝
を形成し次にその溝の表面にのみ選択的に第1導電型半
導体層および第2導電型半導体層を順次形成しさらにそ
の溝表面に薄い絶縁膜とキャパシタ電極材料を順次形成
し、容量部となる溝の表面上にのみ選択的かつTil制
御性よく第1および第2導電型半導体層を形成する本の
で、本発明によれば、従来型に比べて第2導電型半導体
層と第1導電型半導体基板間の容量を制御性よく増加さ
せるとともに微細メモリセルに対しても記憶容量部とな
る嘴と溝との間に現れるノクンチスル現象を有効に防止
できる。
(Principle and operation of the invention) The present invention first forms a groove serving as a capacitor on a first conductivity type semiconductor substrate, and then selectively forms a first conductivity type semiconductor layer and a second conductivity type semiconductor layer only on the surface of the groove. A thin insulating film and a capacitor electrode material are sequentially formed on the surface of the groove, and first and second conductive type semiconductor layers are formed selectively and with good Ti controllability only on the surface of the groove that will become the capacitor. Therefore, according to the present invention, the capacitance between the second conductive type semiconductor layer and the first conductive type semiconductor substrate is increased with better controllability compared to the conventional type, and it also serves as a storage capacitor for fine memory cells. It is possible to effectively prevent the knocking phenomenon that occurs between the beak and the groove.

(実施例) 以下に本発明の実施例について図面を参照して詳細に説
明する。
(Example) Examples of the present invention will be described in detail below with reference to the drawings.

〔実施例1〕 第3図(a)〜(1)は本発明において、溝の全内壁を
記憶容量部として用いた時の製造プロセスをl−を追り
て示した模式的断面図である。
[Example 1] Figures 3(a) to 3(1) are schematic cross-sectional views showing the manufacturing process along l- when the entire inner wall of the groove is used as a storage capacitor portion in the present invention. .

第3図(a)は、P型シリコン単結晶基板21上に通常
用いられている素子間分離法たとえばLOCO8法によ
シ分離領域22を形成した後、ウェハー全面に二酸化珪
素膜23、窒化珪素膜24、二酸化珪素膜25を1順次
形成し、さらに溝形成領域以外をレジスト26で被った
状態を示す。
FIG. 3(a) shows that after an isolation region 22 is formed on a P-type silicon single crystal substrate 21 by a commonly used device isolation method, such as the LOCO8 method, a silicon dioxide film 23 and a silicon nitride film are formed on the entire surface of the wafer. A state in which a film 24 and a silicon dioxide film 25 are formed one after another, and areas other than the groove forming region are further covered with a resist 26 is shown.

第3図(b)は、前記レジスト26を耐エツチングマス
ク止して前記二酸化珪素膜25、窒化珪素膜24および
二酸化珪素膜23を反応性ス/4’ ツタエツチング技
術等を用いて順次エツチング除去した後、さらに前記レ
ノスト26および二酸化珪素膜25を耐エツチングマス
クとして再び反応性スパッタエツチング技術等によシ前
記シリコン基板21をエツチングし所望に深さの溝A 
、 A’を形成し、次に前記二酸化珪素膜25を等方性
エツチング技術例えば緩衝フッ酸を用いてエツチング除
去した状態を示す。緩衝7ツ酸によシ前記二酸化珪素膜
25を除去する際、前記二酸化珪素膜23も同時にエツ
チングされ溝A 、 A’の開口端よシ後退する。
In FIG. 3(b), the silicon dioxide film 25, the silicon nitride film 24, and the silicon dioxide film 23 are sequentially etched away using a reactive step etching technique using the resist 26 covered with an etching-resistant mask. After that, the silicon substrate 21 is etched again by reactive sputter etching technique using the renost 26 and the silicon dioxide film 25 as an etching-resistant mask to form a groove A of a desired depth.
, A' is formed, and then the silicon dioxide film 25 is etched away using an isotropic etching technique such as buffered hydrofluoric acid. When the silicon dioxide film 25 is removed using buffered phosphoric acid, the silicon dioxide film 23 is also etched at the same time and retreats from the opening ends of the trenches A and A'.

化3図(c)は、前記窒化珪素膜24′をエツチング除
去した後、選択エピタキシャル層成長技術により、前記
シリコン基板21が露出している表面上にのみ、2M不
純物を言む薄いエピタキシャル層27を成長した状態を
示す。選択的にエピタキシャル層を形成するにはInt
ernational ElsctronDevise
s Meeting Technical Diges
t 1982年P241ページからP244に[Nov
el DeviceIsolatlon Techno
logy With 5elective Epilt
axlalGrowth Jと題して発表された技術を
用いることによシ容易に達成できる。
FIG. 3(c) shows that after the silicon nitride film 24' is removed by etching, a thin epitaxial layer 27 containing 2M impurities is formed only on the exposed surface of the silicon substrate 21 by a selective epitaxial layer growth technique. Shows the grown state. To selectively form an epitaxial layer, Int
ernational ElsctronDevise
s Meeting Technical Diges
t 1982 from page 241 to page 244 [Nov
el Device Isolatlon Techno
logic With 5elective Epilt
This can be easily achieved by using the technology published under the title AxlGrowth J.

第3図(d)は、熱処理によシ前記エピタキシャル層2
7に含まれたP型不純物を前記シリコン基板21内に押
し込み不純物拡散層28とし、その後再び選択エピタキ
シャル層成長技術によシ前記シリコン基板21が露出し
ている表面上のみにN型不純物を含む薄いエピタキシャ
ル層29を成長した状態を示す。
FIG. 3(d) shows the epitaxial layer 2 formed by heat treatment.
The P-type impurity contained in step 7 is pushed into the silicon substrate 21 to form the impurity diffusion layer 28, and then selective epitaxial layer growth technique is used again to contain the N-type impurity only on the exposed surface of the silicon substrate 21. A state in which a thin epitaxial layer 29 has been grown is shown.

第3図(6)は前記二酸化珪素膜23を除去した後熱酸
化法によシ薄い二酸化珪素膜30をウニノ・−全面に形
成した後、容量形成領域を含むように多結晶シリコンを
用いて電極31を形成した状態を示す。ここでは前記多
結晶シリコン31と前記シリコン基板21間に容量を形
成するために熱酸化法によシ薄い二酸化珪素膜″30だ
けを形成しているが、さらに容量を増加させるために二
酸化珪素膜と窒化珪素膜との二層構造にしてもよい。ま
た電極3〕の形成のために多結晶シリコンを用いている
が、この多結晶シリコンは狭い溝幅でも十分に回シ込ん
で成長する。このため港は多結晶シリコンによシ完全に
埋められた形となる。
FIG. 3(6) shows that after the silicon dioxide film 23 is removed, a thin silicon dioxide film 30 is formed on the entire surface by a thermal oxidation method, and then a polycrystalline silicon film is formed so as to include the capacitance formation region. A state in which an electrode 31 is formed is shown. Here, in order to form a capacitance between the polycrystalline silicon 31 and the silicon substrate 21, only a thin silicon dioxide film "30" is formed by thermal oxidation, but in order to further increase the capacitance, a silicon dioxide film It may also have a two-layer structure of a silicon nitride film and a silicon nitride film.Also, polycrystalline silicon is used to form the electrode 3], and this polycrystalline silicon grows with sufficient rotation even in a narrow groove width. Therefore, the port is completely buried in polycrystalline silicon.

第3図(f)は、スイッチングトランジスタのダート酸
化膜30/およびワード線に接続されたダート電極32
を形成し、さらにビット線に接続するN型拡散wJ33
と前記Nfi不純物を含むエピタキシャル層29に接続
するN型拡散鳩34を形成してメモリセルを形成した状
態を示す。以上実施例1は溝の全内壁に容量部を形成し
た場合の例であシ、次に述べる実施例2は溝の内壁の一
部つ′1シ側壁にのみ容量部を形成した場合の例である
FIG. 3(f) shows the dirt oxide film 30 of the switching transistor and the dirt electrode 32 connected to the word line.
N-type diffusion wJ33 is formed and further connected to the bit line.
This shows a state in which a memory cell is formed by forming an N-type diffusion dove 34 connected to the epitaxial layer 29 containing the Nfi impurity. Embodiment 1 described above is an example in which the capacitive portion is formed on the entire inner wall of the groove, and Embodiment 2, which will be described next, is an example in which the capacitive portion is formed only in a part of the inner wall of the groove, and only on one side wall. It is.

(実施例2) 第4図(aJ〜(f)は、本発明において溝の側壁のみ
を記憶答前部として用いた時の製造プロセスを順を追っ
て示した模式的断面図である。
(Example 2) FIGS. 4A to 4F are schematic sectional views sequentially showing the manufacturing process when only the side wall of the groove is used as the memory answer front part in the present invention.

第4図(a)は、P型シリコン単結晶基板41上に・二
酸化珪素膜42窒化珪素膜43二酸化珪素膜44を順次
形成した後、溝形成領域以外をレゾスト45で被った状
態を示す。
FIG. 4(a) shows a state in which a silicon dioxide film 42, a silicon nitride film 43, and a silicon dioxide film 44 are sequentially formed on a P-type silicon single crystal substrate 41, and then the area other than the groove forming area is covered with a resist 45.

第4図(b)は、前記レジスト45を耐エツチングマス
クとして前記二酸化珪素膜44、窒化珪素膜43、およ
び二酸化珪素膜42を反応性ス/9ツタエツチング技術
等を用いてエツチング除去した後、前記レジスト45お
よび二酸化珪素膜44を耐工、チングマスクとして再び
反応性スノヤ、タエツチング技術等を用いて前記シリコ
ン基板41をエツチング除去して所望の深さの溝Bi影
形成、さらに害の内壁を熱酸化法によシ二酸化珪素膜4
6で被い、次にイオン注入法によシ溝Bの底部にのみに
基板と同一導電型不純物として例えば?ロン47を打ち
込んだ状態を示す。
FIG. 4(b) shows that after the silicon dioxide film 44, silicon nitride film 43, and silicon dioxide film 42 are etched away using the resist 45 as an etching-resistant mask, the silicon dioxide film 44, the silicon nitride film 43, and the silicon dioxide film 42 are etched away using a reactive step etching technique or the like. The resist 45 and the silicon dioxide film 44 are used as etching masks, and the silicon substrate 41 is etched away again using a reactive etching technique or the like to form a groove Bi shadow of a desired depth, and the inner wall of the defect is heated. Silicon dioxide film 4 by oxidation method
Then, by ion implantation, an impurity of the same conductivity type as the substrate is added only to the bottom of groove B, for example. This shows the state in which Ron 47 is driven.

第4図(c)は、ウェハー全体をホトレジスト48で被
った状態を示す。
FIG. 4(c) shows the state in which the entire wafer is covered with photoresist 48.

第4図(d)は、前記ホトレジスト48を反応性スフ4
ツタエツチング技術又はグラズマエッチング技術等を用
いて表面よシエッチング除去してゆき溝Bの底部付近に
のみ残した後、前記溝の底部に残ったレジスト48をエ
ツチングマスクとして溝側壁に形截姑れでいる前記二酸
化珪素膜46をエツチング除去した状態ヲ示す。
FIG. 4(d) shows how the photoresist 48 is applied to the reactive film 4.
After etching away from the surface using vine etching technology or glazma etching technology, leaving only the area near the bottom of the groove B, the resist 48 remaining at the bottom of the groove is used as an etching mask to form a shape on the side wall of the groove. A state in which the silicon dioxide film 46 is removed by etching is shown.

第4図(e)tl′i、選択エピタキシャル成長技術を
用いて前記シリコン基板41が露出している溝Bの側壁
にのみP型不純物を含む薄いエピタキシャルj−49を
成長した状態を示す。
FIG. 4(e) tl'i shows a state in which a thin epitaxial layer J-49 containing P-type impurities is grown only on the side wall of the groove B where the silicon substrate 41 is exposed using the selective epitaxial growth technique.

第4図(f)は、熱処理によシ前記エピタキシャル層に
含まれたP型不純物を前記シリコン基板内に押し込んで
拡散層49′とし、その後再び選択エピタキシャル成長
技術によシ前記シリコン基板41が露出している#4B
の側壁にのみN型不純物を言む博いエピタキシャル層5
0を成長した状態を示すO 第4図(g)は、前記溝B IIIJ壁に熱酸化法にょ
シ薄い二酸化珪素膜51を形成した後、ウェハー全面に
厚い多結晶シリコン52を形成し仁れを表面よシエッチ
ング除去してゆきdB内部のみに多結晶シリコン52を
残した状態を示す。
FIG. 4(f) shows that the P-type impurity contained in the epitaxial layer is forced into the silicon substrate by heat treatment to form a diffusion layer 49', and then the silicon substrate 41 is exposed again by selective epitaxial growth technique. #4B
A wide epitaxial layer 5 containing N-type impurities only on the sidewalls of
FIG. 4(g) shows a state in which 0 is grown. After a thin silicon dioxide film 51 is formed on the wall of the trench BIIIJ by thermal oxidation, a thick polycrystalline silicon 52 is formed on the entire surface of the wafer. This shows a state in which polycrystalline silicon 52 is removed only from the surface by etching, leaving polycrystalline silicon 52 only inside dB.

第4図(h)は、表面に残りている前記二酸化珪素膜4
4をエツチングマスクキシャ 43を耐酸化マスクとして前記溝に埋められた多結晶シ
リコン52の上部を酸化して厚い二酸化珪素膜53を形
成した状態を示す。
FIG. 4(h) shows the silicon dioxide film 4 remaining on the surface.
4 shows a state in which a thick silicon dioxide film 53 is formed by oxidizing the upper part of the polycrystalline silicon 52 buried in the groove using the etching mask 43 as an oxidation-resistant mask.

第4図0)は、前記窒化珪素膜42′を除去した後、ス
イッチングトランジスタのダート酸化膜54およびワー
ド線に接続されたダート電極55を形成し、さらにビッ
ト線に接続するN型拡散層56と前記N型不純物會含む
エピタキシャル1−50に接続するN型拡散層57を形
成してメモリセルを形成した状態を示す。
In FIG. 40), after removing the silicon nitride film 42', a dirt oxide film 54 of the switching transistor and a dirt electrode 55 connected to the word line are formed, and an N-type diffusion layer 56 connected to the bit line is formed. This shows a state in which a memory cell is formed by forming an N-type diffusion layer 57 connected to the epitaxial layer 1-50 containing the N-type impurity group.

以上、実施例2で示した溝側壁にのみ容量を形成した場
合、1つの溝で2ケの分離感れた容量部が形成されたこ
とになる。このため溝に埋め込んだ多結晶シリコンをア
ースにおとしてメモリセルを動作させることにより、こ
の溝は素子間分離構造としても用いることができる。
As described above, when a capacitor is formed only on the groove side wall as shown in Example 2, two separated capacitor portions are formed in one groove. Therefore, by grounding the polycrystalline silicon buried in the trench and operating the memory cell, this trench can also be used as an isolation structure between elements.

(発明の効果) 以上のように本発明によれば、婢の内壁の全面あるいは
一部の周囲を基板と同一導電型不純物層で囲むことによ
シ、従来の容を形成部に溝を用いたものよシも記憶容量
が増加すると共に微細化が進んだ時に問題となる溝容量
部と溝容量部との間に起こるパンチスルー現象を抑える
ことができる。なお、79ンチスルーを防ぐためだけな
らば、シリコン基板の不純物濃度を上ければよいが、し
かしシリコン基板の不純物濃度を上げると他に形成して
いる拡散層の浮遊容量が増加して、メモリ自体の応答速
度が低下するという欠点がある。このため基板と同一導
電型不純物層を溝の周囲にのみ形成するのがよい。この
ような不純物層の形成方法として、不純物を拡散するか
又は不純物を二酸化珪素膜全通して拡散する方法がある
。しかしいずれの場合も低良度の不純物JrIiを、そ
の濃度および拡散層の深さを考慮しながら制御よく形成
するのは非常に困難である。本発明では選択エピタキシ
ャル成長技術を用いることによシ容量形成部の溝の周囲
にのみに基板と同一導電型の低一度不純物層を制御よく
形成することを容易にしている。
(Effects of the Invention) As described above, according to the present invention, by surrounding the entire or part of the inner wall of the substrate with an impurity layer of the same conductivity type as the substrate, the conventional structure can be replaced with a groove in the forming part. In any case, it is possible to suppress the punch-through phenomenon that occurs between the groove capacitor parts, which becomes a problem when the storage capacity increases and the miniaturization progresses. Note that if only to prevent 79-inch through, it would be sufficient to increase the impurity concentration of the silicon substrate, but increasing the impurity concentration of the silicon substrate increases the stray capacitance of the other diffusion layers formed, causing damage to the memory itself. The disadvantage is that the response speed is reduced. For this reason, it is preferable to form an impurity layer of the same conductivity type as the substrate only around the groove. As a method for forming such an impurity layer, there is a method of diffusing the impurity or a method of diffusing the impurity throughout the silicon dioxide film. However, in either case, it is very difficult to form impurity JrIi of low quality in a well-controlled manner while taking into account its concentration and the depth of the diffusion layer. In the present invention, by using a selective epitaxial growth technique, it is possible to easily form a low-temperature impurity layer of the same conductivity type as the substrate only around the groove of the capacitance formation portion in a well-controlled manner.

以上詳細に述べた通シ、本発明によれば微細なメモリセ
ル面積においても大きな記憶容量を制御性よく形成する
ことができるため、高集積化に適したメモリセルを容易
に得うることができる効果を有するものである。
As described in detail above, according to the present invention, a large memory capacity can be formed with good controllability even in a small memory cell area, so a memory cell suitable for high integration can be easily obtained. It is effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のITICメモリセルの概略断面図、第2
図は従来の溝を用いたITICメモリセルの概略断面図
、第3図(a) 〜(f)、第4図(a) 〜(Llは
それぞれ本発明によるメモリセルを製造するプロセスを
示す概略断面図である。図において 21.4トイ・シリコンi&、32.55・・・ワード
線に接続しているスイッチングトランジスタのダート電
極、31.52・・・キャパシタ電極、33゜56・・
・ビット線に接続しているN型拡散層、30゜51・・
・キャノfシタを形成する絶縁膜、22・・・分離領域
、23.25.42.44.46.53・・・二酸化珪
素膜、24.43・・・窒化珪素膜、A 、 A’。 B・・・溝、27,49・・・P型不純物を含んだエピ
タキシャル層、28.49・・・P型不純物拡散層、2
9.50・・・N型不純物を含んだエピタキシャル層、
34.57・・・N型拡散層、26.45.48・・・
レジスト、47・・・P型拡散層をそれぞれ示す。 第1図 第3図 ((1) ′ 第3図 第3図 第4図 (b) 第4図 (d) 第4図 4/ 4e) 第4図
Figure 1 is a schematic sectional view of a conventional ITIC memory cell, Figure 2 is a schematic cross-sectional view of a conventional ITIC memory cell.
The figure is a schematic cross-sectional view of an ITIC memory cell using a conventional trench, and FIGS. It is a sectional view. In the figure, 21.4 Toy silicon i&, 32.55... Dirt electrode of the switching transistor connected to the word line, 31.52... Capacitor electrode, 33°56...
・N-type diffusion layer connected to the bit line, 30°51...
- Insulating film forming a canopy, 22... Isolation region, 23.25.42.44.46.53... Silicon dioxide film, 24.43... Silicon nitride film, A, A'. B... Groove, 27, 49... Epitaxial layer containing P-type impurity, 28.49... P-type impurity diffusion layer, 2
9.50...Epitaxial layer containing N-type impurities,
34.57...N-type diffusion layer, 26.45.48...
Resist, 47...indicates a P-type diffusion layer, respectively. Figure 1 Figure 3 ((1) ' Figure 3 Figure 4 (b) Figure 4 (d) Figure 4 4/4e) Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1ン 第1導電型半導体基板上に溝を形成する工程と
該溝の内壁の前記半導体基板が露出している部分にのみ
辿択的に第1導電型半導体層を形成する工程と、該第1
導電型半導体層上にのみ選択的に第2導電型半導体層を
形成する工程と、該第2導電型半導体層上に薄い絶縁膜
を形成する工程と、該絶縁膜上の少なくとも前記第2導
電型半導体層上を被うようK 4 ’It性の電極を形
成する工程とを行うことを特徴とする半導体記憶装置の
製造方法。
(1) A step of forming a groove on a first conductivity type semiconductor substrate; a step of selectively forming a first conductivity type semiconductor layer only on a portion of the inner wall of the groove where the semiconductor substrate is exposed; 1st
a step of selectively forming a second conductive type semiconductor layer only on the conductive type semiconductor layer; a step of forming a thin insulating film on the second conductive type semiconductor layer; and a step of forming at least the second conductive type semiconductor layer on the insulating film. 1. A method for manufacturing a semiconductor memory device, comprising the steps of: forming a K 4 'It type electrode so as to cover the type semiconductor layer.
JP59084589A 1984-04-26 1984-04-26 Manufacture of semiconductor memory device Pending JPS60227463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59084589A JPS60227463A (en) 1984-04-26 1984-04-26 Manufacture of semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59084589A JPS60227463A (en) 1984-04-26 1984-04-26 Manufacture of semiconductor memory device

Publications (1)

Publication Number Publication Date
JPS60227463A true JPS60227463A (en) 1985-11-12

Family

ID=13834857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59084589A Pending JPS60227463A (en) 1984-04-26 1984-04-26 Manufacture of semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS60227463A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4843025A (en) * 1987-05-25 1989-06-27 Matsushita Electronics Corporation Method of fabricating trench cell capacitors on a semocondcutor substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4843025A (en) * 1987-05-25 1989-06-27 Matsushita Electronics Corporation Method of fabricating trench cell capacitors on a semocondcutor substrate

Similar Documents

Publication Publication Date Title
US5346834A (en) Method for manufacturing a semiconductor device and a semiconductor memory device
JP3014372B2 (en) Bulk and strained silicon on insulator using local selective oxidation
US4742018A (en) Process for producing memory cell having stacked capacitor
JP2994239B2 (en) SOI trench structure and method of manufacturing the same
US5976945A (en) Method for fabricating a DRAM cell structure on an SOI wafer incorporating a two dimensional trench capacitor
KR0163759B1 (en) Semiconductor device and semiconductor memory device
US6461903B2 (en) Method for fabricating a part depletion type SOI device preventing a floating body effect
KR19990023196A (en) Trench insulating structure forming method and semiconductor device and manufacturing method thereof
JPS5840343B2 (en) Manufacturing method of MOSFET/RAM element
US7927962B2 (en) Semiconductor device having buried insulation films and method of manufacturing the same
JPH02156665A (en) Dynamic-random-access-memory and manufacture thereof
JPH0638406B2 (en) Method of manufacturing integrated circuit
JPH027465A (en) Semiconductor memory device
US5372950A (en) Method for forming isolation regions in a semiconductor memory device
JPH11135752A (en) Semiconductor memory device and its manufacture
JPS60227463A (en) Manufacture of semiconductor memory device
US4987091A (en) Process of fabricating dynamic random access memory cell
JPS63227050A (en) Semiconductor memory device and manufacture thereof
JPS6362370A (en) Manufacture of semiconductor device
JPS63260166A (en) Semiconductor memory device and manufacture thereof
KR940011096B1 (en) Device for isolation of semiconductor apparatus
JPS60105247A (en) Manufacture of semiconductor device
KR20010081253A (en) Transistor forming method
JPH0370381B2 (en)
JPS6156449A (en) Semiconductor memory device