JPS60225745A - Synthetic resin composite tube for protecting tube - Google Patents

Synthetic resin composite tube for protecting tube

Info

Publication number
JPS60225745A
JPS60225745A JP59081078A JP8107884A JPS60225745A JP S60225745 A JPS60225745 A JP S60225745A JP 59081078 A JP59081078 A JP 59081078A JP 8107884 A JP8107884 A JP 8107884A JP S60225745 A JPS60225745 A JP S60225745A
Authority
JP
Japan
Prior art keywords
tube
resin
pipe
screw
extrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59081078A
Other languages
Japanese (ja)
Inventor
義明 福田
宮坂 猛
松本 偉生利
宣勝 加藤
賢治 江間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP59081078A priority Critical patent/JPS60225745A/en
Publication of JPS60225745A publication Critical patent/JPS60225745A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は保護管用合成樹脂複合管に関するものである。[Detailed description of the invention] The present invention relates to a synthetic resin composite tube for a protective tube.

従来技術: 現在、住宅、ビル、工場等の電気配線、コンピューター
、オフィスオートメーション関係機器の電気配線、化学
工場等の流体移送用配管等の保護管としては、金属管や
熱可塑性樹脂管が用いられている。
Conventional technology: Currently, metal pipes and thermoplastic resin pipes are used as protection pipes for electrical wiring in houses, buildings, factories, etc., electrical wiring for computers and office automation-related equipment, and fluid transfer piping in chemical plants, etc. ing.

これらの保護管は、配線および配管をまとめると同時に
外部からの引張り、衝撃などの物理的な力や腐蝕性雰囲
気、水、薬品などの化学的な侵蝕を防ぐためには有効で
あるが、耐熱および耐炎性の点では問題が残っている。
These protective tubes are effective for organizing wiring and piping and at the same time preventing physical forces such as external tension and impact, corrosive atmosphere, and chemical attack such as water and chemicals. Problems remain in terms of flame resistance.

金属管自体は耐熱および耐炎性にすぐれているものの、
断熱性に乏しく、また火災の場合は高熱を容易に伝達し
、内部の記報および配管を破壊したり、周辺への火災蔓
延の原因となる恐れを有している。また、熱可塑性樹脂
管は耐熱性、耐炎性に劣ることは周知のことである。
Although the metal tube itself has excellent heat and flame resistance,
They have poor insulation properties, and in the event of a fire, high heat can easily be transmitted, leading to the risk of destroying internal logs and piping, or causing the fire to spread to the surrounding area. Furthermore, it is well known that thermoplastic resin pipes have poor heat resistance and flame resistance.

そこで耐熱性、耐炎性、耐腐蝕性及び断熱性等に富む熱
硬化性樹脂管をこの用途に利用することが考えられるが
、従来の成形法では高価なものとなり、物性的にも問題
があるため、この用途には実用化されていない。
Therefore, it is possible to use thermosetting resin pipes that have high heat resistance, flame resistance, corrosion resistance, and heat insulation properties for this purpose, but conventional molding methods are expensive and have physical problems. Therefore, it has not been put into practical use for this purpose.

即ち、熱硬化性樹脂の長尺管は、プランジャー押出成形
法により成形されているのが一般的であるが、この成形
法においては金型部における押出圧力が高く、しかも間
欠押出であるため、均一な成形品を得ることが困難であ
り生埋性も低い。
In other words, long thermosetting resin tubes are generally molded by plunger extrusion, but this molding method requires high extrusion pressure in the mold section and is intermittent extrusion. , it is difficult to obtain uniform molded products, and the buryability is low.

か\る事情からダイスとスクリュー型押出機を用いる成
形法も開発されているが、この方法に於ては樹脂の滞留
が起りやすく、局部的に硬化反応が進行したり、僅かな
圧力や温度の変化で硬化反応が急激に起るなどの問題を
引き起し、連続して安定な成形を行なうことが困難であ
る。
For this reason, a molding method using a die and a screw extruder has been developed, but this method tends to cause resin to stagnate, cause the curing reaction to proceed locally, and when the pressure or temperature is too small. This causes problems such as rapid curing reactions due to changes in the temperature, making it difficult to perform continuous and stable molding.

しかも、プランジャー押出法、およびダイスとスクリュ
ー押出機を用いる押出法のいずれに於ても従来の成形法
では管の円周方向の強度が低いものしか得られず、その
結果内外圧に対して弱(、例えば僅かな衝撃により管の
゛伯方向に割れを生じやす(実用上問題であった。これ
は従来の押出法ち管の軸方向に配向するためと考えられ
る。
Moreover, in both the plunger extrusion method and the extrusion method using a die and screw extruder, conventional forming methods can only provide pipes with low strength in the circumferential direction, and as a result, Weak (for example, a slight impact easily causes cracks in the axial direction of the tube (a practical problem). This is thought to be due to the conventional extrusion method, which is oriented in the axial direction of the tube.

即ち、従来の押出成形方法に於いては、溶融した樹脂が
金型内の流路に沿って移動する間に賦形、硬化が行なわ
れるが、その間の樹脂の移動方向は押出方向すなわち管
の軸方向のみであるために、樹脂や充填物などがその方
向へ配向するためと考えられる。
In other words, in conventional extrusion molding methods, molten resin is shaped and hardened while moving along the flow path in the mold, but the direction of movement of the resin during that time is in the extrusion direction, that is, the direction of the tube. This is thought to be because the resin, filler, etc. are oriented in that direction since it is only in the axial direction.

本発明者らは、これらの欠点を解決し、耐熱性、耐炎性
、耐腐蝕性を有し、軽量かつ安価な保護管を提供すべ(
種々検討を行なった結果、樹脂及びまたは充填物が不規
則に配向した押出成形された熱硬化性樹脂管が、管軸方
向および管軸に対して直角な方向の圧縮強度のバランス
が良く、その結果内外圧に対−して強(且つ衝撃に対し
ても縦割れしにくい性質を有することを見出し更にこの
熱硬化性樹脂管の表面を熱可塑性樹脂で被覆することに
より、耐熱性、耐炎性、耐衝撃性等に優れ、保護管とし
て好適な複合管が得られることを見出した。更に先端部
に平滑部を有するスフIJ、−を使用し、平滑部に於て
押出後自己形状を保持できる程度にまで賦形した熱硬化
性樹脂管に熱可塑性樹脂を被覆することにより目的の合
成樹脂複合管が得られることを見出し、本発明に到達し
た。
The present inventors aimed to solve these shortcomings and provide a protective tube that is heat resistant, flame resistant, corrosion resistant, lightweight, and inexpensive.
As a result of various studies, we found that an extruded thermosetting resin tube in which the resin and/or filler is irregularly oriented has a good balance of compressive strength in the tube axis direction and in the direction perpendicular to the tube axis. As a result, we discovered that the thermosetting resin tube has properties that are strong against internal and external pressure (and resistant to vertical cracking against impact).Furthermore, by coating the surface of this thermosetting resin tube with thermoplastic resin, we have achieved heat resistance and flame resistance. It was discovered that a composite tube with excellent impact resistance etc. and suitable as a protective tube could be obtained.Furthermore, by using Sufu IJ, which has a smooth part at the tip, it retained its own shape after extrusion in the smooth part. The inventors have discovered that the desired synthetic resin composite tube can be obtained by coating a thermosetting resin tube that has been shaped to the extent possible with a thermoplastic resin, and have arrived at the present invention.

発明の構成: 即ち、本発明は、樹脂および又は充填物が不規則な方向
へ配向して成ることを特徴とする押出成形された熱硬化
性樹脂管の表面に熱可塑性樹脂を被曖してなる保護管用
合成樹脂複合管であり、複合管の内層を形成する熱硬化
性樹脂管は、管軸に対し直角方向の圧縮強度と管軸方向
の圧縮強度の比が0.4〜1.5であることを特徴とす
る。
Components of the Invention: That is, the present invention provides a thermosetting resin tube in which a thermoplastic resin is coated on the surface of an extruded thermosetting resin tube characterized in that the resin and/or the filler are oriented in irregular directions. The thermosetting resin tube forming the inner layer of the composite tube has a ratio of compressive strength in the direction perpendicular to the tube axis to compressive strength in the tube axis direction of 0.4 to 1.5. It is characterized by

本発明の複合管は、スクリ、−を内臓する押出成形機を
使用しその先端部において押出後自己形状を保持できる
程度に迄賦形硬化させて得られる熱硬化性樹脂管の表面
に熱可塑性樹脂を被覆して得られるものであり、例えば
特願昭58−218645に記載された方法により製造
される。
The composite tube of the present invention is obtained by forming and hardening the thermosetting resin tube to the extent that it can maintain its own shape after extrusion at the tip using an extrusion molding machine with a built-in screen. It is obtained by coating with resin, and is manufactured, for example, by the method described in Japanese Patent Application No. 58-218645.

すなわち、先端部に平滑部を有するスクリ一を使用し、
平滑部に於て熱硬化性樹脂を自己形状を保持できる程度
にまで賦形し、その表面に熱可塑性樹脂を被覆する方法
であり、その具体的方法としては先端部に平滑部を有す
るスクリューを使用して平滑部に於いて自己形状を保持
できる程度にまで熱硬化性樹脂を賦形しその熱硬化性樹
脂が賦形される帯域に熱可塑性樹脂を圧入被覆して押し
出す第1の方法または同様に平滑部に於いて自己形状を
保持できる程度にまで熱硬化性樹脂を賦形して押出し、
引きつづき他の押出機の金型内へ導入して熱可塑性樹脂
を被覆する第2の方法が採用できろ。
That is, using a screen with a smooth part at the tip,
This is a method in which thermosetting resin is shaped to the extent that it can maintain its own shape in the smooth part, and the surface is coated with thermoplastic resin. A first method in which the thermosetting resin is shaped to the extent that it can maintain its own shape in the smooth part, and the zone where the thermosetting resin is shaped is press-fitted and coated with thermoplastic resin, and then extruded. Similarly, thermosetting resin is shaped and extruded to the extent that it can maintain its own shape in the smooth part,
A second method may be adopted in which the resin is subsequently introduced into the mold of another extruder and coated with a thermoplastic resin.

本発明の複合管の内層を形成する熱硬化性樹脂管は例え
ば特願昭58−51526に記載した方法により製造さ
れるが、この製造法の特徴は先端部に平滑部を有するス
クリューを使用し平滑部に於て押出後自己形状を保持で
きる程度にまで賦形硬化させることにあり、この方法に
より従来押出成形が困難であった熱硬化性樹脂管を生産
性良く安価に製造することが出来る。
The thermosetting resin tube that forms the inner layer of the composite tube of the present invention is manufactured, for example, by the method described in Japanese Patent Application No. 58-51526, and the feature of this manufacturing method is that it uses a screw having a smooth portion at the tip. The purpose is to shape and harden the smooth part to the extent that it can maintain its own shape after extrusion, and by this method it is possible to manufacture thermosetting resin pipes, which were conventionally difficult to extrude, with good productivity and at low cost. .

すなわち、押出機内に投入された熱砕化性樹脂材料は、
スクIJ、−供給部および圧縮部を経るうちに加熱溶融
され、計量部を経て計量部のフライト先端部よりラセン
状で平滑部に移行し、そこでシリンダー内壁との摩擦抵
抗により、スクリ一フライトによって生ずる間隙部分が
狭められ、ついには圧融着される。ついで樹脂は平滑部
を移行する間に硬化賦形されてシリンダー先端より連続
した管となって押出される。この間樹脂は、供給部から
計量部に至る間はスクリュー溝に犬むね沿った方向のせ
ん断を受けながら移動するため、樹脂自体や充填物は管
の押出方向に対し特に定まった方向へは配向することな
く不規則な方向へ配向し平滑部へ移行した後、硬化が進
むために結果として樹脂自体や充填物は管の軸方向と円
周方向にバランス良く配向され得られる管の軸方向及び
管軸に直角な方向における圧縮強度のバランスが良くな
るものと考えられる。
In other words, the pyroclastic resin material introduced into the extruder is
Screw IJ - is heated and melted while passing through the supply section and compression section, passes through the metering section, moves from the tip of the flight of the metering section to a smooth part in a helical shape, and there, due to frictional resistance with the inner wall of the cylinder, it is melted by the screw flight. The resulting gap is narrowed and finally pressure fused. The resin is then hardened and shaped while traveling through the smooth section, and is extruded from the tip of the cylinder into a continuous tube. During this time, the resin moves while being subjected to shear in the direction along the screw groove from the supply section to the metering section, so the resin itself and the filler are oriented in a particular direction with respect to the extrusion direction of the tube. After the resin is oriented in an irregular direction and transferred to a smooth part, the resin itself and the filler are oriented in a well-balanced manner in the axial direction and circumferential direction of the tube as the curing progresses. It is thought that the balance of compressive strength in the direction perpendicular to the axis is improved.

本発明の管の樹脂や充填物の配向け、例えば電子顕微鏡
によって観察することができる。
The orientation of the resin and filling of the tubes of the invention can be observed, for example, by electron microscopy.

第1図は従来の押出成形方法(プランジャ一式)により
押出成形されたフェノール樹脂管の押出方向における断
面の電子顕微鏡写真であり、第2図は同じ(押出方向と
直角な方向における電子顕微鏡写真であり、第6図およ
び第4図は本発明の熱硬化性樹脂管の一つであるフェノ
ール樹脂管の夫々の断面の電子顕微鏡写真である。
Figure 1 is an electron micrograph of a cross section in the extrusion direction of a phenolic resin tube extruded by a conventional extrusion method (a set of plungers), and Figure 2 is the same (electron micrograph in a direction perpendicular to the extrusion direction). 6 and 4 are electron micrographs of respective cross sections of a phenolic resin pipe, which is one of the thermosetting resin pipes of the present invention.

第1図および第2図に於てはガラス繊維が管軸方向に配
向していることが明白であるのに対し、第3図および第
4図では繊維は特に一定の方向には配向しておらず、不
規則に配向していることがわかる。
In Figures 1 and 2 it is clear that the glass fibers are oriented in the direction of the tube axis, whereas in Figures 3 and 4 the fibers are not particularly oriented in a fixed direction. It can be seen that the particles are irregularly oriented.

後述の第1表には管軸に対し直角方向の圧縮強度(Aと
管軸方向の圧縮強度(B)及びA/Bの比並びに水圧試
験結果を示したが、この表からも判るとおり、従来法に
よる管はA/Bの比が037と小さく、縦割れを生じや
すいのに比べ、本発明の管はA/Bの比が04〜15と
大きく縦割れを生ずることな(内圧に対しても強いこと
がわかる。
Table 1 below shows the compressive strength in the direction perpendicular to the tube axis (A, the compressive strength in the tube axis direction (B), the ratio of A/B, and the results of the water pressure test. As can be seen from this table, Compared to the pipe made by the conventional method, which has a small A/B ratio of 037 and is prone to vertical cracking, the pipe of the present invention has a large A/B ratio of 04 to 15, and does not cause vertical cracking (it is easy to You can see that it is strong.

本発明に於て言う管軸方向の圧縮強さとは、 JIS−
に−6911の5.19.5項による試験(圧縮強度試
験)を行ない、管が破壊(亀裂が入った場合も含む)し
た時の強さを表わし管軸に対し直角方向の圧縮強さとは
JIS−に−6741の5.6項による試験(へん平試
験)を行なって管が破壊した時の強さを表わすものであ
る。
In the present invention, the compressive strength in the tube axis direction is defined by JIS-
The test (compressive strength test) according to Section 5.19.5 of -6911 is performed, and the strength when the pipe is broken (including when cracks occur) is expressed. What is the compressive strength in the direction perpendicular to the pipe axis? This indicates the strength when the pipe breaks when tested according to JIS-6741, Section 5.6 (flattening test).

本発明の熱硬化性樹脂管に於て、上記した方法による管
軸に対し直角な方向の圧縮強度と、管軸方向の圧縮強度
の比は、一般に0.4〜1.5好ましくは0.5〜1.
5の範囲のものである。この比が0.4以下であると衝
撃を受けたり、高い内外圧に接した場合に縦割れを起し
やす(、亀裂が管軸方向に長い距離にわたって及ぶこと
になる。又この比が1.5以上の場合は管軸に直角な方
向に対して強度が弱くなり管が折れやす(なる。
In the thermosetting resin tube of the present invention, the ratio of the compressive strength in the direction perpendicular to the tube axis and the compressive strength in the tube axis direction obtained by the above method is generally 0.4 to 1.5, preferably 0.4 to 1.5. 5-1.
It is in the range of 5. If this ratio is less than 0.4, vertical cracks are likely to occur when subjected to impact or when exposed to high internal and external pressure (the cracks will extend over a long distance in the tube axis direction. Also, if this ratio is 1 If it is .5 or more, the strength becomes weaker in the direction perpendicular to the tube axis and the tube becomes more likely to break.

このようにして得られた熱硬化性樹脂管は、耐熱性に優
れると共に重油、ガソリン、灯油等の油類、7A/コー
ル、ケトン、エステル類、芳香族炭化水素等の有機溶剤
、酸、アルカリなどに対して耐性を有するのみならず、
成形材料として特にフェノール樹脂、メラミン樹脂、キ
シレン樹脂等を使用することにより、火炎にさらされて
も延焼しない、ドロッピングを起さない、原形をはy維
持する、有毒ガスを発生しない等の優れた耐炎特性を有
し、更に樹脂及びまたは充填物が管の押出方向と円周方
向にバランス良(配向しているために管の押出方向及び
それに直角な方向の強度のバランスが良(、結果として
耐圧性に優れたものとなる。
The thermosetting resin pipe thus obtained has excellent heat resistance and can be used with oils such as heavy oil, gasoline, and kerosene, organic solvents such as 7A/coal, ketones, esters, and aromatic hydrocarbons, acids, and alkalis. Not only is it resistant to
By using phenol resin, melamine resin, xylene resin, etc. as the molding material, it has excellent properties such as not spreading when exposed to flame, not causing dropping, maintaining its original shape, and not emitting toxic gas. It has flame resistance properties, and because the resin and/or filler is oriented in the extrusion direction of the tube and in the circumferential direction, the strength is well balanced in the extrusion direction of the tube and in the direction perpendicular to it. It has excellent pressure resistance.

本発明に使用される熱硬化性樹脂としては、フェノール
樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹
脂、エポキシ樹脂、シリコン樹脂、アリル(■脂、キシ
レン樹脂、アニリン樹脂等が挙げられる。なかでもフェ
ノール樹脂、メラミン樹脂および尿素樹脂の利用が好適
である。
Thermosetting resins used in the present invention include phenolic resins, melamine resins, urea resins, unsaturated polyester resins, epoxy resins, silicone resins, allyl resins, xylene resins, aniline resins, etc. Among them, Preference is given to using phenolic resins, melamine resins and urea resins.

本発明に用いられる熱硬化性樹脂には必要に応じて熱硬
化性樹脂の成形に於いて一般に用いられる充填剤、離型
剤、増粘剤、着色剤、分散剤、発泡剤あるいはまた重合
開始剤、硬化促進剤、重合Jヒ 禁大剤などを添加することができる。
The thermosetting resin used in the present invention may contain fillers, mold release agents, thickeners, colorants, dispersants, blowing agents, or polymerization initiators commonly used in the molding of thermosetting resins, as necessary. A curing agent, a curing accelerator, a polymerization inhibitor, and the like can be added.

本発明においては更に成形物の強度向上、特に圧縮強度
等の向上を目的として有機または無機の繊維状物、例え
ば木粉、木綿、ナイロン繊維、ビニロン繊維、硝子繊維
、カーボン繊維、金属繊維等を例えば上記した充填剤と
の総量として20〜80重量%の様な高い量的範囲で添
加することもできる。
In the present invention, organic or inorganic fibrous substances such as wood flour, cotton, nylon fiber, vinylon fiber, glass fiber, carbon fiber, metal fiber, etc. For example, it can be added in a high quantitative range, such as 20 to 80% by weight as a total amount with the above-mentioned fillers.

本発明に用いられる熱可塑性樹脂としては、例えばポリ
エチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチ
レン、ポリカーホ゛ネート、アクリロニトリル−ブタジ
ェン−スチレン共重合体、ポリメチルアクリレート、ポ
リエチレンテレフタレートなどが挙げられる。これらの
熱可塑性樹脂には必要に応じて安定剤、充填剤、加工助
剤、酸化防止剤、強化剤、着色剤、滑剤などの熱可塑性
樹脂の成形に於いて一般的に用いられる添加剤を添加す
ることができる。
Examples of the thermoplastic resin used in the present invention include polyethylene, polypropylene, polyvinyl chloride, polystyrene, polycarbonate, acrylonitrile-butadiene-styrene copolymer, polymethyl acrylate, and polyethylene terephthalate. Additives commonly used in the molding of thermoplastic resins, such as stabilizers, fillers, processing aids, antioxidants, reinforcing agents, colorants, and lubricants, may be added to these thermoplastic resins as necessary. Can be added.

上述した方法により成形された熱硬化性樹脂管は前記し
た第1の方法または第2の方法により熱可塑性樹脂で被
覆され複合管が得られる。
The thermosetting resin pipe molded by the above-described method is coated with a thermoplastic resin by the above-described first method or second method to obtain a composite pipe.

このようにして得られた複合管は内層が耐熱性、耐炎性
、耐腐蝕性等に優れた熱硬化性樹脂、外層が耐衝撃性に
優れた熱可塑性樹脂から成るため、耐熱性、難燃性、耐
衝撃性共に優れたものとなり、保護管として好適である
The composite tube thus obtained has an inner layer made of a thermosetting resin with excellent heat resistance, flame resistance, and corrosion resistance, and an outer layer made of a thermoplastic resin with excellent impact resistance. It has excellent durability and impact resistance, making it suitable as a protective tube.

産業上の利用分野: 本発明の複合管の用途を具体的に説明すれば、住宅やビ
ル、工場などの屋内、屋外の一般電気配線用保護管、コ
ンピューターやオフィスオートメーション関係・機器の
電気配線、光フアイバー用保護管等に用いることができ
る。
Industrial Application Fields: Specifically, the composite pipe of the present invention can be used as a protection pipe for general electrical wiring indoors or outdoors in houses, buildings, factories, etc., electrical wiring for computers and office automation related/equipment, It can be used for optical fiber protection tubes, etc.

本発明の保護管をこれらの用途に用いることにより、高
温や水、湿気、衝撃等から電線や光ファイバー等を保護
するだけでなく、万一火災が発生した場合にも、その耐
炎性により、火災による損傷を防ぎ、又熱伝導率が金属
管に比べ非常に小さいため、管内が高温になって電線等
が焼き切れるまでに相当の時間を要するため、その間に
適切な処置を取ることが出来る。
By using the protective tube of the present invention in these applications, it not only protects electric wires, optical fibers, etc. from high temperatures, water, moisture, shock, etc., but also protects electric wires, optical fibers, etc. from high temperatures, water, moisture, shock, etc., and even in the event of a fire, its flame resistance will prevent the fire from occurring. In addition, since the thermal conductivity is much lower than that of metal pipes, it takes a considerable amount of time for the inside of the pipe to reach high temperatures and burn out the electric wires, so appropriate measures can be taken during that time.

また本発明の保護管は、耐腐蝕性、耐薬品性に優れるた
め、化学プラントや一般工場の気体や液状物質の移送用
配管の保護管としても使用できる。
Furthermore, since the protection tube of the present invention has excellent corrosion resistance and chemical resistance, it can also be used as a protection tube for pipes for transferring gases and liquid substances in chemical plants and general factories.

以下、参考例及び製造例により更に本発明を説明する。The present invention will be further explained below using reference examples and production examples.

参考例1 0径60龍、L/D=22の押出機によりスクリュー底
部の径が26m5の計量部に続く先端部に径が26羽長
さが105mJR(3,5D)の平滑部を有する圧縮比
力2.0 ノスク!J x−を用い、成形材料としてフ
ェノール樹脂(日本オイルシール■製、商品名ロジャー
スRX−6684)を使用してパイプを連続的に押出成
形した。
Reference Example 1 Compression using an extruder with a diameter of 60mm and L/D=22, which has a smooth part with a diameter of 26 blades and a length of 105mJR (3,5D) at the tip of the screw following the measuring part with a diameter of 26m5 at the bottom of the screw. Specific force 2.0 Nosk! A pipe was continuously extruded using a phenol resin (manufactured by Nippon Oil Seal ■, trade name: Rogers RX-6684) as a molding material.

シリンダー各部の温度は、C+(0〜2D)−水冷、C
2(3D〜10D ) = 80’C1Ca(11D〜
18D)=1[10℃、C4(19D〜22D)= 1
20’GK設定シ、スクリュー回転数35rpmの条件
で押出成形を行なって、外径30助肉厚2.0maのパ
イプを得た。
The temperature of each part of the cylinder is C + (0 to 2D) - water cooling, C
2(3D~10D) = 80'C1Ca(11D~
18D)=1[10℃, C4(19D~22D)=1
Extrusion molding was carried out under the conditions of 20'GK setting and screw rotation speed of 35 rpm to obtain a pipe with an outer diameter of 30 mm and a wall thickness of 2.0 mm.

参考例2 参考例1と同じ押出装置により、成形材料としてフェノ
ール樹脂(日本合成化工■製、商品名二ツカライ)95
0−J)を使用して、パイプを押出成形した。
Reference Example 2 Using the same extrusion device as Reference Example 1, phenol resin (manufactured by Nippon Gosei Kako ■, trade name Futtsukarai) 95 was used as a molding material.
0-J) was used to extrude the pipe.

シリンダー各部の温度は、ci−水冷、C2=80℃、
Cs= 110°C,C4= 120’CK設定し、ス
クリュー回転数33−5rpの条件で成形を行ない外径
3o藺、肉厚20朋のパイプを得た。
The temperature of each part of the cylinder is ci-water cooling, C2=80℃,
Molding was carried out under the conditions of Cs = 110°C, C4 = 120'CK, and screw rotation speed of 33-5 rpm to obtain a pipe with an outer diameter of 3° and a wall thickness of 20°.

参考例3 参考例1と同じ押出装置を使用し、成形材料とシテフェ
ノール樹脂(住友ベークライト■製、商品名PM−79
5J)を用いてパイプを押出成形した。
Reference Example 3 Using the same extrusion device as Reference Example 1, molding material and shitephenol resin (manufactured by Sumitomo Bakelite ■, product name PM-79) were used.
5J) was used to extrude the pipe.

シリンダー各部の温度はcl−水冷、C2=8[1’C
1C5=105°C,C4= 120℃に設定し、スク
リュー回転数35rpmの条件で成形を行ない、外径3
0m5、肉厚20藺のパイプを得た。
The temperature of each part of the cylinder is Cl - water cooling, C2 = 8[1'C
1C5 = 105°C, C4 = 120°C, molding was performed under the conditions of screw rotation speed 35 rpm, outer diameter 3
A pipe with a diameter of 0 m5 and a wall thickness of 20 m was obtained.

参考例4 0径40羽、L/D=24の押出機により、スクリュー
底部の径が65龍、長3Dの計量部に続いて径35m票
長さ3Dの平滑部を有するスフIJ、−を用い、成形材
料としてフェノール樹脂(住友ベークライト■製、商品
名PM−795J)を用いてパイプを押出成形した。シ
リンダー各部の温度は、C+(Q〜2D)−水冷、C2
(3〜10D)−60°C,C3(11〜16D)=8
0℃、C4(17〜20D)−110℃、(j(21〜
24D)−120℃に設定しスクリーー回転数25rp
mで外径40闘、肉厚25藺のパイプを得た。
Reference Example 4 Using an extruder with a diameter of 40 and L/D = 24, a screw IJ with a diameter of 65 mm at the bottom of the screw and a measuring section with a length of 3D followed by a smooth section with a diameter of 35 m and a length of 3D was produced. A pipe was extrusion-molded using a phenol resin (manufactured by Sumitomo Bakelite ■, trade name PM-795J) as a molding material. The temperature of each part of the cylinder is C+ (Q ~ 2D) - water cooling, C2
(3~10D)-60°C, C3(11~16D)=8
0℃, C4(17~20D)-110℃, (j(21~
24D) Set at -120℃, Scree rotation speed 25rp
I obtained a pipe with an outer diameter of 40 mm and a wall thickness of 25 mm.

参考例5 参考例1と同じ押出装置を使用し、成形材料としてメラ
ミン樹脂(オタライト■製、商品名0N−600)を用
いてパイプを連続的に押出成形した。
Reference Example 5 Using the same extrusion apparatus as in Reference Example 1, a pipe was continuously extruded using melamine resin (manufactured by Otalite ■, trade name 0N-600) as a molding material.

シリンダー各部の温度はC+=水冷、C2=85℃、C
n= 115°C,C4= 130℃に設定し、スクリ
ュー回転数35rpmの条件で成形を行ない、外径60
關、肉厚20藺のパイプを得た。
The temperature of each part of the cylinder is C+ = water cooling, C2 = 85℃, C
Setting n = 115°C, C4 = 130°C, molding was carried out under the conditions of screw rotation speed 35 rpm, outer diameter 60
Well, I got a pipe with a wall thickness of 20mm.

評価結果: 上記の製造例により得られたパイプの圧縮強度(管軸に
対し直角方向、管軸方向、及びこれらの比)及び水圧試
験の結果は第1素に示したとおりであった。
Evaluation results: The results of the compressive strength (direction perpendicular to the tube axis, the direction of the tube axis, and the ratio thereof) and the hydraulic pressure test of the pipe obtained in the above production example were as shown in the first element.

参考例6 参考例1と同じ押出装置を使用し、成形材料としてエポ
キシ樹脂(日本合成化工■製、商品名アクメライトJ−
1060F)を用いてパイプを押出成形した。
Reference Example 6 Using the same extrusion equipment as in Reference Example 1, epoxy resin (manufactured by Nippon Gosei Kako ■, trade name Acmelite J-) was used as the molding material.
1060F) was used to extrude the pipe.

シリンダー各部の温度はC+−水冷、C2=85°C1
C5= 115℃、C4−125℃に設定し、スクリュ
ー回転数35rpmの条件で成形を行ない、外径30U
、肉厚2.0藺のパイプを得た。
The temperature of each part of the cylinder is C+-water cooling, C2 = 85°C1
Molding was carried out at C5 = 115℃, C4 - 125℃, screw rotation speed 35rpm, outer diameter 30U.
A pipe with a wall thickness of 2.0 mm was obtained.

製造例1 ホッパー下より2Dの長さに水冷ジャケットを備え、続
いて3〜9D、10〜15D、16〜19Dの各部に熱
制御装置を有し、更に続いて先端より2Dの位置で熱可
塑性樹脂が肉厚15℃甥で供給されるようにした被覆装
置(長さ5D)を備えた口径40藺、L/D−24(被
覆装置部分を含む)のシリンダーを有する押出機(5)
、供給部3D、圧縮部12D及びスクリュー低部の径が
35關長さ4Dの計量部に続いて径65關長さ5Dの平
滑部を有する圧縮比1.8のスクリュー刊、及び圧縮比
25のスクリューを内装した口径60關L/D=22の
押出機(C1を用いて複合管を成形した。
Production Example 1 A water cooling jacket is provided at a length of 2D from the bottom of the hopper, followed by a thermal control device at each part of 3 to 9D, 10 to 15D, and 16 to 19D, and then a thermoplastic jacket is provided at a position of 2D from the tip. An extruder (5) having a cylinder with a diameter of 40 mm and L/D-24 (including the coating device part) equipped with a coating device (length 5D) that allows the resin to be supplied with a wall thickness of 15 ° C.
, a feeding section 3D, a compression section 12D, a metering section with a diameter of 35 mm and a length of 4 D at the bottom of the screw, followed by a smooth section with a diameter of 65 mm and a length of 5 D, and a screw with a compression ratio of 1.8, and a compression ratio of 25 mm. A composite tube was formed using an extruder (C1) with a diameter of 60 mm and L/D = 22 equipped with a screw.

スフIJ、−[F])を内装した押出機(3)の被覆装
置部に押出機(C1を連結し、成形材料として押出機(
イ)にフェノール樹脂(住友ベークライト■製、商品名
PM−795J)、押出機(qにポリ塩化ビニルコンパ
ウンド(三井東圧化学■製、商品名ビニクロンEREK
−1015)を投入し、押出機(5)はC1(0〜2D
)−水冷、C2(3〜9D)−80°CSC,+(10
〜15D)−95℃、C4(16〜19D)−110℃
、被覆装置部(20〜24D)−180°C、スクリー
ー回転数2.5rpm、押出機(C1は、C1(0〜2
D)=水冷、C2(3〜9D)−150°C1C5(1
0〜16D)=170℃、C4(17〜22D)= 1
75℃、アダプター−180°C、スクリュー回転数4
5rpmの条件で押−出を行ない、内層が径40m5肉
厚2.5ma+のフェノール樹脂、外層が径41.5m
a肉厚1.5msのポリ塩化ビニル樹脂からなる外径4
’L5ms肉厚4朋の複合管を得た。
An extruder (C1) is connected to the coating device section of an extruder (3) equipped with a Sufu IJ, -[F]), and the extruder (C1) is used as a molding material.
b) Phenol resin (manufactured by Sumitomo Bakelite ■, trade name PM-795J), extruder (q) polyvinyl chloride compound (manufactured by Mitsui Toatsu Chemical ■, trade name Vinicron EREK)
-1015), and the extruder (5)
) - water cooling, C2 (3~9D) -80° CSC, + (10
~15D) -95°C, C4 (16-19D) -110°C
, coating device part (20-24D) -180°C, screw rotation speed 2.5 rpm, extruder (C1 is C1 (0-2
D)=Water cooling, C2(3~9D)-150°C1C5(1
0~16D)=170℃, C4(17~22D)=1
75℃, adapter -180℃, screw rotation speed 4
Extrusion was carried out under the conditions of 5 rpm, and the inner layer was a phenolic resin with a diameter of 40 m5 and a wall thickness of 2.5 ma+, and the outer layer was a diameter of 41.5 m.
a Outer diameter 4 made of polyvinyl chloride resin with a wall thickness of 1.5 ms
A composite tube with a length of 5 ms and a wall thickness of 4 mm was obtained.

製造例2 ホッパー下より2Dの長さに水冷ジャケットを備え、続
いて3〜10D、11〜16D、17〜20D及び21
〜24Dの各部に熱制御装置を備えた口径40+1IJ
IL/D=24のシリンダーを有する押出機により、供
給部3D、圧縮部15D及びスクリュー底部の径がろ5
翳、長さろDの計量部に続いて径35闘長さ3Dの平滑
部を有するスフIJ 、−を用い、成形材料としてメラ
ミン−フェノール樹脂(松下電工■製、商品名ME−A
 )を使用してパイプを押出した。
Production Example 2 A water cooling jacket was provided at a length of 2D from the bottom of the hopper, followed by 3~10D, 11~16D, 17~20D and 21
~24D diameter 40+1IJ with heat control device in each part
By using an extruder with IL/D=24 cylinders, the diameter of the supply section 3D, compression section 15D and screw bottom is 5.
A melamine-phenol resin (manufactured by Matsushita Electric Works, trade name: ME-A) was used as a molding material.
) was used to extrude the pipe.

シリンダー各部の温度はC1(0〜2D)=水冷、C2
(6〜IDD)=60℃、Cs (11〜16D)=8
5℃、C4(17〜20D)−120℃、C5(21〜
24D)−130℃に設定しスクリーー回転数25rp
mで外径40m5肉厚2.5關のパイプを押出した。こ
のパイプをそのまま引きつgき圧縮比60のスクリュー
を内装した口径30m5L/ n= 22の押出機、に
装着されたクロスヘッドダイ内へ導入し、温度設定は、
C1−180℃、C2=210°C,C+=220℃、
グイ−220℃、スクリュー回転数62rpmの条件で
ポリプロピレン樹脂(三井東圧化学■製、商品名三片ノ
ーブレンBEB−US )を肉厚15藺で被覆して、内
層が外径40關肉厚2.5藺のメラミン−フェノール樹
脂、外層が外径415、、+1肉厚15闘のポリプロピ
レン樹脂より成る外径415關肉厚4mxの複合管を得
た。
The temperature of each part of the cylinder is C1 (0-2D) = water cooling, C2
(6~IDD)=60℃, Cs (11~16D)=8
5℃, C4 (17~20D) -120℃, C5 (21~
24D) Set at -130℃, Scree rotation speed 25rp
A pipe with an outer diameter of 40 m and a wall thickness of 2.5 m was extruded. This pipe was directly introduced into a crosshead die attached to an extruder with a diameter of 30m5L/n = 22 equipped with a screw with a compression ratio of 60, and the temperature was set as follows.
C1-180℃, C2=210℃, C+=220℃,
Under the conditions of -220℃ and screw rotation speed of 62 rpm, polypropylene resin (manufactured by Mitsui Toatsu Chemical ■, product name: Mikata Noblen BEB-US) is coated with a wall thickness of 15 mm, and the inner layer has an outer diameter of 40 mm and a wall thickness of 2 mm. A composite tube with an outer diameter of 415 m and a wall thickness of 4 m x was obtained, the outer layer being made of a polypropylene resin with an outer diameter of 415 m and a wall thickness of 15 mm.

比較例1 実施例2で使用した40朋押出機及びスクリューを使用
し、成形材料としてフェノール樹脂(住友ベークライト
■製、商品名PM−795J)を用いて押出成形を行な
った。シリンダー各部の温度はC1=水冷、C2−60
℃、Ca=80℃、C4= 110’C1C5−120
℃に設定し、スクリーー回転数25rpmで成形を行な
って外径40羽肉厚2.5Mのフェノールパイプを得た
Comparative Example 1 Using the 40 mm extruder and screw used in Example 2, extrusion molding was performed using a phenol resin (manufactured by Sumitomo Bakelite ■, trade name PM-795J) as a molding material. The temperature of each part of the cylinder is C1 = water cooling, C2-60
℃, Ca=80℃, C4=110'C1C5-120
℃, and molding was carried out at a scree rotation speed of 25 rpm to obtain phenol pipes with an outer diameter of 40 pieces and a wall thickness of 2.5M.

第2表に各実施例および比較例により得られた管の性能
測定結果を示した。
Table 2 shows the performance measurement results of the tubes obtained in each Example and Comparative Example.

これらの結果から、本発明の合成樹脂複合管は、耐熱性
、耐燃性、耐衝撃性に優れ保護管として好適であること
がわかる。
These results show that the synthetic resin composite tube of the present invention has excellent heat resistance, flame resistance, and impact resistance, and is suitable as a protection tube.

〔註〕1.T工業■製、商品名E(略称)〔註〕2、試
験方法はJISK6742に準じ、水圧を上げて行き管
が破壊した時の圧力を読み取る。
[Note] 1. Manufactured by T Kogyo ■, product name: E (abbreviation) [Note] 2. The test method is according to JISK6742, the water pressure is increased and the pressure at which the pipe breaks is read.

〔註〕6.長さ5mの管を試験液に浸漬し、下記の条件
で放置した後変化を観察した。
[Note] 6. A tube with a length of 5 m was immersed in the test liquid, and after being left under the following conditions, changes were observed.

熱水−100℃×24時間 他の試験液−常温×1週間Hot water -100℃ x 24 hours Other test solutions - room temperature x 1 week

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、従来の押出成形法により押出成
形されたフェノール樹脂管の管軸方向および管軸に直角
な方向における夫々の断面の充填された繊維の形状に関
する電子顕微鏡写真であり、第6図および第4図は本発
明の合成樹脂複合管の内層を形成するフェノール樹脂管
の夫々の電子顕微鏡写真である。 特許出願人 三井東圧化学株式会社 第 1 図 第 2 図 第 3 図 第 4 図 手続補正書 昭和59年8月24日 特許庁長官 志 賀 学 殿 1、事件の表示 昭和59年特許願第81.078 号 2、発明の名称 保護管用合成樹脂複合管 3、補正をする者 4、補正命令の日刊 昭和59年7月31日(発送日) 5、補正の対象 明細書の図面の簡単な説明の欄 (1)明細古筆2:3頁7行の1−夫々の」とあるを「
管軸方向および管軸に直角な方向1でおける夫々の断面
の充填された繊維状の形状に関する−1と訂正する。 特許出願人 三井東圧化学株式会社
Figures 1 and 2 are electron micrographs of the shape of the filled fibers in the cross section of a phenolic resin tube extruded by a conventional extrusion method, in the tube axis direction and in the direction perpendicular to the tube axis, respectively. , 6 and 4 are electron micrographs of phenolic resin tubes forming the inner layer of the synthetic resin composite tube of the present invention. Patent Applicant Mitsui Toatsu Chemical Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 4 Procedural Amendment August 24, 1980 Manabu Shiga, Commissioner of the Patent Office 1, Indication of Case Patent Application No. 81, 1982 .078 No. 2, Name of the invention Synthetic resin composite tube for protection tube 3, Person making the amendment 4, Daily publication of the amendment order July 31, 1982 (shipment date) 5. Brief explanation of the drawings of the specification subject to the amendment Column (1) Specification old handwriting 2: Page 3, line 7, 1 - Replaced "each" with "
-1 is corrected for the filled fibrous shape of each cross section in the tube axis direction and in the direction 1 perpendicular to the tube axis. Patent applicant Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】 1)樹脂及びまたは充填物が不規則な方四へ配向してな
る押出成形された熱硬化性樹脂管の表面に熱可塑性樹脂
を被覆してなる保護管用合成樹脂複合管。 2)内層を形成する熱硬化性樹脂管の管軸に対し直角方
向の圧縮強度と管軸方向の圧縮強度の比が0.4〜15
である特許請求の範囲第1項記載の保護管用合成樹脂複
合管。 3)先端部に平滑部を有するスクリューを使用し、平滑
部に於いて自己形状を保持できる程度にまで熱硬化性樹
脂を賦形し、その表面に熱可塑性樹脂を被覆してなる特
許請求の範囲第1項及び第2項記載の保護管用合成樹脂
複合管。
[Claims] 1) A synthetic resin composite tube for a protective tube, which is made by coating the surface of an extruded thermosetting resin tube with a resin and/or filler oriented in irregular directions with a thermoplastic resin. . 2) The ratio of the compressive strength in the direction perpendicular to the tube axis and the compressive strength in the tube axis direction of the thermosetting resin tube forming the inner layer is 0.4 to 15.
A synthetic resin composite tube for a protection tube according to claim 1. 3) A screw having a smooth portion at its tip is used, a thermosetting resin is shaped in the smooth portion to the extent that it can maintain its own shape, and the surface of the screw is coated with a thermoplastic resin. A synthetic resin composite tube for a protective tube according to items 1 and 2.
JP59081078A 1984-04-24 1984-04-24 Synthetic resin composite tube for protecting tube Pending JPS60225745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59081078A JPS60225745A (en) 1984-04-24 1984-04-24 Synthetic resin composite tube for protecting tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59081078A JPS60225745A (en) 1984-04-24 1984-04-24 Synthetic resin composite tube for protecting tube

Publications (1)

Publication Number Publication Date
JPS60225745A true JPS60225745A (en) 1985-11-11

Family

ID=13736353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59081078A Pending JPS60225745A (en) 1984-04-24 1984-04-24 Synthetic resin composite tube for protecting tube

Country Status (1)

Country Link
JP (1) JPS60225745A (en)

Similar Documents

Publication Publication Date Title
Fu et al. Fracture resistance of short-glass-fiber-reinforced and short-carbon-fiber-reinforced polypropylene under Charpy impact load and its dependence on processing
CA1202442A (en) Pipes made of polypropylene reinforced with carbon fibers
CA1229966A (en) Method and apparatus for molding thermosetting resins
US20190322579A1 (en) Method Of Sizing Of Fibers And Articles Manufactured From The Same
SK286414B6 (en) Extruded, injection-moulded or blow-moulded plastic pipe, fitting or shaped part of plastic for making pipelines and process for manufacture of the initial composite material of the middle layer of the extruded, injection-moulded or blow-moulded plastic pipe
CN103013075B (en) PET composite material, its preparation method and application
Haddar et al. Effect of hygrothermal ageing on the monotonic and cyclic loading of glass fiber reinforced polyamide
CN102504497A (en) Modified PBT material and preparation method thereof
AU612354B2 (en) Composite strand containing metal fibers and plastic articles made therefrom
CN102672934A (en) Production method of buried cracking-resistant polyethylene pipeline for fuel gas
CN107189231A (en) Polypropylene reinforced double-wall corrugated pipe
JPS60225745A (en) Synthetic resin composite tube for protecting tube
CN104387767A (en) Ceramic fiber reinforced nylon 66(PA66) composite and preparation method thereof
Guo et al. Effect of series explosion effects on the fiber length, fiber dispersion and structure properties in glass fiber reinforced polyamide 66
JPS60227087A (en) Synthetic resin composite pipe for transporting fluid
JPH0613189B2 (en) Thermosetting resin protection tube
KR101901164B1 (en) ceramic-polyethylene plastic pipe and manufacturing method thereof
Ishai et al. Failure-time characteristics of continuous unidirectional glass-epoxy composites in flexure
JPH0451710B2 (en)
JPS6095290A (en) Thermosetting resin pipe
JPS6095291A (en) Protective pipe made of thermosetting resin
JPS6176357A (en) Synthetic-resin composite pipe
Wilson xtrusion of short fibre reinforced polyethylene pipes
KR940002310A (en) Artificial marble and its manufacturing method
JPS6098284A (en) Thermosetting resin pipe for transporting fluid