JPS6022644A - Apparatus for measuring apparent density of powdery granule - Google Patents

Apparatus for measuring apparent density of powdery granule

Info

Publication number
JPS6022644A
JPS6022644A JP13159283A JP13159283A JPS6022644A JP S6022644 A JPS6022644 A JP S6022644A JP 13159283 A JP13159283 A JP 13159283A JP 13159283 A JP13159283 A JP 13159283A JP S6022644 A JPS6022644 A JP S6022644A
Authority
JP
Japan
Prior art keywords
sample
container
vessel
weighing
bulk density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13159283A
Other languages
Japanese (ja)
Inventor
Fujihira Yokoyama
横山 藤平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosokawa Micron Corp
Hosokawa Funtai Kogaku Kenkyusho KK
Original Assignee
Hosokawa Micron Corp
Hosokawa Funtai Kogaku Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosokawa Micron Corp, Hosokawa Funtai Kogaku Kenkyusho KK filed Critical Hosokawa Micron Corp
Priority to JP13159283A priority Critical patent/JPS6022644A/en
Publication of JPS6022644A publication Critical patent/JPS6022644A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/02Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by measuring weight of a known volume

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To measure both loosened and tightened apparent densities and to obtain quickly a stable measured value without person's help by providing means for filling loosely and tightly a sample into a vessel, a means for weighing the weight of the sample in the vessel and a means for calculating and displaying both apparent densities of the sample. CONSTITUTION:The sample supplied from a chute 6 falls uniformly into the vessel 7 and is packed therein. The vessel 7 is carried on an electron balance 5 by whirling a whirling arm 4, and mounted on a weighing base 5a. Thus, a weight value weighed by the balance 5 is inputted specially as an electric signal into a microcomputer 9, calculated instantaneously by the weight and inner volume of only the vessel 7 previously stored and inputted, and the result is displayed as the loosened apparent density of the sample. On the other hand, rising and dropping of a mounting base 27 are performed by arbitrary prescribed number of times while supplying the sample into the vessel 7 to apply an impact due to the dropping to the vessel 7, and the sample is tightly packed in the vessel 7. Thereafter, the tightened apparent density due to the tightly packing is measured by the process similar to above-described one.

Description

【発明の詳細な説明】 本発明は粉粒体のカサ密度を測定する装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring bulk density of powder or granular material.

粉粒体を取扱う場合、粉粒体自体の特性を知ることはき
わめて重要なことである。しかしながら、粉粒体め特性
は固体、液体等の特性とは異なり、少数の因子のみで、
その特性を判断することは困難とされる。これは、゛粉
粒゛体の物理的挙動を決定するための因子が固体、液体
等と比較してはるかに多く、シかも各因子間の相互関係
が視外:に絡み合っているためである。粉粒体の静的な
特性の代表は粒子径の値で、従来がらの粉粒体の実用的
な指標となっているのはこの粒子径だけ八ても過言では
ない。一方、粉粒体の実際」二の処理においては、動的
面での挙動が重要であり、この状態や程度を表わす適当
な表示値が切望されているにも拘らず、一般的には今な
お安息角とゆるみカサ密度が用いられているに過ぎない
。しかも、これらは粉粒体の静的挙動を示す因子に過ぎ
ず、動的な挙動を表わすには不適当である。そこで、こ
のゆるみカサ密度に対し所定の圧密状態でのカサ密度、
ここでは固めカサ密度と称し、これら値の変化を以って
粉粒体の被圧縮性の度合をめ、この値を圧縮度と称して
これによって粉粒体の動的特性を表わす方法が一部にお
いて用いられつつある。
When handling granular materials, it is extremely important to know the characteristics of the granular material itself. However, unlike the properties of solids and liquids, the properties of powder and granular materials depend on only a few factors.
It is difficult to judge its characteristics. This is because there are far more factors that determine the physical behavior of ``powder'' than in solids, liquids, etc., and the interrelationships between each factor may be intertwined with each other in ways that are invisible to the eye. . The typical static characteristic of a powder or granular material is its particle size, and it is no exaggeration to say that this particle size is the only practical indicator of a powder or granular material. On the other hand, in the actual processing of powder and granular materials, dynamic behavior is important, and although there is a strong need for appropriate display values that represent the state and degree of this behavior, Note that only the angle of repose and loose bulk density are used. Moreover, these are only factors that indicate the static behavior of the powder and granular material, and are not suitable for expressing the dynamic behavior. Therefore, the bulk density in a predetermined consolidated state is
Here, it is called the compaction bulk density, and the change in these values is used to measure the degree of compressibility of the powder or granule.This value is called the degree of compaction, and this value is used to express the dynamic characteristics of the powder or granule. It is being used in some departments.

ところが、この圧縮度なる測定値を得るためのゆるみカ
サ密度、固めカサ密度を測定する段階において、測定器
具を用いるとしてももっばら人手による手作業のため測
定者自身による測定面での誤差を生じ易いこと、測定に
時間が掛ることや測定器具に起因する粘度」二の問題な
どにより、現在なお実用化されるまでには到っていない
。本発明はこうした点に鑑み、前記ゆるみカサ密度と固
めカサ密度が共に測れ、しかも人手によらず安定した測
定値を速く得ることができる測定装置を提供するもので
ある。また、この点において本発明は、ゆるみカサ密度
を自動的に測定する測定装置を提示した先の出願、特開
昭57−53640号公報及び特開昭57−70429
−号公報の発明に対し、別途新たな機構を加えてより適
用範囲の拡大を計るものである。すなわち、第1図は前
述の特開昭57=53640号公報による要部を示し、
試料を収容する容器50と該容器50内に試料を供給す
る手段51と、該容器容積の余剰試料を排除する手段5
2と、前記余剰試料を排除した容器50内試料゛の重量
を秤量する手段53と、前記秤量済み容器50内試料を
排出させる手段54と、前記各手段を有する各部位に前
記容器を順次搬送する手段55と、前記試料重量と前記
容器容積との商でもって当該試料のカサ密度を演算表示
する手段56と、前記各手段を順次作動させるようにし
た時限装置57とよりなることを特徴とする粉粒体カサ
密度の測定装置であり、第2図は前述の特開昭5’l−
79429号公報による要部を示し、試料を収容する容
器60と、該容器6o内に試料を供給する手段61と、
該容器内容積の余剰試、lI”1を排除する手段62と
、余剰試料排除後の容器内試料を秤量し、該試料の重量
と容器内容積との商でもって当該試1”)のカサ密度を
演算表示させる手段66と、前記秤量済み容器内試料を
排出させる手段64と、これら各手段を順次作動させる
ようにした時限装置67とよりなることを特徴とする粉
粒体カサ密度の測定装置である。これに対し本発明は、
試料を収容する容器と、該容器内に試料を粗充填する手
段と、供給後の容器容積外の余剰試料を排除し容器内試
料の重量を秤量する手段と、前記手段とは別に試料供給
時あるいは供給後に試料又は容器に対し抑圧、衝撃等所
定の外力を加えて容器内に試料を圧密充填させる手段と
、当該圧密充填後に容器容積外に堆積する余剰試料を排
除し容器内試料の重量を秤量する手段と、該試料の重量
と容器内容積との商でもって当該試料の両カザ密度を演
算表示させる手段とを以って構成させ、粉粒体の粗充填
状態でのカサ密度と圧密充填状態でのカサ密度とを各々
別個に測定し、又、これらの値を以って試料自体の圧縮
の度合を、例えば前者のカサ密度をAとし、後者のカサ
密度をPとして、 C−、(P−、A)/P でめられ
るCの値を圧縮度として算出できるほか、両カサ密度の
平均面、標準偏差値等各種統計値をも併わせて演算表示
させることもでき、しかも、これら一連の操作を自動的
、かつ連続的に制御させうるものである。
However, in the step of measuring the loose bulk density and hard bulk density to obtain the measurement value of the degree of compression, even if a measuring instrument is used, it is mostly done manually, so errors may occur in the measurement by the measurer himself. It has not yet been put into practical use due to problems such as being easy to use, taking time to measure, and viscosity caused by measuring instruments. In view of these points, the present invention provides a measuring device that can measure both the loose bulk density and the hard bulk density, and can quickly obtain stable measured values without manual intervention. In addition, in this respect, the present invention relates to the earlier applications, JP-A-57-53640 and JP-A-57-70429, which presented a measuring device for automatically measuring the loose bulk density.
This invention is intended to further expand the scope of application by adding a new mechanism to the invention of Publication No. -. That is, FIG. 1 shows the main part according to the above-mentioned Japanese Patent Application Laid-open No. 57=53640,
A container 50 for containing a sample, a means 51 for supplying the sample into the container 50, and a means 5 for removing excess sample from the container volume.
2, a means 53 for weighing the sample in the container 50 from which the surplus sample has been removed, a means 54 for discharging the weighed sample in the container 50, and sequentially transporting the container to each site having each of the means. means 55 for calculating and displaying the bulk density of the sample as a quotient of the sample weight and the container volume, and a timer 57 for sequentially operating each of the above means. Fig. 2 is a device for measuring the bulk density of powder and granular materials.
79429, showing a container 60 for containing a sample, a means 61 for supplying the sample into the container 6o,
A means 62 for removing excess sample lI''1 from the container internal volume, and a means 62 for weighing the sample in the container after removing the surplus sample, and determining the bulk of the sample 1'') by the quotient of the weight of the sample and the container internal volume. Measuring the bulk density of powder or granular material, comprising means 66 for calculating and displaying the density, means 64 for discharging the weighed sample in the container, and a timer 67 for sequentially operating each of these means. It is a device. In contrast, the present invention
a container for storing a sample; a means for roughly filling the sample into the container; a means for removing surplus sample outside the container volume after supply and weighing the sample in the container; Alternatively, there may be a means for compactly filling the sample into the container by applying a predetermined external force such as compression or shock to the sample or container after supply, and a means for compactly filling the sample into the container after the compaction filling, and removing excess sample that accumulates outside the container volume to reduce the weight of the sample inside the container. The bulk density and the compaction of the powder and granular material in a roughly packed state are constructed by a means for weighing and a means for calculating and displaying the bulk density of the sample using the quotient of the weight of the sample and the internal volume of the container. The bulk density in the packed state is measured separately, and the degree of compression of the sample itself is determined using these values, for example, with the former bulk density being A and the latter bulk density being P, C- , (P-, A)/P In addition to calculating the degree of compression, various statistical values such as the average surface and standard deviation value of both bulk densities can also be calculated and displayed. , these series of operations can be automatically and continuously controlled.

以下、本発明を実施例を以って説明する。第3図及至第
6図において、1は本体台で、レッグ10の調整によっ
て台」二面の水平が保たれ、その台上には容器7への試
料供給と内容積外の余剰試料をかき取る供給部、圧密充
填のための衝撃付加機構、電子天秤5よりなる秤量部、
供給部と秤量部−ト6を除いては外部とは隔絶されてお
り、とくに秤量時の外部からの影響や外部への粉塵の飛
散を防止できる。なお、本実施例においては供給、充填
部と秤量部とは旋回アーム4にス・jしてほぼ直角の位
置に配置されているが、とくに限定されるものではない
。9はマイクロコンピュータで、電子天秤5からの信号
値を受けてこれを演算し表示させるほか、前記の各機構
を任意にシーケノス制御させ、自動運転を可能とするも
のである。また、15は近接ヌイソチで、電子天秤5」
−の容器7に対して設けられ、容器7の位置確認と、非
常、正常を問わず装置の停止後の再始動に際し旋回ア−
ム4及び容器7を速やかに運転開始時の所定位置に移動
させるほか、他の機4’i&部に刻しても待機を指示さ
せるための検知器である。また、近接スイッチ15は静
電容量形、高周波発振形、差動コイル形のイ也いずれで
あってもよい。
The present invention will be explained below with reference to Examples. In Figures 3 to 6, reference numeral 1 denotes a main body stand, on which the two sides of the stand are kept horizontal by adjusting the legs 10, and on which the sample is supplied to the container 7 and the excess sample outside the internal volume is removed. a supply section for taking the sample, an impact applying mechanism for compaction filling, a weighing section consisting of an electronic balance 5,
Except for the supply section and the weighing section 6, it is isolated from the outside, so that influences from the outside during weighing and scattering of dust to the outside can be particularly prevented. In this embodiment, the supply/filling section and the weighing section are disposed at positions substantially perpendicular to the swing arm 4, but the present invention is not particularly limited thereto. Reference numeral 9 denotes a microcomputer, which not only receives the signal value from the electronic balance 5, calculates and displays it, but also arbitrarily controls each of the above-mentioned mechanisms sequentially to enable automatic operation. Also, 15 is close proximity, and electronic balance is 5.
- A rotating arm is provided for the container 7 in
In addition to quickly moving the system 4 and container 7 to the predetermined positions at the start of operation, this detector is used to instruct other machines 4'i& to stand by even if they are marked. Further, the proximity switch 15 may be of a capacitance type, a high frequency oscillation type, or a differential coil type.

次に各機構について、その構成を説明する。第4図によ
り試料供給および衝撃付加機構については、まず、本体
台1」二に建てられた支柱11に」一部より3個のプラ
グノド12.13.14がそれぞれ適当な間隔を以って
配設されている。ブラケット12は供給シュート6の下
方に位置し、容器7よりも大径の開1」21を持ちその
」二部にはパイ・夕16にはカム25が具備され連結杆
26とバネ46を以って前記振動板23を水平方向に振
動させるべく連結される。また、34はかき取り刃でブ
ラケット13の先端部の所定の高さ位置に取付摺動可能
に保持する支軸29と、該支軸29に沿って載置台27
を昇降させるための円筒カム30を具備しf減速モータ
17とが戦利けられている。なお、載置台27側にはピ
ノ32が戦利けられ、該ピン32を円筒カム30の溝3
1にかみ合わせることにまり載置台27を所定高さに引
き上げさせるものであり、その後、ピン32がン異31
からはずれて載置台27を落下させる構成となっている
。また、載置台27には台」−に試料を堆積させないた
め開]」28が具備されているほか、不要な回転を防止
するための止め具33を支柱11をこ対して細膜してい
る。3は試料の受皿、43.44は防塵カバーである。
Next, the configuration of each mechanism will be explained. As shown in Fig. 4, for the sample supply and impact application mechanism, first, three plug nods 12, 13, and 14 are arranged at appropriate intervals on the support 11 built on the main body stand 1. It is set up. The bracket 12 is located below the supply chute 6, has an opening 1'' 21 with a larger diameter than the container 7, and has a cam 25 on its 2nd part and a connecting rod 26 and a spring 46. are connected to vibrate the diaphragm 23 in the horizontal direction. Reference numeral 34 denotes a scraping blade that is attached to and slidably held at a predetermined height position at the tip of the bracket 13.
It is equipped with a cylindrical cam 30 for raising and lowering the motor, and is equipped with an f reduction motor 17. Note that a pin 32 is mounted on the mounting table 27 side, and the pin 32 is inserted into the groove 3 of the cylindrical cam 30.
1 and raises the mounting table 27 to a predetermined height, and then the pin 32 is engaged with the pin 31.
The configuration is such that the mounting table 27 is dropped when the mounting table 27 is detached from the holder. In addition, the mounting table 27 is equipped with an opening 28 to prevent the sample from being deposited on the table, and a stopper 33 is thinly attached to the support 11 to prevent unnecessary rotation. . 3 is a sample tray, and 43 and 44 are dustproof covers.

第5図により4は旋回アに連結されるステッピングモー
タ20とよりなる。また、アーム軸36には先端に容器
7を保持するためのボルダ37が具備される。そして、
旋回アーム4自体は昇降台38上に軸受39を介し載置
され、ステッピングモータ19と連結される。
In FIG. 5, reference numeral 4 includes a stepping motor 20 connected to the swing a. Further, the arm shaft 36 is provided with a boulder 37 at its tip for holding the container 7. and,
The swing arm 4 itself is placed on a lifting table 38 via a bearing 39 and connected to a stepping motor 19.

該昇降台38は本体台1上に垂直に立設させた支軸40
によって保持され、本体台1上に配設されたステッピン
グモータ18のカム41によって昇降される構成となっ
ている。また、容器7については第6図に示すように」
二下両端部に鍔部8を形成させてホルダ37によって保
持された容器7が脱落しないようにされている。なお、
鍔部8はホルダ37での十分な保持ができ、しかも、秤
量時には容器7にボルダ37が触れないように適度な隙
間を容器7とホルダ37間に持たせるほか、容器7が常
にボルダ37の開1142の中心に来るように鍔部8を
こテーパー面8aを具備させている。
The lifting table 38 has a support shaft 40 vertically installed on the main body table 1.
The main body table 1 is held by a cam 41 of a stepping motor 18 disposed on the main body base 1, and is moved up and down. Also, regarding container 7, as shown in Figure 6.
Flange portions 8 are formed at both lower ends to prevent the container 7 held by the holder 37 from falling off. In addition,
The flange 8 can be held sufficiently by the holder 37, and an appropriate gap is provided between the container 7 and the holder 37 so that the boulder 37 does not touch the container 7 during weighing. The flange portion 8 is provided with a tapered surface 8a so as to be located at the center of the opening 1142.

そして、必要により該テーパー面8a又はホルダ37側
に対してはゴム、樹脂等の緩衝材を貼り付け、供給、秤
量時に容器7を持上げたり下ろしたりする際の衝撃を緩
和させることも有効である。
If necessary, it is also effective to attach a cushioning material such as rubber or resin to the tapered surface 8a or the holder 37 side to reduce the impact when lifting or lowering the container 7 during feeding and weighing. .

また、容器7の内部は試料の排出を容易にするため、内
面を平滑するほか内面自体を適度な勾配をに試料が落ち
て秤量値に誤差が生じるのを防止している。また、防塵
カバー45は電子天秤5内部に粉塵が入るのを防止する
もので、その形状は」二面に試料が堆積しないようをこ
傾斜面を持たせて形成されている。
Furthermore, in order to facilitate the discharge of the sample, the inner surface of the container 7 is smoothed, and the inner surface itself has an appropriate slope to prevent the sample from falling and causing an error in the weighed value. Further, the dustproof cover 45 prevents dust from entering the electronic balance 5, and its shape is formed with two sloped surfaces to prevent samples from accumulating.

以」二の構成において、シコーート6より供給された試
料はフルイ24内での振動によって解されてフルイ24
の網]」から落下し、下方載置台27」−の開口部」二
向きの容器7内へと均一に降下光」芭される。次に、ス
テッピングモータ18を運転し、昇降台38をカム41
によって押−Lげて容器7を持ち上げた後、ステッピン
グモータ19により旋回アーム4を旋回させて電子天秤
5上へと搬送させる。なお、この搬送中にプラケノl−
121こ戦利けられたかき取り刃34※こよって容器7
」−の余剰試料は取り除かれる。そして、旋回アーム4
が電子天秤5」二位置に来ると、前記カム41を回転さ
せて昇降台38を下降させ、旋回アーム4を下げて秤量
台5a上に容器7を静かに載置させる。こうして、電子
天秤5によって秤量された重量値は別途マイクロコンピ
ュータ9内に電気信号として人力され、O’+1もって
記憶人力されている容器7のみの取量と内容積の値とに
より瞬時に演算され試料l〕身のカサ密度として表示さ
れる。なお、安定した秤量値を得るのには約2〜3秒間
秤量台5a」二に容器7を載置させておく必要がある。
In the second configuration below, the sample supplied from the sheet coat 6 is decomposed by vibration within the sieve 24 and passed through the sieve 24.
The light falls from the net of the container 7 and falls uniformly into the opening of the lower mounting table 27 into the two-way container 7. Next, the stepping motor 18 is operated to move the lifting platform 38 to the cam 41.
After lifting the container 7 by pushing it up, the stepping motor 19 rotates the swing arm 4 and transports it onto the electronic balance 5. In addition, during this transportation, Plaqueno l-
121 This scraping blade 34 *Container 7
” - excess sample is removed. And the rotating arm 4
When the balance reaches the second position of the electronic balance 5, the cam 41 is rotated to lower the lifting platform 38, and the swing arm 4 is lowered to gently place the container 7 on the weighing platform 5a. In this way, the weight value weighed by the electronic balance 5 is input as an electric signal into the microcomputer 9 separately, and is instantaneously calculated based on the amount taken and the internal volume of the container 7, which is stored in O'+1. Sample 1] Displayed as the bulk density of the meat. In addition, in order to obtain a stable weighing value, it is necessary to keep the container 7 on the weighing table 5a for about 2 to 3 seconds.

その後、旋回アーム4により容器7は引き上げ保持され
、前記とは逆の方向に搬送される。そして、秤量部と供
給部との間において一時停止し、その間ステンピングモ
ーク20によってアーム軸36を回転させてボルダ37
部および容器7の開口部を下向きになるまで反転させて
容器7内の試料を排出させる。試料排出の後は、容器7
を元の開口部を」二向きにさせ、旋回アーム4の旋回を
再開してフルイ24の下方載置台27上で停止させる。
Thereafter, the container 7 is pulled up and held by the rotating arm 4 and transported in the opposite direction. Then, there is a temporary stop between the weighing section and the supply section, and during that time, the arm shaft 36 is rotated by the stamping mork 20, and the boulder 37 is rotated.
The sample in the container 7 is discharged by inverting the container 7 until the opening of the container 7 faces downward. After discharging the sample, the container 7
The original opening is turned in two directions, and the swinging arm 4 resumes swinging and stops on the lower mounting table 27 of the sieve 24.

そして、前記秤量台5alへの載置と同様の工程によっ
て容器7を載置台27」二に降下させる。以」二が粗充
填状態でのカサ密度の一巡の測定工程である。これに対
して、容器7内−の試料の供給を行わせつつ減速モータ
17を作動させ、円筒カム30によって載置台27の上
昇、落下を任意の所定回数行わせ、落下による衝撃を容
器7に加えて該−容器7内に試料を圧密充填させる。以
下、前述の測定工程と同様にして圧密充填によるカサ密
度の測定を行わせた後、試料排出地点において容器7内
の試料は廃棄される力v1 なおがっ容器7内に残った
試料は、さらに容器7を載置台27」二に開I」部を下
向きにして置き、前記の衝撃手段伺与時と同じ衝撃を付
与させて除去させる。こうして、試料除去後の容器7を
載置台27」二に正常向きに載置させて一連の工程を終
えるが、この測定値は供給において前者が粗充填である
のに対し圧密光」賞であるところから前者をゆるみカサ
密度、後者を固めカサ密度と言い、この値はマイクロコ
ンピュータ9内において演算される。また、マイクロコ
ンピュータ9ではこれら両カザ密度を単に別個のカサ密
度として演算表示させるほか、両波算値から試料自体の
圧縮度や各秤量毎のカサ密度の変化から得られる標準偏
差値や各種統計値等が演算表示させられる。なお、本実
施例では容器7内の試料の圧密充填を容器7への衝撃付
加によって行わせているが、他の実施例として前記載置
台27を上11、落下させる機+f4 &こかえて、た
とえば、第8図に構であってもよく、70は減速モータ
、74は滑車、73は吊り糸、75は保持アームで試料
抑圧時のみ所定位置へと旋回移動させられるものであり
、そのためには保持アーム75側に歯車7Gを戦利は別
途減速モータ71を付設させて構成する。また、第9図
のようにエアシリンダ80等と流体圧力による一般の抑
圧機構やこより、容器7内試料を直接所定の圧力で押圧
し圧密充填をさせてもよい。また、本実施例においては
、該マイクロコンピュータ9は前記の秤量値等を演算表
示させるだけではなく、当該装置の各機構部に対しても
設定人力されたプログラムに従ってこれら機構部を作動
させ、前述の操作を全て自動的に、あるいは必要により
手動によって行わせるように構成させている。第7図は
該マイクロコンピュータ9での制御回路を示すもので、
aはマイクロコンビj、−り9本体で、bの映像表示装
置、pのプリンタ、Cの磁気テープ記録装置が接続され
、拡張Jl] インターフェース(を介して回路用イン
ターフェースfと接続される。該インターフェースfに
はステンビングモーク18.19.20の駆動回路dと
、減速モータ17、振動用モーフ16の駆動回路eと、
外部端子t1、t4への信号回路gと、異常整流変換さ
せるための回路を有する)−iトカブラjと、非常停止
ヌイノチSが接続されている。なお、該操作面での制御
に関しては、時限装置とマイクロスイッチ等の検出部拐
とを用いた従来公知の制御手段に置換えることも可能で
、本発明もマイクロコンピュータ9に限定されるもので
はないが、機構面を簡潔にできること、装置自体を小型
化できること、動作手順を任意に、かつ容易に変更でき
ることなど、マイクロコンピュータ9を使二つの異った
充填状態でのカサ密度を測定することができること。ま
た、演算機能によって両カサ密度の値から得られる試料
自体の圧縮性の度合や、これら両値の経緯から標準偏差
値がほぼ瞬時にめられること。そして、これら測定が人
手によ加えて、これら測定の操作制御と演算表示とをマ
イクロコンピュータ9によって行わせることにより、確
実な操作と機構自体の簡潔化が行え、装置の小型化と測
定の迅速化と測定者自身の個人誤差の発生防止等が計れ
、当該測定装置の適用範囲を拡大する上で顕著な効果が
得られる。
Then, the container 7 is lowered onto the mounting table 27'' by the same process as that for placing it on the weighing table 5al. The second step is the process of measuring the bulk density in a roughly packed state. In response to this, the deceleration motor 17 is operated while the sample in the container 7 is being supplied, and the cylindrical cam 30 causes the mounting table 27 to rise and fall an arbitrary predetermined number of times, so that the impact caused by the fall is applied to the container 7. In addition, the sample is compacted and packed into the container 7. After measuring the bulk density by compaction filling in the same manner as the measurement process described above, the sample in the container 7 is discarded at the sample discharge point by a force v1, and the sample remaining in the container 7 is Further, the container 7 is placed on the mounting table 27'' with the open portion facing downward, and the container 7 is removed by applying the same impact as when applying the impact means. In this way, the container 7 after sample removal is placed on the mounting table 27 in the normal direction and the series of steps is completed, but this measured value is a "consolidated light" award while the former is roughly filled during supply. Therefore, the former is called the loose bulk density, and the latter is called the hardened bulk density, and these values are calculated within the microcomputer 9. In addition, the microcomputer 9 not only calculates and displays these two bulk densities as separate bulk densities, but also calculates standard deviation values and various statistics obtained from the compressibility of the sample itself and changes in bulk density for each weighing amount from both wave calculation values. Values etc. are calculated and displayed. In this embodiment, the sample in the container 7 is compressed and packed by applying an impact to the container 7, but in another embodiment, the above-mentioned mounting table 27 is dropped from the top 11 by +f4 & vice versa. For example, the structure shown in FIG. 8 may be used, in which 70 is a deceleration motor, 74 is a pulley, 73 is a hanging line, and 75 is a holding arm that can be rotated to a predetermined position only when the sample is being suppressed. The gear 7G is provided on the holding arm 75 side, and the deceleration motor 71 is separately attached. Alternatively, as shown in FIG. 9, the sample in the container 7 may be directly pressed at a predetermined pressure to perform compaction filling using a general suppression mechanism using an air cylinder 80 or the like and fluid pressure. In addition, in this embodiment, the microcomputer 9 not only calculates and displays the weighed value, etc., but also operates each mechanical section of the device according to a manually programmed program. All operations are configured to be performed automatically or manually if necessary. FIG. 7 shows a control circuit in the microcomputer 9.
A is the main body of the Microcombi j,-ri9, to which the video display device b, the printer p, and the magnetic tape recording device C are connected, and is connected to the circuit interface f via the expansion Jl interface. The interface f includes a driving circuit d for the stevening morph 18, 19, and 20, a deceleration motor 17, a driving circuit e for the vibration morph 16,
A signal circuit g to external terminals t1 and t4, a toggle j which has a circuit for abnormal rectification and conversion, and an emergency stop unit S are connected. Regarding the control in terms of operation, it is also possible to replace it with a conventionally known control means using a timer and a detection part such as a microswitch, and the present invention is not limited to the microcomputer 9. However, it is possible to use the microcomputer 9 to measure the bulk density in two different filling states, as the mechanism can be simplified, the device itself can be made smaller, and the operating procedure can be changed arbitrarily and easily. What you can do. In addition, the standard deviation value can be determined almost instantly from the degree of compressibility of the sample itself obtained from the values of both bulk densities using the calculation function, and the history of these two values. In addition to these measurements being performed manually, by having the microcomputer 9 perform the operation control and calculation display of these measurements, reliable operation and the simplification of the mechanism itself can be achieved, the device can be made smaller, and measurements can be made more quickly. It is possible to prevent the occurrence of individual errors and individual errors of the measuring person, and a remarkable effect can be obtained in expanding the scope of application of the measuring device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来装置を示し、第3図は本発明の
一実施例の平面図、第4図は第3図A −A断面視図、
第5図は第3図B−B断面視図、第6図は容器7の拡大
断面図、第7図はマイクロコンピュータ9での制御回路
図、第8図、第9図は他の実施例を示す。 図において、1・・・・・本体台、4−・旋回アーム、
5・・・・電子天秤、5a・・・、秤量台、7・・容器
、9・・・・・・マイクロコンピュータ、15・ 近接
スイッチ、16・・・・振動用モータ、17 ・・減速
モータ、18.19.20・・・ヌテソピングモータ、
23・・・振動板、24・・・・・フルレイ、27 ・
載置台、30・・・、円筒カム、34・・・・かき取り
刃、36・・・・・アーム軸、37 ・・・ボルダ、3
8・・・・昇降台である。 以 」二 出願人 株式会社 細用粉体工学研究所第3図 第6図
1 and 2 show a conventional device, FIG. 3 is a plan view of an embodiment of the present invention, FIG. 4 is a sectional view taken along line A-A in FIG.
5 is a sectional view taken along the line B-B in FIG. 3, FIG. 6 is an enlarged sectional view of the container 7, FIG. 7 is a control circuit diagram of the microcomputer 9, and FIGS. 8 and 9 are other embodiments. shows. In the figure, 1--main body stand, 4--swivel arm,
5... Electronic balance, 5a... Weighing stand, 7... Container, 9... Microcomputer, 15... Proximity switch, 16... Vibration motor, 17... Deceleration motor , 18.19.20... Nutesoping motor,
23...Diaphragm, 24...Full Ray, 27.
Placement table, 30... Cylindrical cam, 34... Scraping blade, 36... Arm shaft, 37... Boulder, 3
8... It is a lifting platform. 2 Applicant: Fine Powder Engineering Research Institute, Ltd. Figure 3 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 試料を収容する容器と、該容器内に試゛料を粗充填させ
る手段と、該容器容積外の余剰試料を排除し容器内試料
の重量を秤量する手段とに対し、容器内の試料に対し直
接又は間接的に所定の外力を加えて該試料を容器内に圧
密充填させる手段と、該圧密充填後の容器容積外に堆積
する余剰試料を排除し容器内試料の重量を秤量する手段
とを加え、これら両秤量値と容器内容積との商でもって
当該試料の両カサ密度を演算表示させる手段と、前記秤
量済み試料を容器内より排出させる手段と、これら一連
の手段を順次作動させるようにした制御手段とよりなる
ことを特徴とする粉粒体カサ密度の測定装置。
A container for storing a sample, a means for roughly filling the sample into the container, and a means for removing an excess sample outside the volume of the container and weighing the sample in the container. A means for compressively filling the sample into a container by directly or indirectly applying a predetermined external force, and a means for removing surplus sample deposited outside the volume of the container after the compaction filling and weighing the sample inside the container. In addition, means for calculating and displaying the bulk densities of the sample using the quotient of these weighed values and the internal volume of the container, and means for discharging the weighed sample from inside the container, and a series of these means are operated in sequence. A device for measuring the bulk density of powder or granular material, characterized in that it comprises a control means according to the following.
JP13159283A 1983-07-18 1983-07-18 Apparatus for measuring apparent density of powdery granule Pending JPS6022644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13159283A JPS6022644A (en) 1983-07-18 1983-07-18 Apparatus for measuring apparent density of powdery granule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13159283A JPS6022644A (en) 1983-07-18 1983-07-18 Apparatus for measuring apparent density of powdery granule

Publications (1)

Publication Number Publication Date
JPS6022644A true JPS6022644A (en) 1985-02-05

Family

ID=15061653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13159283A Pending JPS6022644A (en) 1983-07-18 1983-07-18 Apparatus for measuring apparent density of powdery granule

Country Status (1)

Country Link
JP (1) JPS6022644A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2494371C1 (en) * 2012-03-12 2013-09-27 Российская Федерация, от имени которой выступает Госкорпорация "Росатом" Monitoring device of bulk density and flow properties of loose materials
CN107860684A (en) * 2017-09-29 2018-03-30 江苏理士电池有限公司 A kind of automatic stocky device for surveying apparent density of lead plaster easy to disassemble

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922187A (en) * 1972-06-16 1974-02-27
JPS5770429A (en) * 1980-10-21 1982-04-30 Hosokawa Funtai Kogaku Kenkyusho:Kk Device for measuring bulk density of pulverulent body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922187A (en) * 1972-06-16 1974-02-27
JPS5770429A (en) * 1980-10-21 1982-04-30 Hosokawa Funtai Kogaku Kenkyusho:Kk Device for measuring bulk density of pulverulent body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2494371C1 (en) * 2012-03-12 2013-09-27 Российская Федерация, от имени которой выступает Госкорпорация "Росатом" Monitoring device of bulk density and flow properties of loose materials
CN107860684A (en) * 2017-09-29 2018-03-30 江苏理士电池有限公司 A kind of automatic stocky device for surveying apparent density of lead plaster easy to disassemble
CN107860684B (en) * 2017-09-29 2020-08-04 江苏理士电池有限公司 Device convenient to dismantle automatic real apparent density of surveying of lead plaster

Similar Documents

Publication Publication Date Title
US5760293A (en) Method and apparatus for measuring envelope and bulk densities
US4181023A (en) Apparatus for short-duration tests for determining the flowability of powders
AU666145B2 (en) Improved flow-no-flow tester
US3665768A (en) Device of measuring fluid characteristic of powdered or granular materials
JPS6022644A (en) Apparatus for measuring apparent density of powdery granule
US3566260A (en) Method and apparatus for measuring the moisture content of a particulate material including material flow control
JP4905895B2 (en) Apparatus and method for measuring apparent density of porous parts
US4320657A (en) Particulate flowmeter
JP2021039034A (en) Automated register for granule
US20040057335A1 (en) Method and apparatus for determining liquid absorption of aggregate
JP4368738B2 (en) Device for measuring apparent specific gravity of powder
CN2148961Y (en) Analyzer for powder basic physical properties
US3416376A (en) Surface area measurement of variable length sample of finely divided solids
US20040112651A1 (en) Head and a process for filling containers with powder material
JPH08151016A (en) Powder-weighing apparatus
US5467659A (en) Powder tester
CN218271827U (en) Powder bulk density measuring instrument
JPH1016901A (en) Method for scraping out powdered medicine of powdered medicine portion packaging equipment
US923560A (en) Apparatus for determining density.
JP2006282188A (en) Apparatus and system for powder subdivision-packing
JPH0391472A (en) Method and apparatus for determining quantity of tobacco to be filled
CN219757999U (en) Quick detection device of sample bulk density
CN219870853U (en) Silica flour surface density testing arrangement
JP2002177762A (en) Device for discharging granular body quantitatively
CN221883373U (en) Carbon black pouring density measuring device