JPH0420159B2 - - Google Patents

Info

Publication number
JPH0420159B2
JPH0420159B2 JP58131545A JP13154583A JPH0420159B2 JP H0420159 B2 JPH0420159 B2 JP H0420159B2 JP 58131545 A JP58131545 A JP 58131545A JP 13154583 A JP13154583 A JP 13154583A JP H0420159 B2 JPH0420159 B2 JP H0420159B2
Authority
JP
Japan
Prior art keywords
solidified
glass
intermediate layer
solidified body
radioactive waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58131545A
Other languages
Japanese (ja)
Other versions
JPS6022700A (en
Inventor
Tatsuhiko Matsumoto
Naohiko Hagino
Akira Goto
Norio Kawanishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP13154583A priority Critical patent/JPS6022700A/en
Publication of JPS6022700A publication Critical patent/JPS6022700A/en
Publication of JPH0420159B2 publication Critical patent/JPH0420159B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は、放射性廃棄物の処理方法に関し、さ
らに詳しくは、放射性廃棄物が含有されたガラス
またはセラミツクスからなる固化体を金属被覆体
で囲繞した放射性廃棄物貯蔵体を製造する方法に
関する。 〔発明の技術的背景〕 原子力発電所や使用済核燃料の再処理工場から
発生する放射性廃棄物の処分に際しては、放射性
物質の周囲への拡散が最小限となる形態に廃棄物
を固形化し、得られた貯蔵体が、化学的、機械的
に安定していて長期の貯蔵によつても環境汚染の
原因にならないことが必要である。 このような観点で従来より行われている固形化
方法としては、ガラス固化法が主流を占めてい
る。この方法は、放射性廃棄物を、ホウケイ酸ガ
ラス、リン酸ガラスなどのガラス形成材料ととも
に溶融し、一定形状のガラスインゴツトに凝固さ
せ、固化するものである。通常このようにして固
化されたガラスインゴツドは金属容器中におさめ
貯蔵される。またさらに比較的小型のガラスイン
ゴツト多数を金属中に埋設する。いわゆる金属複
合固化法も提案されている。 しかしながら、上述したガラス固化法あるいは
金属複合固化法には次のような問題がある。 (イ) ガラス固化体を収納あるいは被覆している金
属被覆体が腐食等により破損した場合を想定す
ると、内部の固化体は外部環境と直接接するこ
ととなるため、長期にわたる安定な貯蔵のため
には、外部環境(たとえば水)に対する放射性
物質の浸出率を可能な限り小さくすることが要
請される。 (ロ) ガラス固化体は、基本材料であるガラスの組
成に制約があるため、固化体製造時にクラツク
が生じやすいという欠点がある。特に、金属被
覆体とガラス固化体とは熱膨張係数が異なるた
め、溶融状態のガラスが金属被覆体中で固化す
る際にガラスと金属との界面で冷却が促進され
この部分に熱応力が生じ、その結果、固化体の
表面部分あるいは内部にクラツクが生じやすく
なるのである。固化体に生じたクラツクは、固
化体内部で発生する放射性崩壊熱の放散を阻害
することとなり、これによる温度上昇によつて
固化体内部の機械的および化学的安定性がそこ
なわれるおそれが生ずる。さらにクラツクによ
つてガラス固化体の表面積が増大し、そのため
ガラス固化体が外部環境に直接接した場合の浸
出面積が増大する。 〔発明の目的〕 本発明は上述した問題点に鑑みてなされたもの
であり、放射性物質の耐浸出性に一層すぐれ、ク
ラツクが生ずることがなく長期に安全に貯蔵し得
る固化貯蔵体の製造法を提供することを目的とす
る。 〔発明の概要〕 上記目的を達成するために、本発明の放射性廃
棄物の固化処理方法は、放射性廃棄物が含有され
たガラスまたはセラミツクスからなる固化体をさ
らに金属被覆体で囲繞した固化貯蔵体を製造する
に際し、固化体と金属被覆体との間に放射性物質
が含有されていないガラスまたはセラミツクスか
らなる中間層を設け、この中間層の、常温から前
記固化体の軟化温度までの温度範囲における平均
熱膨脹係数は、前記温度範囲における前記固化体
の平均熱膨脹係数と、同じく前記温度範囲におけ
る前記金属被覆体の平均熱膨脹係数との間の値で
あることを特徴とするものである。 〔発明の具体的説明〕 固化体の製造 本発明の処理対象となる放射性廃棄物として
は、たとえば、使用済核燃料を処理したのち、
U、Puを回収した残りの放射性廃棄物の他、再
生廃液、床ドレインなどの各種の廃液、フイルタ
ースラツジ、沈殿スラツジなどの各種の固体廃棄
物が含まれる。 また、本発明で用いる、放射性廃棄物が含有さ
れた固化体としては、ガラス、セラミツクスなど
を用いて放射性廃棄物を固化体に形成したものが
あげられる。たとえば、放射性廃棄物を含有し、
溶融または焼結などの熱処理工程を経てつくられ
るホウケイ酸系ガラス、リン酸系ガラスなどのガ
ラス固化体、Diopside系などの結晶化ガラス固
化体、Al2O3−SiO2系、TiO2系、MnO2−SiO2
系、ZrO2系などのセラミツクス固化体が好まし
く用いられる。固化体中の放射性廃棄物の含量
は、10〜40%の範囲が適当である。 中間層の形成 上記固化体を金属被覆体で囲繞する際に、固化
体と金属被覆体との間に中間層を形成する。この
中間層は、放射性廃棄物を含有しないガラスまた
はセラミツクスからなり、たとえばホウケイ酸系
ガラス、リン酸系ガラス、Diopside系などの結
晶化ガラス、Al2O3、ZrO2、TiO2、Al2O3−SiO2
系、SiC、Si3N4などのセラミツクスが用いられ
得る。 また、固化体にクラツクが生ずるのを防止する
ために、中間層の熱膨張係数を適宜選択すること
が好ましい。すなわち、溶融状態の固化体が金属
被覆体中で冷却・固化するとき(あるいは、既に
形成された固化体を溶融金属で囲繞するとき)に
生ずる熱応力を軽減し、クラツクの発生を防止す
るためには、常温から固化体の軟化温度までの温
度範囲における中間層の平均熱膨張係数が、前記
温度範囲における固化体の平均熱膨張係数と、同
じく前記温度範囲における金属被覆体の平均熱膨
張係数との間の値であることが好ましく、さらに
好ましくはほぼ中間の値であることが望ましい。 中間層の厚さとしては、薄すぎると固化体中の
放射性物質が外界へ浸出するのを防止するバリヤ
ーとしての働きが減少し、一方、厚すぎると複合
固化貯蔵体の全量に対する廃棄物の重量比(すな
わち含有率)が低下するため、0.02mm〜100mmの
範囲が適当である。 中間層を形成する方法としては、(イ)ガラスまた
はセラミツクス固化体を囲繞する金属被覆体(た
とえば金属容器)の内面に、あらかじめ溶融コー
ト法、フレームスプレイ法などにより中間層を形
成し、次いでその中に放射性廃棄物が含有された
ガラスあるいはセラミツクスの溶融体を注入し、
固化する方法、(ロ)既に形成されている固化体を金
属容器中に装入し、次いでこの金属容器と固化体
との間隙に中間層の材料となるガラスまたはセラ
ミツクスの溶融体を注入し固化する方法、(ハ)フレ
ームスプレイ法、プラズマスプレイ法、CVD法、
PVD法、真空蒸着法、あるいは直接、中間層材
料の溶融体中へ浸漬するなどの方法を用いて既に
形成されている固化体の表面に中間層を被覆形成
し、次いでこれを常法により金属被覆体で囲繞す
る、などの方法を用いることができる。 〔発明の実施例〕 実施例 1 図面に、本実施例で得られる複合固化貯蔵体の
縦断面図を示す。まず、下記第1表に示す組成の
模擬放射性廃棄物と下記第2表に示す組成のホウ
ケイ酸ガラスを3:7の重量比で含有する溶融体
を、内径25mm、高さ80mmのカーボン鋳型中に注入
し、徐冷し固化した。
[Technical Field of the Invention] The present invention relates to a method for disposing of radioactive waste, and more specifically, to a method for producing a radioactive waste storage body in which a solidified body made of glass or ceramics containing radioactive waste is surrounded by a metal coating. Regarding how to. [Technical background of the invention] When disposing of radioactive waste generated from nuclear power plants and spent nuclear fuel reprocessing plants, it is necessary to solidify the waste into a form that minimizes the diffusion of radioactive materials to the surrounding area. It is necessary that the stored storage medium be chemically and mechanically stable and not cause environmental pollution even during long-term storage. From this point of view, vitrification is the mainstream solidification method conventionally used. In this method, radioactive waste is melted together with a glass-forming material such as borosilicate glass or phosphate glass, and solidified into a glass ingot of a certain shape. The glass ingot thus solidified is usually stored in a metal container. Furthermore, many relatively small glass ingots are buried in the metal. A so-called metal composite solidification method has also been proposed. However, the above-mentioned vitrification method or metal composite solidification method has the following problems. (b) Assuming that the metal sheath that houses or covers the vitrified material is damaged due to corrosion, etc., the solidified material inside will come into direct contact with the external environment, so for long-term stable storage, It is required to minimize the rate of radioactive material leaching into the external environment (for example, water). (b) Vitrified materials have the disadvantage that cracks are likely to occur during the production of the solidified material, since there are restrictions on the composition of glass, which is the basic material. In particular, since the metal cladding and the vitrified body have different coefficients of thermal expansion, when molten glass solidifies in the metal cladding, cooling is accelerated at the interface between the glass and metal, creating thermal stress in this area. As a result, cracks are likely to occur on the surface or inside the solidified material. Cracks that occur in the solidified body will inhibit the dissipation of radioactive decay heat generated inside the solidified body, and the resulting temperature rise may damage the mechanical and chemical stability inside the solidified body. . Furthermore, the cracks increase the surface area of the vitrified body, thereby increasing the leaching area when the vitrified body is in direct contact with the external environment. [Object of the Invention] The present invention has been made in view of the above-mentioned problems, and provides a method for producing a solidified storage body that has even better resistance to leaching of radioactive substances and can be safely stored for a long period of time without causing cracks. The purpose is to provide [Summary of the Invention] In order to achieve the above object, the radioactive waste solidification treatment method of the present invention provides a solidification storage body in which a solidified body made of glass or ceramics containing radioactive waste is further surrounded by a metal coating. When manufacturing, an intermediate layer made of glass or ceramics that does not contain radioactive substances is provided between the solidified body and the metal coating, and the temperature of this intermediate layer is within the temperature range from room temperature to the softening temperature of the solidified body. The average coefficient of thermal expansion is a value between the average coefficient of thermal expansion of the solidified body in the temperature range and the average coefficient of thermal expansion of the metal cladding in the temperature range. [Specific Description of the Invention] Production of Solidified Materials Radioactive waste to be treated in the present invention includes, for example, after processing spent nuclear fuel,
In addition to the radioactive waste remaining after recovering U and Pu, it includes various types of waste liquid such as recycled waste liquid, floor drain, and various solid wastes such as filter sludge and sedimentation sludge. Furthermore, examples of the solidified body containing radioactive waste used in the present invention include solidified bodies of radioactive waste made of glass, ceramics, or the like. For example, containing radioactive waste,
Vitrified materials such as borosilicate glass and phosphoric acid glass made through heat treatment processes such as melting or sintering, crystallized vitrified materials such as Diopside type, Al 2 O 3 −SiO 2 type, TiO 2 type, MnO2SiO2
Solidified ceramics such as ZrO 2 -based and ZrO 2 -based materials are preferably used. The content of radioactive waste in the solidified body is suitably in the range of 10 to 40%. Formation of Intermediate Layer When surrounding the solidified body with a metal covering, an intermediate layer is formed between the solidified body and the metal covering. This intermediate layer is made of glass or ceramics that do not contain radioactive waste, such as crystallized glass such as borosilicate glass, phosphate glass, diopside glass, Al 2 O 3 , ZrO 2 , TiO 2 , Al 2 O 2 3 −SiO2
Ceramics such as SiC, Si3N4 , etc. may be used. Further, in order to prevent cracks from occurring in the solidified product, it is preferable to appropriately select the thermal expansion coefficient of the intermediate layer. In other words, in order to reduce the thermal stress that occurs when a molten solidified body cools and solidifies in a metal coating (or when an already formed solidified body is surrounded by molten metal), and to prevent the occurrence of cracks. The average coefficient of thermal expansion of the intermediate layer in the temperature range from room temperature to the softening temperature of the solidified body is the average coefficient of thermal expansion of the solidified body in the temperature range, and the average coefficient of thermal expansion of the metal coating in the same temperature range. It is preferable that the value is between , and more preferably a value approximately in between. If the thickness of the intermediate layer is too thin, its function as a barrier to prevent radioactive substances in the solidified material from leaching to the outside world will be reduced, while if it is too thick, the weight of waste relative to the total amount of the composite solidified storage material will be reduced. Since the ratio (ie, content) decreases, a range of 0.02 mm to 100 mm is appropriate. As a method for forming the intermediate layer, (a) the intermediate layer is formed in advance on the inner surface of a metal covering (for example, a metal container) surrounding the solidified glass or ceramic body by a melt coating method, a flame spray method, etc.; A glass or ceramic melt containing radioactive waste is injected,
Solidification method: (b) The already formed solidified body is charged into a metal container, and then a molten glass or ceramic material, which will be the material for the intermediate layer, is injected into the gap between the metal container and the solidified body and solidified. (c) Flame spray method, plasma spray method, CVD method,
The intermediate layer is coated on the surface of the solidified material that has already been formed using the PVD method, vacuum evaporation method, or direct immersion into the melt of the intermediate layer material, and then this is coated with the metal by a conventional method. A method such as surrounding it with a covering can be used. [Embodiments of the Invention] Example 1 The drawing shows a longitudinal cross-sectional view of a composite solidified storage body obtained in this example. First, a melt containing simulated radioactive waste with the composition shown in Table 1 below and borosilicate glass with the composition shown in Table 2 below in a weight ratio of 3:7 was placed in a carbon mold with an inner diameter of 25 mm and a height of 80 mm. The mixture was injected into the solution and slowly cooled to solidify.

【表】【table】

【表】 一方、内径30mmの円筒形のSUS304製貯蔵容器
1(キヤニスター)を用意し、下記第3表に示す
組成の中間層用ガラス溶融体をまずキヤニスター
の底面部に注入し、徐冷固化することにより、キ
ヤニスター底面部に厚さ3mmの中間層を形成し
た。
[Table] On the other hand, a cylindrical SUS304 storage container 1 (canister) with an inner diameter of 30 mm is prepared, and the glass melt for the intermediate layer having the composition shown in Table 3 below is first poured into the bottom of the canister and slowly cooled and solidified. By doing so, an intermediate layer with a thickness of 3 mm was formed on the bottom of the canister.

【表】 次いで前記ガラス固化体をカーボン鋳型から取
り出してキヤニスター1中に設置した。さらに、
キヤニスター1の内面とガラス固化体2の間隙お
よび上面口に上記と同様にして中間層用ガラス溶
融体を注入し、徐冷し、固化することによりキヤ
ニスター1とガラス固化体3との間に中間層2を
形成し、SUS製の上蓋4をかぶせて溶接密閉し、
複合固化体を得た。 また、本実施例で作成した模擬放射性廃棄物を
含有するガラス固化体(直径25mm、高さ80mm)
と、この固化体をさらに前記第3表の組成の中間
層で被覆したもの(中間層の厚さ2.5mm)とで、
水に対する固化体中の放射性物質の浸出率を測定
した。100℃の純水1000ml中にそれぞれ24時間浸
漬したのち、溶液中のMoイオンを定量した。 中間層を被覆しないものについては浸出率が
2.5×10-5g/cm2・dayであり、中間層を被覆した
方の浸出率は検出限界の1×10-6g/cm2・day以
下であつた。 実施例 2 前記第1表に示す組成の模擬放射性廃棄物と下
記第4表に示す組成のセラミツクス形成物質とを
重量比にして3:7の配合比で調整し、これを焼
結して直径7mmのセラミツクス固化体粒子を得
た。
[Table] Next, the vitrified body was taken out of the carbon mold and placed in a canister 1. moreover,
The glass melt for the intermediate layer is injected into the gap between the inner surface of the canister 1 and the vitrified body 2 and the upper surface opening in the same manner as described above, and is slowly cooled and solidified to form an intermediate layer between the canister 1 and the vitrified body 3. Form layer 2, cover with SUS top cover 4 and seal by welding.
A composite solidified body was obtained. In addition, the vitrified body (diameter 25 mm, height 80 mm) containing the simulated radioactive waste created in this example
and this solidified body was further coated with an intermediate layer having the composition shown in Table 3 above (the thickness of the intermediate layer was 2.5 mm),
The leaching rate of radioactive substances in the solidified material with respect to water was measured. After each sample was immersed in 1000 ml of pure water at 100°C for 24 hours, Mo ions in the solution were quantified. For those without covering the intermediate layer, the leaching rate is
The leaching rate was 2.5×10 -5 g/cm 2 ·day, and the leaching rate of the intermediate layer coated one was below the detection limit of 1×10 -6 g/cm 2 ·day. Example 2 The simulated radioactive waste having the composition shown in Table 1 above and the ceramic forming material having the composition shown in Table 4 below were adjusted at a weight ratio of 3:7, and this was sintered to form a ceramic material with a diameter of Solidified ceramic particles of 7 mm were obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によつて得られる複合固化貯蔵体は、放
射性廃棄物が含有された固化体とそれを囲繞する
金属被覆体との間に放射性物質を含有しない中間
層を設けたので、耐浸出性の一層の向上を図るこ
とができる。 また、固化体にクラツクが発生するのを有効に
防止することができるので、クラツクによる固化
体内部に生ずる放射性崩壊熱の放散性の低下およ
び浸出面積の増大化を防止することができる。
The composite solidified storage body obtained by the present invention has an intermediate layer that does not contain radioactive materials between the solidified body containing radioactive waste and the metal coating surrounding it, so that it has high leakage resistance. Further improvement can be achieved. Furthermore, since it is possible to effectively prevent cracks from forming in the solidified body, it is possible to prevent a decrease in the dissipation of radioactive decay heat generated inside the solidified body and an increase in the leaching area due to the cracks.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明の実施例に係る複合固化貯蔵体
の縦断面図である。 1……キヤニスター、2……中間層、3……放
射性廃棄物が含有された固化体、4……蓋。
The drawing is a longitudinal sectional view of a composite solidified storage body according to an embodiment of the present invention. 1... Canister, 2... Intermediate layer, 3... Solidified body containing radioactive waste, 4... Lid.

Claims (1)

【特許請求の範囲】[Claims] 1 放射性廃棄物が含有されたガラスまたはセラ
ミツクスからなる固化体をさらに金属被覆体で囲
繞した固化貯蔵体を製造するに際し、固化体と金
属被覆体との間に放射性物質が含有されていない
ガラスまたはセラミツクスからなる中間層を設
け、この中間層の、常温から前記固化体の軟化温
度までの温度範囲における平均熱膨脹係数は、前
記温度範囲における前記固化体の平均熱膨脹係数
と、前記温度範囲における前記金属被覆体の平均
熱膨脹係数との間の値であることを特徴とする、
放射性廃棄物の固化処理方法。
1. When producing a solidified storage body in which a solidified body made of glass or ceramics containing radioactive waste is further surrounded by a metal coating, glass or ceramics that do not contain radioactive materials are placed between the solidified body and the metal coating. An intermediate layer made of ceramics is provided, and the average coefficient of thermal expansion of this intermediate layer in the temperature range from room temperature to the softening temperature of the solidified body is equal to the average coefficient of thermal expansion of the solidified body in the temperature range and the metal in the temperature range. characterized by a value between the average coefficient of thermal expansion of the coating,
Solidification treatment method for radioactive waste.
JP13154583A 1983-07-19 1983-07-19 Method of solidifying and treating radioactive waste Granted JPS6022700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13154583A JPS6022700A (en) 1983-07-19 1983-07-19 Method of solidifying and treating radioactive waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13154583A JPS6022700A (en) 1983-07-19 1983-07-19 Method of solidifying and treating radioactive waste

Publications (2)

Publication Number Publication Date
JPS6022700A JPS6022700A (en) 1985-02-05
JPH0420159B2 true JPH0420159B2 (en) 1992-03-31

Family

ID=15060580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13154583A Granted JPS6022700A (en) 1983-07-19 1983-07-19 Method of solidifying and treating radioactive waste

Country Status (1)

Country Link
JP (1) JPS6022700A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014200712A (en) * 2013-04-02 2014-10-27 アルプス電気株式会社 Method for treating waste

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3447278A1 (en) * 1984-12-22 1986-06-26 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe LONG-TERM CORROSION PROTECTION COVER FOR TIGHTLY CLOSED CONTAINERS WITH HIGH RADIOACTIVE CONTENT
RU2722214C1 (en) 2019-09-13 2020-05-28 Общество с ограниченной ответственностью "Керамические технологии" Container for storage, transportation and burial of radioactive wastes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196198A (en) * 1981-05-29 1982-12-02 Tokyo Shibaura Electric Co Method of processing radioactive waste plastic solidified body
JPS5817399A (en) * 1981-07-23 1983-02-01 株式会社東芝 Method of processing radioactive waste

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196198A (en) * 1981-05-29 1982-12-02 Tokyo Shibaura Electric Co Method of processing radioactive waste plastic solidified body
JPS5817399A (en) * 1981-07-23 1983-02-01 株式会社東芝 Method of processing radioactive waste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014200712A (en) * 2013-04-02 2014-10-27 アルプス電気株式会社 Method for treating waste

Also Published As

Publication number Publication date
JPS6022700A (en) 1985-02-05

Similar Documents

Publication Publication Date Title
EP0949358B1 (en) Mold for producing silicon ingot and method for fabricating the same
US4627069A (en) Joule melter for the processing of radioactive wastes
US4056589A (en) Method for sintering ceramics
KR20130012127A (en) Isotope-specific separation and vitrification using ion-specific media
SE460025B (en) MAKE SUBSTANCES FOR POWDER FORM FOR MATERIAL THROUGH HOT ISOSTATIC PRESSURE IN A GLASS COVER
US4404129A (en) Sequestering of radioactive waste
JPH0420159B2 (en)
US4209421A (en) Method of preparing bodies containing radioactive substances
US4094809A (en) Process for solidifying high-level nuclear waste
GB1337706A (en) Metal casting process
US4626382A (en) Method of producing a glass block containing radioactive fission products and apparatus therefor
US4328423A (en) Canister arrangement for storing radioactive waste
JP6077366B2 (en) Waste disposal method
JPH0420158B2 (en)
JP2761716B2 (en) Manufacturing method of radioactive material storage container
JP2846540B2 (en) Container for producing vitrified radioactive waste
JPS6013295A (en) Method of solidifying and treating radioactive waste
JP2001096344A (en) Immersion nozzle
US3985514A (en) Hot rolled composite billet for nuclear control rods
JPS62134139A (en) Two-layered riser flask
FR2463108A2 (en) THERMAL SHOCK RESISTANT MATERIALS AND METHODS FOR PRODUCING THERMAL SHOCK
JP2002328197A (en) Method of preventing deposition of platinum group in glass melting furnace
Buykx The Effect of Microstructure and Microcracking on the Thermal Conductivity of UO2‐U4O9
RU2245586C2 (en) Method and device for manufacturing high-level glass filled container
Bonniaud Vitrification of fission product solutions in France