JPS60226491A - Single crystal growth unit - Google Patents

Single crystal growth unit

Info

Publication number
JPS60226491A
JPS60226491A JP7988484A JP7988484A JPS60226491A JP S60226491 A JPS60226491 A JP S60226491A JP 7988484 A JP7988484 A JP 7988484A JP 7988484 A JP7988484 A JP 7988484A JP S60226491 A JPS60226491 A JP S60226491A
Authority
JP
Japan
Prior art keywords
single crystal
shaft
liquid
crucible
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7988484A
Other languages
Japanese (ja)
Inventor
Takeshi Okano
毅 岡野
Fumikazu Yajima
矢島 文和
Toshihiko Ibuka
井深 敏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Polytec Co
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Mitsubishi Monsanto Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp, Mitsubishi Monsanto Chemical Co filed Critical Mitsubishi Kasei Corp
Priority to JP7988484A priority Critical patent/JPS60226491A/en
Publication of JPS60226491A publication Critical patent/JPS60226491A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:The titled unit in which a liquid sealer is fitted between the air-tight crystal-growing vessel and the single crystal-pulling up shaft as well as the crucible-supporting shaft so that air-tightness is kept in the pressure vessel, thus being easy to handle and prolonged in the life of the shaft sealer. CONSTITUTION:In a double-chamber type of single crystal growing unit which is composed of the air-tight crystal-growing vessel 2 made of, e.g., quartz provided with crucible 3 made of pBN that is supported rotatably with the shaft 7 and including the starting materials for single crystal, the heater 4 for the crucible and the shaft for pulling up the single crystal and of the pressure vessel made of stainless steel which includes the above-stated crystal-growing vessel inside and has air tightness, two shaft sealers 9 and 12 which have liquid traps 10 on the shafts 8, 9 and the inner tubes 11 on the vessel 2 to keep air-tight. The sealing liquid used in the traps is suitably the melt of B2O3 or Ga with low vapor pressure and the maximum length of the inner tube wall dipping in the liquid is required to be larger than the moving distance of both shafts 7, 8, when the single crystal is pulled up.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、軸封装置として液封装置を用いた二重室式単
結晶引上装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a double-chamber single crystal pulling apparatus using a liquid sealing device as a shaft sealing device.

GaAs 、 GaP等の周期律表第1[b族及び第v
b族元素からなる無機化合物単結晶は半導体レーザー、
発光ダイオード、電界効果トランジスター等の各種の半
導体素子の製造に用いられている。
Periodic table 1 [group b and v of GaAs, GaP, etc.
Inorganic compound single crystals consisting of group b elements are semiconductor lasers,
It is used to manufacture various semiconductor devices such as light emitting diodes and field effect transistors.

これらの単結晶の製造には、温度傾斜法(Gradei
ent Freeze法)、水平フリフシマン法(Ho
rizontal Bridgeman法)等のボート
成長法又は、液体カプセル回転引上法(LiquidF
incnps+λl ated CzOchralek
i法、以下「LEc法」という。)によシ製造されてい
る。
The temperature gradient method (Gradei) is used to manufacture these single crystals.
ent Freeze method), horizontal frifusiman method (Ho
boat growth method such as rizontal Bridgeman method) or liquid capsule rotational pulling method (LiquidF
incnps+λl ated CzOchralek
i method, hereinafter referred to as "LEc method". ) is manufactured by.

従来の技術 これらの無機化合物は、高温で第Vb族元素が揮散しや
すいので、ボート成長法では、当該化合物の解離圧に相
浩する第Vb族元素の蒸気圧をかけてお9、Lwa法に
おいては、 Ar、N2フー 止する方法が採用されている。
2. Description of the Related Art In these inorganic compounds, group Vb elements tend to volatilize at high temperatures, so in the boat growth method, the vapor pressure of the group Vb elements, which is proportional to the dissociation pressure of the compound, is applied9. In this method, a method of stopping with Ar and N2 is used.

しかしながら、従来用いられていたLEO法による単結
晶成長装置は単一の容器からなる結晶成長容器の内部に
ルツボ加熱用のヒーターを設置し、さらに結晶成長容器
の器壁を冷却する、いわゆるコールドウオール(Col
d Wall)法であるので、結晶成長容器内に極めて
急峻な温度勾配が生じ、その結果同容器壁にひ素が凝結
するのでGaA+3の解離圧に相当するひ素蒸気圧を維
持してGaAsの分解を抑制することは、困難であシ、
ひ素蒸気圧を維持する代シにArその他の不活性気体を
用いて、qg/、の圧力をかけてGa A、の分野を防
止していた。
However, the conventional single crystal growth apparatus using the LEO method has a heater for heating the crucible inside the single crystal growth container, and a so-called cold wall that cools the wall of the crystal growth container. (Col
d Wall) method, an extremely steep temperature gradient occurs within the crystal growth container, and as a result, arsenic condenses on the walls of the container, so it is necessary to maintain an arsenic vapor pressure equivalent to the dissociation pressure of GaA+3 to decompose GaAs. It is difficult to suppress
In order to maintain the arsenic vapor pressure, Ar or other inert gas was used to prevent the field of GaA by applying a pressure of qg/.

これらの問題点を解決する方法として、ルツボ、単結晶
引上軸等を具備する結晶成長容器とそれを覆う耐圧容器
からなる装置を用い、結晶成長容器内部に第Vb族元素
の蒸気圧を負荷する方法(特開昭!9−/369/号、
特願昭11−.232!67号)が提案されている。
As a method to solve these problems, a device consisting of a crystal growth container equipped with a crucible, a single crystal pulling shaft, etc., and a pressure-resistant container covering it is used, and the vapor pressure of Group Vb elements is applied inside the crystal growth container. How to do it (JP-A-Sho! 9-/369/ issue,
Patent application 1939-. 232!67) has been proposed.

発明が解決しようとする問題点 これらの二重室式単結晶成長装置を用いてLEC法によ
シ単結晶を成長させる場合1回転可能にルツボを支持す
るルツボ支持軸、単結晶引上軸等回転部が結晶成長容器
を貫通する部分を気密に保持し、 −?、As 等の蒸
気の漏洩全防止する軸封が重要であシ、高温に耐え、か
つ化学的に安定な材料を用いる必要があシ、また広い温
度範囲にわたって気密を保持する必要がある。
Problems to be Solved by the Invention When a single crystal is grown by the LEC method using these double-chamber single crystal growth apparatuses, a crucible support shaft that supports the crucible for one rotation, a single crystal pulling shaft, etc. The part where the rotating part penetrates the crystal growth container is kept airtight, and -? It is important to have a shaft seal that completely prevents the leakage of vapors such as , As, etc. It is necessary to use materials that can withstand high temperatures and are chemically stable, and it is necessary to maintain airtightness over a wide temperature range.

従来は、セラミックシール、耐熱ゴム等からなる0リン
グ等の機械的な軸封装置が用いられていた。しかしなが
ら、これらの方法では材質の選択、構造、寿命等に問題
があった。
Conventionally, mechanical shaft sealing devices such as ceramic seals, O-rings made of heat-resistant rubber, etc. have been used. However, these methods have problems in material selection, structure, lifespan, etc.

発明の目的 本発明者等は、かかる問題点を解決し、取シ扱い容易で
あシ、高寿命かっ、結晶成長容器内の雰囲気の置換操作
の容易な軸封装置を有する二重室式単結晶成長装置を開
発することを目的として鋭意研究を重ねた結果本発明に
到達したものである。
Purpose of the Invention The present inventors have solved the above problems, and have developed a double-chamber single unit that is easy to handle, has a long life, and has a shaft sealing device that allows for easy replacement of the atmosphere inside the crystal growth container. The present invention was achieved as a result of intensive research aimed at developing a crystal growth apparatus.

問題点を解決するための手段 本発明の上記の目的は、ルツボ支持軸にょって回転可能
に保持されたルツボ、該ルツボ加熱用ヒーター及び単結
晶引上軸を具備した気密性を有する結晶成長容器ならび
に該結晶成長容器を内部に含む気密性を有する耐圧容器
からなる二重室式単結晶成長装置において、単結晶引上
軸及びルツボ支持軸と結晶成長容器との間の気密か液封
装置によって保持されておシ、該液封装置の液溜が単結
晶引上軸及びルツボ支持軸にそれぞれ取シ付けられ、か
つ、堰が結晶成長容器に取シ付けられておシ、封止用液
体と堰が重なる部分の長さの最大値が単結晶引上軸及び
ルツボ支持軸が単結晶引き上げの際に移動する距離より
も大であることを特徴とする装置にょって達せられる。
Means for Solving the Problems The above-mentioned object of the present invention is to provide a crucible rotatably held by a crucible support shaft, a crucible heater for heating the crucible, and an airtight crystal growth system equipped with a single crystal pulling shaft. In a double-chamber single crystal growth apparatus consisting of a container and an airtight pressure-resistant container containing the crystal growth container inside, an airtight or liquid sealing device between the single crystal pulling shaft, the crucible support shaft, and the crystal growth container. The liquid reservoir of the liquid sealing device is attached to the single crystal pulling shaft and the crucible support shaft, respectively, and the weir is attached to the crystal growth container. This is achieved by an apparatus characterized in that the maximum length of the overlapping portion of the liquid and the weir is greater than the distance that the single crystal pulling axis and the crucible support axis move during single crystal pulling.

る 本発明に検電装置を図面に基づいて説明する。Ru A voltage detection device according to the present invention will be explained based on the drawings.

第1図は本発明に係る単結晶成長装置の一例の縦断面正
面模型図である。
FIG. 1 is a vertical cross-sectional front model view of an example of a single crystal growth apparatus according to the present invention.

第1図において/は耐圧容器である。容器/はステンレ
ス製が好ましくジャケット等によって水冷できることが
好ましい。耐圧容器/は少なくとも10kg/cd程度
の、好ましくハjOkg/d程度の内圧に耐えることが
必要である。耐圧が70kg / crllよシも小さ
いと結晶成長の際に危険となる。
In FIG. 1, / is a pressure vessel. The container/container is preferably made of stainless steel and preferably can be water-cooled with a jacket or the like. The pressure-resistant container must be able to withstand an internal pressure of at least about 10 kg/cd, preferably about 0 kg/d. If the withstand pressure is as small as 70 kg/crll, it will be dangerous during crystal growth.

λは結晶成長容器である。容器−は、高温(10θθ・
〜/ダθθ℃)でも十分な強度を有し。
λ is the crystal growth vessel. The container is heated to a high temperature (10θθ・
It has sufficient strength even at temperatures ranging from ~/da θθ°C).

かつ化学的に分活性な材料、例えば石英、又はタノタル
(Ta) t−用いて製造される。
and is manufactured using chemically active materials such as quartz or tantalum (Ta).

3はルツボである。ルツボ3はpBN (熱分解窒化ホ
ウ素)、石英等により作られる。ルツボ3には単結晶成
長の原料となるGaAs 、 GaP 、 InP等の
多結晶、及び必要に応じてカプセル剤であるB2O3が
収納される。
3 is the crucible. The crucible 3 is made of pBN (pyrolytic boron nitride), quartz, or the like. The crucible 3 stores polycrystals such as GaAs, GaP, and InP, which are raw materials for single crystal growth, and B2O3, which is a capsule if necessary.

ダは、ルツボ3を加熱するヒーターである。DA is a heater that heats the crucible 3.

jは、 As、P等第Vb族元素を収納する容器である
。6は容器jを加熱するヒーターである。
j is a container for storing group Vb elements such as As and P. 6 is a heater that heats the container j.

ヒーター6は、図面では容器コの外側に置いであるが、
内側に置いてもよい。ヒーター6によシ容器!に収容さ
れた第Vb族元累を加熱して。
Although the heater 6 is placed outside the container in the drawing,
It can be placed inside. Container for heater 6! By heating the Group Vb group contained in the.

GaAs 、 GaP等の無機化合物の融点付近におけ
る解離圧(oaA、3の場合的/気圧)に等しい第vb
族元素の蒸気圧を発生させる。この場合、カプセル剤を
省略できる。カプセル剤を用いない場合は、第1b族及
び第yb族元素を容器2内で直接反応させることができ
る。7はルツボ3を支持するルツボ支持軸である。lは
単結晶引上軸である。軸2及びとは上下動可能であって
、かつ、回転可能であり、単結晶の成長の際には、通常
互いに逆方向に回転しながら単結晶を引上げる。軸ン及
び♂と耐圧容器/との軸封には。
The vb is equal to the dissociation pressure (oaA, in case of 3/atm) near the melting point of inorganic compounds such as GaAs and GaP.
Generates vapor pressure of group elements. In this case, the capsule can be omitted. If a capsule is not used, the elements of group 1b and group yb can be reacted directly in the container 2. 7 is a crucible support shaft that supports the crucible 3. l is the single crystal pulling axis. The shafts 2 and 2 are movable up and down and rotatable, and when growing a single crystal, they usually pull up the single crystal while rotating in opposite directions. For shaft sealing between the shaft and male and pressure-resistant container/.

セラミックシール、0リングによるシール等が用いられ
る。ワは、単結晶引上軸に設けられた液封装置である。
Ceramic seals, O-ring seals, etc. are used. wa is a liquid sealing device installed on the single crystal pulling shaft.

IOは液封装置9の液溜である。液溜10は単結晶引上
軸lに取シ付けられる。液溜10を軸ざに取シ付けると
構造が簡単になる。jlは液封装置9の堰である。堰/
lは容器コに取シ付けられる。/2はルツボ支持軸に設
けられた液封装置である。/3は液封装置/−20液溜
である。
IO is a liquid reservoir of the liquid sealing device 9. The liquid reservoir 10 is attached to the single crystal pulling shaft l. If the liquid reservoir 10 is attached to the shaft, the structure becomes simple. jl is a weir of the liquid sealing device 9. Weir/
l is attached to the container. /2 is a liquid sealing device provided on the crucible support shaft. /3 is a liquid sealing device/-20 liquid reservoir.

また、/&は液封装置12の堰である。液溜13はルツ
ボ支持軸7に取シ付けられ、堰/4tは容器−に取シ付
けられる。液封装置9の堰//と液溜10内の封止用液
体とが重なる部分の長さの最大値は、通常基が液中に浸
漬していない時の液溜中の封止用液体の深さく第1図に
示すt)と一致するが、液溜の高さが堰の垂下部の長さ
よりも大きい場合など、単結晶引上軸の引上げができな
い支障があるときは、その分だけ小さくなる。この値は
、単結晶引き上げの際に単結晶引上軸?が移動する距離
よシも大であることが必要である。これよシ小さいと結
晶成長容器の気密が保持できないので 適当である。
Further, /& is a weir of the liquid sealing device 12. The liquid reservoir 13 is attached to the crucible support shaft 7, and the weir/4t is attached to the container. The maximum length of the overlap between the weir // of the liquid sealing device 9 and the sealing liquid in the liquid reservoir 10 is normally the maximum length of the overlap between the weir // of the liquid sealing device 9 and the sealing liquid in the liquid reservoir when the base is not immersed in the liquid. The depth corresponds to t) shown in Figure 1, but if there is a problem in which the single crystal pulling axis cannot be pulled, such as when the height of the liquid reservoir is greater than the length of the hanging part of the weir, becomes smaller. Is this value the single crystal pulling axis when pulling a single crystal? It is necessary that the distance traveled by the robot is also large. If it is smaller than this, it will not be possible to maintain the airtightness of the crystal growth container, so this is appropriate.

上記軸との移動する距離は通常は引き上げられる単結晶
の長さに相当する。
The distance traveled with respect to the axis usually corresponds to the length of the single crystal to be pulled.

堰//と液の重なる長さが上記距離よシも短い場合は、
単結晶成長の全期間にわたって容器−の気密を保持する
ことができない。
If the length of the overlap between the weir // and the liquid is shorter than the above distance,
The container cannot be kept airtight during the entire period of single crystal growth.

液封装置12においてもルツボ支持軸7が単結晶引き上
げの際に移動する距離と少なくとも実質的に同一の長さ
だけ液中に浸漬されることが必要である。
In the liquid sealing device 12 as well, it is necessary that the crucible support shaft 7 be immersed in the liquid for at least a length that is substantially the same as the distance that the crucible support shaft 7 moves during single crystal pulling.

液封装置?及び7.2に用いられる封止用の液体として
は、#I用温度で液体であってかつ蒸気圧の低いものが
必要であjl) 、B2O2+ Ga等の融液が好まし
い。
Liquid sealing device? The sealing liquid used in 7.2 and 7.2 needs to be a liquid at the #I temperature and have a low vapor pressure, and a melt such as B2O2+ Ga is preferable.

カプセル剤を用いて、 GaAs 、 GaP等を直接
合成法によシ袈造する場合は、第2図の縦断面正面模型
図に示す如(As、P等第Va族元素蒸を 気ネ吹き込む装置を有する装置を用いることが好ましい
In the case of directly synthesizing GaAs, GaP, etc. using a capsule, a device for injecting Va vapor of group Va elements such as As and P is used as shown in the longitudinal cross-sectional front model diagram of Fig. 2. It is preferable to use an apparatus having

第2図は直接合成法による単結晶製造装置の一例である
FIG. 2 shows an example of a single crystal manufacturing apparatus using the direct synthesis method.

第一図において/jは容器λ内に設けられた第Vb族元
素蒸気の吹き込み装置である。吹き込み装置/!は上下
動可能に取シっけられる。
In FIG. 1, /j is a group Vb element vapor blowing device provided in the container λ. Blowing device/! is placed so that it can be moved up and down.

直接合成に際しては、ルツボ3にGa、■n等の第1b
族元累をB2O3とともに収容し、吹き込み装置/!を
第ト族元素中に挿入して第Vb族元素を吹き込みGa 
As等の化合物を合成する。
In the case of direct synthesis, the 1st b such as Ga, n etc.
Accommodate the family with B2O3, blowing device/! is inserted into the group Vb element and the group Vb element is blown into Ga.
Synthesize compounds such as As.

吹き込み装置/!と容器コとの間の気密は液封装置/≦
によシ行なう。液封装置/6の堰と液の重なりは、吹き
込み装置/夕の上下移動距離と同一かまたはそれより長
いことが必要である。
Blowing device/! The airtightness between the and the container is provided by a liquid sealing device
Let's do good. The overlap between the weir of the liquid sealing device/6 and the liquid needs to be equal to or longer than the vertical movement distance of the blowing device/6.

発明の効果 本発明に係る単結晶成長装置は、結晶成長容器の軸封装
置が摩耗することがなく、高温及び腐蝕性の雰囲気に耐
えることができる。
Effects of the Invention In the single crystal growth apparatus according to the present invention, the shaft sealing device of the crystal growth container does not wear out and can withstand high temperatures and corrosive atmospheres.

また、ルツボ支持軸等の液封装置の液溜を下げて堰を液
から抜くことにより、耐圧容器/及び結晶成長容器コの
間の気密が破れるので、双方の容器の雰囲気を同時にア
ルゴン(Ar)等の不活性気体によって置換することが
できるので操作が容易となる。
In addition, by lowering the liquid reservoir of the liquid sealing device such as the crucible support shaft and removing the liquid from the weir, the airtightness between the pressure vessel/crystal growth vessel is broken, so the atmosphere in both vessels is changed to argon (Ar) at the same time. ) etc., which facilitates the operation.

さらに、二重室であるので結晶成長容器内の温度勾配を
小さくすることができ、その結果得られた単結晶の結晶
欠陥を少なくすることができる。さらに第yb族元素の
雰囲気中で結晶成長を行なうことができるのでh ”2
03等のカプセル剤を省略することができる1゜ 本発明方法を実施例に基づいて更に具体的に説明する。
Furthermore, since it is a double chamber, the temperature gradient within the crystal growth container can be reduced, and as a result, crystal defects in the resulting single crystal can be reduced. Furthermore, since crystal growth can be performed in an atmosphere of group YB elements, h ”2
The method of the present invention will be explained in more detail based on Examples.

実施例/ 第1図に示す装置を用いてGaABの単結晶の引上げを
行った。
Example/ A single crystal of GaAB was pulled using the apparatus shown in FIG.

会寺按耐圧容器−7はステンレス、結晶成長容器λはタ
ンタルにより構成されている。
The pressure vessel 7 is made of stainless steel, and the crystal growth vessel λ is made of tantalum.

液封装置?及び7.2には酸化ホウ素(B203)を用
い加熱ヒーターグおよび乙により融点以上に加熱し、液
体シールとして用いた。単結晶引上軸の移動可能距離は
20Crnであった。
Liquid sealing device? In 7.2 and 7.2, boron oxide (B203) was heated to above its melting point using a heating tag and Otsu, and used as a liquid seal. The movable distance of the single crystal pulling shaft was 20 Crn.

石英ルツボ3の中に多結晶SiドープGaASをλθo
ogおよび酸化ホウ素ダθo ′gを入れ容器2内にセ
ットした。またAsの蒸発源として夕にAsを夕op入
れた。(/θθ)種結晶をを単結晶引上軸?に取付けた
後に、容器内を/×70″torrまで真空に引いた。
Polycrystalline Si-doped GaAS is placed in a quartz crucible 3.
og and boron oxide θo'g were placed in the container 2. In addition, As was added in the evening as an evaporation source. (/θθ) Is the seed crystal a single crystal pulling axis? After the container was attached to the container, the inside of the container was evacuated to /×70″torr.

この際に容器λ内はルツボ支持軸2を下方へ下げること
によυ液封装置/2が解放され、真空に引く事が可能に
なった。次に容器内にアルゴンガスをs kg / c
rl、まで導入し、更に各液封装置の酸化ホウ素が融解
するまで加熱した。そしてルツボ支持軸2を上方へ上げ
容器/及び2を遮断した。
At this time, by lowering the crucible support shaft 2 downward, the υ liquid sealing device/2 was released, and the inside of the container λ was able to be evacuated. Then fill the container with argon gas at s kg/c
rl, and further heated until the boron oxide in each liquid seal device was melted. Then, the crucible support shaft 2 was raised upward to shut off the container/and 2.

またヒーター乙によシAs jおよび容器−を加熱して
As圧力の制御を行った。容器/と容器コの間の圧力は
容器コ内の温度をモニターする事により同圧になる様に
制御を行った。
In addition, the As pressure was controlled by heating the cylinder Asj and the container. The pressure between the container and the container was controlled to be the same by monitoring the temperature inside the container.

引上げられた( / 00 ) GaAs単結晶の直径
はSO−結晶重量はitoogまた。長さは75口であ
った。エッチ−ビット密度(FjPD)はフロント部で
Y X 703cm ” ティル部でと×103(7)
−2と通常のLEC法で製造されだGaAs単結晶のE
PDレベルと比較して約7桁少なかった。
The diameter of the pulled (/00) GaAs single crystal is SO-crystal weight is tooog. The length was 75 mouths. Etch-bit density (FjPD) is Y x 703 cm at the front and x 103 (7) at the tilt.
-2 and the E of GaAs single crystal produced by the usual LEC method.
It was about 7 orders of magnitude lower than the PD level.

またSiのキャリヤー濃度はフロント部で!×/θ17
crn−3、テイル部で/、3 X 10I8B−3で
あった。
Also, the Si carrier concentration is at the front! ×/θ17
crn-3, 3 x 10I8B-3 in the tail.

実施例λ 第2図に示す装置を用いて直接合成法によりGaAsの
単結晶の引上げを行った。なお、この装置の単結晶引上
軸の移動可能距離は20mであった。各液封装置に用い
る封止用液体としては酸化ホウ素を用い、容器3の材質
にはタンタルを使用した。
Example λ A single crystal of GaAs was pulled by a direct synthesis method using the apparatus shown in FIG. Note that the movable distance of the single crystal pulling shaft of this device was 20 m. Boron oxide was used as the sealing liquid used in each liquid sealing device, and tantalum was used as the material for the container 3.

ルツボ材質はPBNi用い、ルツボ中には/θθθIの
Gaおよび3oθIの酸化ホウ素を入れた。AS吹き込
み装置/!には/10θIのAsを入れ、また容器!に
はASをjOg入れた。
PBNi was used as the crucible material, and Ga of /θθθI and boron oxide of 3oθI were placed in the crucible. AS blowing device/! Add As of /10θI to the container again! I put AS in jOg.

反応器内を/×/θ−’ torr まで真空で引いた
後にアルゴンガスを70kg / cI/I導入し、加
熱ヒーターグおよび乙によシ系内を加熱した。吹き込み
装置/−5′をPBNルツボ内に入れ、 Ga とAs
 からGa Asを直接合成した後に、(/θθ)アン
ドープGaAsの結晶引上げを行った。
After the inside of the reactor was evacuated to /x/θ-' torr, 70 kg/cI/I of argon gas was introduced, and the inside of the system was heated by a heating tag and a heater. Place the blowing device/-5' into the PBN crucible and blow Ga and As.
After directly synthesizing GaAs from (/θθ), undoped GaAs was crystal-pulled.

得られたアンドープGa As結晶の直径は夕0ア、N
量は7900g、また、単結晶の長さは/3t’mであ
った。比抵抗はフロント部で/、3 X 108Ω−(
7)、ティル部で/、/ x /θ8Ω−傭と良好な半
絶縁性を示した。またEPDはフロント部で2X / 
03crn−2,テイル部で’、2 X / 0’ l
m−2であった。
The diameter of the undoped GaAs crystal obtained is 0A, N
The amount was 7900 g, and the length of the single crystal was /3 t'm. The specific resistance is /, 3 x 108Ω-(
7), showed good semi-insulating properties with /, / x /θ8Ω-1 at the till part. Also, the EPD is 2X /
03crn-2, ', 2 X / 0' l at tail part
It was m-2.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る単結晶成長装置の一例を示す縦
断面正面模型図である。 第2図は、本発明に係る単結晶成長装置の他の一例を示
す縦断面正面模型図である。 /・・・・・・耐圧容器 λ・・・・・・結晶成長容器 3・・・・・・ルツボ゛ 2・・・・・・ルツボ支持軸 !・・・・・・単結晶引上軸 9 、 /2 、 /ご・・・・・・液封装置10、/
j・川・・液溜 //、/グ・・・・・・堰
FIG. 1 is a vertical cross-sectional front model diagram showing an example of a single crystal growth apparatus according to the present invention. FIG. 2 is a vertical cross-sectional front model diagram showing another example of the single crystal growth apparatus according to the present invention. /...Pressure vessel λ...Crystal growth vessel 3...Crucible 2...Crucible support shaft! ......Single crystal pulling shaft 9, /2, /...Liquid sealing device 10, /
j・River・・・Liquid sump//、/gu・・・・・・Weir

Claims (2)

【特許請求の範囲】[Claims] (1) ルツボ支持軸によって回転可能に保持されだル
ツボ、該ルツボ加熱用ヒーター及ヒ単結晶引上軸を具備
した気密性を有する結晶成長容器ならびに該結晶成長容
器を内部に含む気密性を有する耐圧容器からなる二重室
式単結晶成長装置において、単結晶引上軸及びルツボ支
持軸と結晶成長容器との間の気密が液封装置によって保
持されておシ、該液封装置の液溜が単結晶引上軸及びル
ツボ支持軸にそれぞれ取シ付けられ、かつ、堰が結晶成
長容器に取シ付けられておシ、封止用液体と堰が重なる
部分の長さの最大値が単結晶引上軸及びルツボ支持軸が
単結晶引き上げの際に移動する距離よシも大であること
を特徴とする装置。 f1
(1) A crucible rotatably held by a crucible support shaft, an airtight crystal growth container equipped with a heater for heating the crucible, a single crystal pulling shaft, and an airtight container containing the crystal growth container inside. In a double-chamber single crystal growth apparatus consisting of a pressure-resistant container, airtightness between the single crystal pulling shaft, the crucible support shaft, and the crystal growth container is maintained by a liquid sealing device, and the liquid reservoir of the liquid sealing device is are attached to the single crystal pulling shaft and the crucible support shaft, respectively, and the weir is attached to the crystal growth container, and the maximum length of the portion where the sealing liquid and the weir overlap is equal to A device characterized in that the distance traveled by the crystal pulling shaft and the crucible support shaft is greater than the distance traveled during single crystal pulling. f1
(2)封止め液体が酸化ホウ素またはガリウムの融液で
ある特許請求の範囲第1項記載の装置。
(2) The device according to claim 1, wherein the sealing liquid is a melt of boron oxide or gallium.
JP7988484A 1984-04-20 1984-04-20 Single crystal growth unit Pending JPS60226491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7988484A JPS60226491A (en) 1984-04-20 1984-04-20 Single crystal growth unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7988484A JPS60226491A (en) 1984-04-20 1984-04-20 Single crystal growth unit

Publications (1)

Publication Number Publication Date
JPS60226491A true JPS60226491A (en) 1985-11-11

Family

ID=13702679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7988484A Pending JPS60226491A (en) 1984-04-20 1984-04-20 Single crystal growth unit

Country Status (1)

Country Link
JP (1) JPS60226491A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197390A (en) * 1986-02-25 1987-09-01 Mitsubishi Metal Corp Double-structure vessel
JPS6385083A (en) * 1986-09-27 1988-04-15 Semiconductor Res Found Method for growing compound semiconductor single crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197390A (en) * 1986-02-25 1987-09-01 Mitsubishi Metal Corp Double-structure vessel
JPH0367993B2 (en) * 1986-02-25 1991-10-24 Mitsubishi Materiaru Kk
JPS6385083A (en) * 1986-09-27 1988-04-15 Semiconductor Res Found Method for growing compound semiconductor single crystal

Similar Documents

Publication Publication Date Title
US5290395A (en) Method of and apparatus for preparing single crystal
JPH1036197A (en) Production of iii-v compound semiconductor crystal
US3507625A (en) Apparatus for producing binary crystalline compounds
US6989059B2 (en) Process for producing single crystal of compound semiconductor and crystal growing apparatus
JPS60226491A (en) Single crystal growth unit
JP2004256392A (en) Method of manufacturing compound semiconductor crystal and compound semiconductor crystal
JPS60264390A (en) Growing method for single crystal
JPH11147785A (en) Production of single crystal
JP4399631B2 (en) Method for manufacturing compound semiconductor single crystal and apparatus for manufacturing the same
Galazka Growth measures to achieve bulk single crystals of transparent semiconducting and conducting oxides
JP3725700B2 (en) Compound single crystal growth apparatus and method
JP2005132663A (en) Group iii nitride crystal growth method, group iii nitride crystal, and crystal growth apparatus
JPH06128096A (en) Production of compound semiconductor polycrystal
JPH0365593A (en) Single crystal growing apparatus
JP2830411B2 (en) Method and apparatus for growing compound semiconductor single crystal
JP3412853B2 (en) Semiconductor crystal manufacturing equipment
JP3617703B2 (en) Method for producing ZnSe bulk single crystal
JPH0477383A (en) Method for growing compound semiconductor crystal
JPH04362083A (en) Synthesis of ii-vi compound semiconductor polycrystal
JPS589799B2 (en) Zinc sulfide crystal growth method
JP2712247B2 (en) (II)-Method for producing bulk single crystal of group VI compound
JPH0959083A (en) Device for producing single crystal of compound semiconductor
CN117604611A (en) Gallium antimonide crystal growth method
JP2900577B2 (en) Method and apparatus for growing compound single crystal
JPH0597567A (en) Apparatus for producing single crystal