JPS6022700A - Method of solidifying and treating radioactive waste - Google Patents

Method of solidifying and treating radioactive waste

Info

Publication number
JPS6022700A
JPS6022700A JP13154583A JP13154583A JPS6022700A JP S6022700 A JPS6022700 A JP S6022700A JP 13154583 A JP13154583 A JP 13154583A JP 13154583 A JP13154583 A JP 13154583A JP S6022700 A JPS6022700 A JP S6022700A
Authority
JP
Japan
Prior art keywords
solidified
glass
radioactive waste
intermediate layer
solidified body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13154583A
Other languages
Japanese (ja)
Other versions
JPH0420159B2 (en
Inventor
辰彦 松本
萩野 直彦
後藤 昭
川西 宣男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13154583A priority Critical patent/JPS6022700A/en
Publication of JPS6022700A publication Critical patent/JPS6022700A/en
Publication of JPH0420159B2 publication Critical patent/JPH0420159B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、放射性廃棄物の処理方法に関し、さらに詳し
くは、放射性廃棄物が含有されたガラスまたはセラミッ
クスからなる固化体を金属被覆体で囲繞した放射性廃棄
物貯蔵体を製造する方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for disposing of radioactive waste, and more particularly, the present invention relates to a method for disposing of radioactive waste, and more specifically, a solidified body made of glass or ceramics containing radioactive waste is surrounded by a metal coating. The present invention relates to a method of manufacturing a radioactive waste storage body.

〔発明の技術的背景〕[Technical background of the invention]

原子力発電所や使用済核燃料の再処理工場から発生する
放射性廃棄物の処分に際しては、放射性物質の周囲への
拡散が最小限となる形態に廃棄物を固形化し、得られた
貯蔵体が、化学的、機械的に安定していて長期の貯蔵に
よっても環境汚染の原因にならないことが必要である。
When disposing of radioactive waste generated from nuclear power plants and spent nuclear fuel reprocessing plants, the waste is solidified in a form that minimizes the dispersion of radioactive materials into the surrounding area, and the resulting storage medium is used as a chemical It must be physically and mechanically stable and not cause environmental pollution even during long-term storage.

このような観点で従来より行われている固形化方法とし
ては、ガラス固化法が主流を占めている。
From this point of view, vitrification is the mainstream solidification method conventionally used.

この方法は、放射性廃棄物を、ホウケイ酸ガラス、リン
酸ガラスなどのガラス形成材料とともに溶融し一定形状
のガラスインゴットに凝固させ、固化するものである。
In this method, radioactive waste is melted together with a glass-forming material such as borosilicate glass or phosphate glass and solidified into a glass ingot of a certain shape.

通常このようにして固化されたガラスインゴットは金属
容器中におさめ貯蔵される。またさらに比較的小型のガ
ラスインゴット多数を金属中に埋設する。いわゆる金属
複合同化法も提案されている。
The glass ingot thus solidified is usually stored in a metal container. Furthermore, many relatively small glass ingots are embedded in the metal. A so-called composite metal assimilation method has also been proposed.

しかしながら、上述したガラス固化法あるhは金属複合
同化法には次のような問題がある。
However, the above-mentioned vitrification method and metal composite assimilation method have the following problems.

(イ) ガラス固化体を収納あるいは被覆している金属
被覆体が腐食等によシ破損した場合を想定すると、内部
の固化体は外部環境と直接接することとなるため、長期
にわたる安定な貯蔵のためには、外部環境(たとえば水
)に対する放射性物質の浸出率を可能な限り小さくする
ことが要請される。
(b) Assuming that the metal sheath that houses or covers the vitrified material is damaged due to corrosion, etc., the solidified material inside will be in direct contact with the external environment, so it is difficult to ensure stable storage over a long period of time. In order to achieve this goal, it is required to minimize the rate of radioactive material leaching into the external environment (for example, water).

(ロ) ガラス固化体は、基本材料であるガラスの組成
に制約があるため、同化体製造時にクラックが生じやす
いという欠点がある。特に、金属被覆体とガラス固化体
とは熱膨張係数が異なるため、溶融状態のガラスが金属
被覆体中で固化する際にガラスと金属との界面で冷却が
促進されこの部分に熱応力が生じ、その結果、固化体の
表面部分ある込は内部にクラックが生じゃすくなるので
ある。固化体に生じたクランクは、固化体内部で発生す
る放射性崩壊熱の放散を阻害することとなり、これによ
る温度上昇によって同化体内部の機械的および化学的安
定性がそこなわれるおそれが生ずる。さらにクラックに
よってガラス固化体の表面積が増大し、そのためガラス
同化体が外部環境に直接接した場合の浸出面積が増大す
る。
(b) Vitrified materials have the disadvantage that cracks are likely to occur during the production of the assimilated material, since there are restrictions on the composition of the glass, which is the basic material. In particular, since the metal cladding and the vitrified body have different coefficients of thermal expansion, when molten glass solidifies in the metal cladding, cooling is accelerated at the interface between the glass and metal, creating thermal stress in this area. As a result, cracks tend to form inside the surface of the solidified material. The crank produced in the solidified body will inhibit the dissipation of the radioactive decay heat generated inside the solidified body, and the resulting temperature increase may damage the mechanical and chemical stability inside the assimilated body. Additionally, cracks increase the surface area of the vitrified body, thereby increasing the leaching area when the glass assimilated body is in direct contact with the external environment.

〔発明の目的〕[Purpose of the invention]

本発明は上述した問題点に鑑みてなされたものであり、
放射性物質の耐浸出性に一層すぐれ、クラックが生ずる
ことがなく長期に安全に貯蔵し得□□□□□□〜□□ る固化貯蔵体の製造法を提供することを目的とする○ 〔発明の概要〕 上記目的を達成するために、本発明の放射性廃棄物の固
化処理方法は、放射性廃棄物が含有されたガラスまたは
セラミックスからなる同化体をさらに金属被覆体で囲繞
した固化貯蔵体を製造するに際し、固化体と金属被覆体
との間に放射性物質が含有されていないガラスまたはセ
ラミ・ノクスからなる中間層を設けること、を特徴とす
る。
The present invention has been made in view of the above-mentioned problems, and
The object of the present invention is to provide a method for manufacturing a solidified storage body that has even better resistance to leaching of radioactive substances and can be safely stored for a long period of time without cracking. Summary] In order to achieve the above object, the method for solidifying radioactive waste of the present invention involves manufacturing a solidified storage body in which an assimilate body made of glass or ceramics containing radioactive waste is further surrounded by a metal coating. The method is characterized in that an intermediate layer made of glass or ceramic nox containing no radioactive substance is provided between the solidified body and the metal coating.

〔発明の詳細な説明〕[Detailed description of the invention]

同化体の製造 本発明の処理対象となる放射性廃棄物としては、たとえ
ば、使用済核燃料を処理したのち、U、 Puを回収し
た残りの放射性廃棄物の他、再生廃液、床トレインなど
の各種の廃液、フイA・タースラ・クジ、沈殿スラッジ
などの各種の固体廃棄物が含まれる。
Production of assimilates Radioactive waste to be treated in the present invention includes, for example, radioactive waste remaining after processing spent nuclear fuel and recovering U and Pu, as well as various types of waste such as recycled waste liquid and floor trains. It includes various solid wastes such as waste liquid, filtrate, tarsula, kuji, and settled sludge.

また、本発明で用しる、放射性廃棄物が含有された固化
体としては、ガラス、セラミックスなどを用いて放射性
廃棄物を固化体に形成したものがあげられる。たとえば
、放射性廃棄物を含有し、溶融または焼結などの熱処理
工程を経てつくられるホウケイ酸系ガラス、リン酸系ガ
ラスなどのガラス固化体、Diopside系などの結
晶化ガラス固化体、Al2O5−8102系、’rto
z系、MnO2−8iO2系、ZrO2系などのセラミ
ックス同化体が好ましく用いられる。固化体中の放射性
廃棄物の含量は、10〜u%の範囲が適当である。
Further, examples of the solidified body containing radioactive waste used in the present invention include those formed by forming radioactive waste into a solidified body using glass, ceramics, or the like. For example, vitrified materials such as borosilicate glass and phosphoric acid glass that contain radioactive waste and are made through heat treatment processes such as melting or sintering, crystallized vitrified materials such as Diopside type, and Al2O5-8102 type glass. ,'rto
Ceramic assimilates such as z-based, MnO2-8iO2-based, and ZrO2-based are preferably used. The content of radioactive waste in the solidified body is suitably in the range of 10 to u%.

中間層の形成 上記固化体を金属被覆体で囲繞する際に、固化体と金属
被覆体との間に中間層を形成する。この中間層は、放射
性物質を含有しないガラスまたはセラミックスからなり
、たとえばボウケイ酸系ガラス、リン酸系ガラス、 D
iopside系などの結晶化ガラス、Al2O5,Z
rO2,Ti0a、 A1205−8102系、 5I
C1S13N11などのセラミックスが用いられ得る。
Formation of Intermediate Layer When surrounding the solidified body with a metal covering, an intermediate layer is formed between the solidified body and the metal covering. This intermediate layer is made of glass or ceramics that does not contain radioactive substances, such as borosilicate glass, phosphate glass, D
Crystallized glass such as iopside type, Al2O5, Z
rO2, Ti0a, A1205-8102 series, 5I
Ceramics such as C1S13N11 may be used.

また、固化体にクラックが生ずるのを防止するために、
中間層の熱膨張係数を適宜選択することが好ましい。す
なわち、溶融状態の固化体が金属被覆体中で冷却・固化
するとき(あるいは、既に形成された固化体を溶融金属
で囲繞するとき)に生ずる熱応力を軽減し、クラックの
発生を防止するためには、常温から固化体の軟化温度ま
での温度範囲における中間層の平均熱膨張係数が、前記
温度範囲における固化体の平均熱膨張係数と、同じく前
記温度範囲における金属被覆体の平均熱膨張係数との間
の値であることが好ましく、さらに好ましくはほぼ中間
の値であることが望まし込。
In addition, to prevent cracks from forming in the solidified material,
It is preferable to appropriately select the thermal expansion coefficient of the intermediate layer. In other words, to reduce the thermal stress that occurs when a molten solidified body cools and solidifies in a metal coating (or when an already formed solidified body is surrounded by molten metal) and to prevent the occurrence of cracks. The average coefficient of thermal expansion of the intermediate layer in the temperature range from room temperature to the softening temperature of the solidified body is the average coefficient of thermal expansion of the solidified body in the temperature range, and the average coefficient of thermal expansion of the metal coating in the same temperature range. It is preferable that the value be between 1 and 2, and more preferably a value approximately in between.

中間層の厚さとしては、薄すぎると固化体中の放射性物
質が外界へ浸出するのを防止するバリヤーとしての働き
が減少し、一方、厚すぎると複合固化貯蔵体の全量に対
する廃棄物の重量比(すなわち含有率)が低下するため
、0.02m〜ioormの範囲が適当である。
If the thickness of the intermediate layer is too thin, its function as a barrier to prevent radioactive substances in the solidified material from leaching to the outside world will be reduced, while if it is too thick, the weight of waste relative to the total amount of the composite solidified storage material will be reduced. A range of 0.02 m to ioorm is suitable since the ratio (ie, content) decreases.

中間層を形成する方法としては、(イ)ガラスまたはセ
ラミックス固化体を囲繞する金属被覆体(たとえば金属
容器)の内面に、あらかじめ溶融コート法、フレームス
プレイ法などによシ中間層を形成し、次いでその中に放
射性廃棄物が含有されたガラスあるいはセラミックスの
溶融体を注入し、固化する方法、(ロ)既に形成されて
いる同化体を金属容器中に装入し、次いでこの金属容器
と固化体との間隙忙中間層の材料となるガラスまたはセ
ラミックスの溶融体を注入し固化する方法、(ハ)フレ
ームスプレイ法、プラズマスプレィ法、CVD法、PV
D法、真空蒸着法、あるいは直接、中間層材料の溶融体
中へ浸漬するなどの方法を用いて既に形成されている固
化体の表面に中間層を被覆形成し、次いでこれを常法に
より金属被覆体で囲繞する、などの方法をm−ることが
できる。
The method for forming the intermediate layer includes (a) forming the intermediate layer in advance on the inner surface of a metal covering (for example, a metal container) surrounding the solidified glass or ceramic body by a melt coating method, a flame spray method, etc.; A method in which a glass or ceramic melt containing radioactive waste is then injected and solidified; (b) the already formed assimilate is charged into a metal container and then solidified with the metal container; A method of injecting and solidifying a molten glass or ceramic material that is a material for the interlayer between the body and the body, (c) flame spray method, plasma spray method, CVD method, PV
The intermediate layer is coated on the surface of the solidified material that has already been formed using the D method, vacuum evaporation method, or directly immersed in the melt of the intermediate layer material, and then this is coated with the metal by a conventional method. Methods such as surrounding with a covering can be used.

〔発明の実施例〕[Embodiments of the invention]

実施例/ 図面に、本実施例で得られる複合同化貯蔵体の縦断面図
を示す。まず、下記第1表に示す組成の模擬放射性廃棄
物と下記第2表に示す組成のホウケイ酸ガラスを3=7
の重量比で含有する溶融体を、内径z關、高さざOyの
カーボン鋳型中に注入し、徐冷し固化した。
Example/ The drawing shows a longitudinal cross-sectional view of a composite assimilation storage body obtained in this example. First, simulate radioactive waste with the composition shown in Table 1 below and borosilicate glass with the composition shown in Table 2 below are mixed into 3=7
A molten material containing a weight ratio of 100 ml was poured into a carbon mold having an inner diameter z and a height Oy, and was slowly cooled and solidified.

/(キャニスタ−)を用意し、下記第3表に示す組成の
中間層用ガラス溶融体をまずキャニスタ−の底面部に注
入し、徐冷同化することにょシ、キャニスクー底面部に
厚さ3市の中間層を形成し薗次いで前記ガラス同化体を
カーボン鋳型から取シ出してキャニスタ−7中に設置し
た。さらに、キャニスタ−/の内面とガラス固化体コの
間隙および上面口に上記と同様にして中間層用ガラス溶
融体を注入し、徐冷し、固化することにょシキャニスタ
ー/とガラス固化体3との間に中間層λを形成し、SU
S製の上蓋弘をかぶせて溶接密閉し、複合固化体を得た
/ (canister) is prepared, and the glass melt for the intermediate layer having the composition shown in Table 3 below is first poured into the bottom of the canister, and then slowly cooled and assimilated. After forming an intermediate layer, the glass assimilate was removed from the carbon mold and placed in a canister 7. Furthermore, the glass melt for the intermediate layer is injected into the gap between the inner surface of the canister and the vitrified body and the top opening in the same manner as described above, and is slowly cooled and solidified between the canister and the vitrified body. An intermediate layer λ is formed between SU
A top cover made of S was placed on top and sealed by welding to obtain a composite solidified body.

また、本実施例で作成した模擬放射性廃棄物を含有する
ガラス固化体(直径、u mm 、高さtOvx)と、
この固化体をさらに前記第3表の組成の中間層で被覆し
たもの(中間層の厚さλjam)とで、水に対する固化
体中の放射性物質の浸出率を測定し薗ioo℃の純水1
0100O中にそれぞれ、2弘時間浸漬したのち、溶液
中のMoイオンを定量した。
In addition, a vitrified body (diameter, u mm, height tOvx) containing the simulated radioactive waste created in this example,
This solidified body was further coated with an intermediate layer having the composition shown in Table 3 above (the thickness of the intermediate layer was λjam), and the leaching rate of radioactive substances in the solidified body with respect to water was measured.
After each sample was immersed in 0100O for 2 hours, the Mo ions in the solution were quantified.

中間層を被覆しないものについては浸出率が、2. j
 X 1O−5F/crn2” dayであり、中間1
被fljiLり方の浸出率は検出限界の/ ×10 9
7cm” −day以下でありた。
For those without covering the intermediate layer, the leaching rate is 2. j
X 1O-5F/crn2” day, intermediate 1
The leaching rate of the fljiL method is below the detection limit / × 10 9
It was less than 7 cm''-day.

実施例λ 前記第1表に示す組成の模擬放射性廃棄物と下記第弘表
に示す組成のセラミ7クス形成物質とを重量比にして3
ニアの配合比で調整し、これを焼結して直径7順のセラ
ミックス固化体粒子を得た。
Example λ The weight ratio of the simulated radioactive waste having the composition shown in Table 1 above and the ceramic 7x forming material having the composition shown in Table 1 below is 3.
The mixing ratio was adjusted to near, and this was sintered to obtain solidified ceramic particles having diameters in order of 7.

次いで、得られたセラミックス固化体粒子表面にCVD
法(1ooo℃、81H3C1、H2、CHII、 A
rガス雰囲気)により厚さ3μmのSIC膜を形成した
O 次いで、形成されたSIC膜の表面にさらに厚さJPm
のCuメッキを施こした。
Next, CVD is applied to the surface of the obtained ceramic solidified particles.
method (1ooo℃, 81H3C1, H2, CHII, A
A SIC film with a thickness of 3 μm was formed using a gas atmosphere).
Cu plating was applied.

次いで、これを内径Jjl+l+、高さ/10朋の5U
S30≠製キヤニス、ターに装入し、さらにこの中にC
u−30% Zn合金の溶融物を注入充填し、固化して
金属複合固化体を得た。
Next, this is 5U with an inner diameter Jjl+l+ and a height/10mm.
Insert the S30≠ canis into the tar, and add C into it.
A molten u-30% Zn alloy was injected and solidified to obtain a metal composite solidified body.

〔発明の効果〕〔Effect of the invention〕

本発明によって得られる複合固化貯蔵体は、放射性廃棄
物が含有された固化体とそれを囲繞する金属被覆体との
間に放射性物質を含有しない中間層を設けたので、耐浸
出性の一層の向上を図ることができる。
The composite solidified storage body obtained by the present invention has an intermediate layer that does not contain radioactive materials between the solidified body containing radioactive waste and the metal coating surrounding it, so it has even higher leakage resistance. You can improve your performance.

また、同化体にクラックが発生するのを有効に防止する
ことができるので、クラックによる固化体内部に生ずる
放射性崩壊熱の放散性の低下および浸出面積の増大化を
防止することができる。
Moreover, since cracks can be effectively prevented from forming in the assimilated product, it is possible to prevent a decrease in the dissipation of radioactive decay heat generated inside the solidified product and an increase in the leaching area due to the cracks.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の実施例に係る複合固化貯蔵体の縦断面
図である。 ハ・・キャニスクー、イ・・・中間層、3・・・放射性
廃棄物が含有された固化体、≠・・・蓋。 出願人代理人 猪 股 清
The drawing is a longitudinal sectional view of a composite solidified storage body according to an embodiment of the present invention. C. Canisuku, B. Intermediate layer, 3. Solidified body containing radioactive waste, ≠. Lid. Applicant's agent Kiyoshi Inomata

Claims (1)

【特許請求の範囲】 l 放射性廃棄物が含有されたガラスまたはセラミック
スからなる固化体をさらに金属被覆体で囲繞した固化貯
蔵体を製造するに際し、固化体と金属被覆体との間に放
射性物質が含有されていないガラスまたはセラミックス
からなる中間層を設けることを特徴とする、放射性廃棄
物の固化処理方法。 ユ常温から固化体の軟化温度までの温度範囲における前
記中間層が有する平均熱膨張係数が、前記温度範囲にお
ける固化体の平均熱膨張係数と、同じく前記温度範囲に
おける金属被覆体の平均熱膨張係数との間の値である、
特許請求の範囲第1項に記載の方法0
[Scope of Claims] l When producing a solidified storage body in which a solidified body made of glass or ceramics containing radioactive waste is further surrounded by a metal coating, radioactive substances may be present between the solidified body and the metal coating. 1. A method for solidifying radioactive waste, comprising providing an intermediate layer made of glass or ceramics that does not contain radioactive waste. The average coefficient of thermal expansion of the intermediate layer in the temperature range from room temperature to the softening temperature of the solidified body is the average coefficient of thermal expansion of the solidified body in the temperature range, and the average coefficient of thermal expansion of the metal coating in the same temperature range. is a value between
Method 0 according to claim 1
JP13154583A 1983-07-19 1983-07-19 Method of solidifying and treating radioactive waste Granted JPS6022700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13154583A JPS6022700A (en) 1983-07-19 1983-07-19 Method of solidifying and treating radioactive waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13154583A JPS6022700A (en) 1983-07-19 1983-07-19 Method of solidifying and treating radioactive waste

Publications (2)

Publication Number Publication Date
JPS6022700A true JPS6022700A (en) 1985-02-05
JPH0420159B2 JPH0420159B2 (en) 1992-03-31

Family

ID=15060580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13154583A Granted JPS6022700A (en) 1983-07-19 1983-07-19 Method of solidifying and treating radioactive waste

Country Status (1)

Country Link
JP (1) JPS6022700A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4702391A (en) * 1984-12-22 1987-10-27 Kernforschungszentrum Karlsruhe Gmbh Containment with long-time corrosion resistant cover for sealed containers with highly radioactive content
JP2014200712A (en) * 2013-04-02 2014-10-27 アルプス電気株式会社 Method for treating waste
RU2722214C1 (en) * 2019-09-13 2020-05-28 Общество с ограниченной ответственностью "Керамические технологии" Container for storage, transportation and burial of radioactive wastes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196198A (en) * 1981-05-29 1982-12-02 Tokyo Shibaura Electric Co Method of processing radioactive waste plastic solidified body
JPS5817399A (en) * 1981-07-23 1983-02-01 株式会社東芝 Method of processing radioactive waste

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196198A (en) * 1981-05-29 1982-12-02 Tokyo Shibaura Electric Co Method of processing radioactive waste plastic solidified body
JPS5817399A (en) * 1981-07-23 1983-02-01 株式会社東芝 Method of processing radioactive waste

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4702391A (en) * 1984-12-22 1987-10-27 Kernforschungszentrum Karlsruhe Gmbh Containment with long-time corrosion resistant cover for sealed containers with highly radioactive content
JP2014200712A (en) * 2013-04-02 2014-10-27 アルプス電気株式会社 Method for treating waste
RU2722214C1 (en) * 2019-09-13 2020-05-28 Общество с ограниченной ответственностью "Керамические технологии" Container for storage, transportation and burial of radioactive wastes
WO2021049974A1 (en) 2019-09-13 2021-03-18 Общество С Ограниченной Ответственностью " Керамические Технологии" Container for storing, transporting and disposal of radioactive waste
GB2603377A (en) * 2019-09-13 2022-08-03 Limited Liability Company Ceramic Tech Ltd Container for storing, transporting and disposal of radioactive waste
GB2603377B (en) * 2019-09-13 2023-11-08 Limited Liability Company Ceramic Tech Ltd Container for storing, transporting and disposal of radioactive waste
US11830636B2 (en) 2019-09-13 2023-11-28 Ceramic Technologies Ltd. Container for storing, transporting and disposal of radioactive waste

Also Published As

Publication number Publication date
JPH0420159B2 (en) 1992-03-31

Similar Documents

Publication Publication Date Title
DE3131276C2 (en) Process for the solidification of radioactive waste
JPS587599A (en) Method of solidifying high level radioactive liquid waste with glass
US4209421A (en) Method of preparing bodies containing radioactive substances
JPS6022700A (en) Method of solidifying and treating radioactive waste
EP0255484B1 (en) Nuclear-radiation absorber
DE3324291C2 (en) Method for filling metal containers with radioactive glass melt and device for receiving radioactive glass melt
Mendel High-level waste glass
Barlow et al. Synthesis of simulant ‘lava-like’fuel containing materials (LFCM) from the Chernobyl reactor Unit 4 meltdown
JP2761716B2 (en) Manufacturing method of radioactive material storage container
JPS6022699A (en) Method of solidifying and treating radioactive waste
US3985514A (en) Hot rolled composite billet for nuclear control rods
JPS6013295A (en) Method of solidifying and treating radioactive waste
JPS6022698A (en) Method of solidifying and treating radioactive waste
JP2001027694A (en) Solidified body of radioactive condensed waste substance and manufacture of the same
JP6077366B2 (en) Waste disposal method
JPS59230198A (en) Method of solidifying and treating radioactive waste
JP2846540B2 (en) Container for producing vitrified radioactive waste
JPH03235099A (en) Vitrification material for vitrification treatment of low level radioactive waste
Rudolph et al. Lab-scale R+ D work on fission product solidification by vitrification and thermite processes
JPH11295487A (en) Method for treating radioactive waste and vitrified solid thereof
JPS62222198A (en) Manufacture of cartridge for processing radioactive waste liquor
JPS6022320B2 (en) How to dispose of radioactive waste
JPS61502747A (en) fireproof cement
Chellew et al. Laboratory Studies of Iodine Behavior in the EBR-II Melt Refining Process
JPS6112237B2 (en)