JPS60227087A - Synthetic resin composite pipe for transporting fluid - Google Patents

Synthetic resin composite pipe for transporting fluid

Info

Publication number
JPS60227087A
JPS60227087A JP59081079A JP8107984A JPS60227087A JP S60227087 A JPS60227087 A JP S60227087A JP 59081079 A JP59081079 A JP 59081079A JP 8107984 A JP8107984 A JP 8107984A JP S60227087 A JPS60227087 A JP S60227087A
Authority
JP
Japan
Prior art keywords
resin
tube
pipe
screw
extrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59081079A
Other languages
Japanese (ja)
Inventor
義明 福田
宮坂 猛
松本 偉生利
加藤 宣治
賢治 江間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP59081079A priority Critical patent/JPS60227087A/en
Publication of JPS60227087A publication Critical patent/JPS60227087A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は流体移送用合成樹脂複合管に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a synthetic resin composite tube for fluid transfer.

従J萩町; 従来、水、油その他の液状物質や、空気、ガス等の気体
を移送するための流体移送管としては、金属管やポリ塩
化ビニル等の熱可塑性樹脂管が使用されている。
Ju J Hagi Town: Conventionally, metal pipes and thermoplastic resin pipes such as polyvinyl chloride have been used as fluid transfer pipes for transferring water, oil, and other liquid substances, and gases such as air and gas. .

金属管は強固であるが重くて施工性に劣り、腐蝕性など
の問題があるとともに耐熱性、耐炎性にすぐれてはいる
ものの断熱性に乏しく、火炎の場合には管内部の流体及
び管の支持体或は周辺へ高熱を伝達し、火炎蔓延の原因
となる恐れがある。
Although metal pipes are strong, they are heavy, have poor workability, and have problems such as corrosion.Although they have excellent heat resistance and flame resistance, they have poor insulation properties, and in the case of a flame, they can damage the fluid inside the pipe and the pipe. High heat may be transferred to the support or the surrounding area, causing the spread of flame.

また、熱可塑性樹脂管は、軽量で耐腐蝕性を有し安価で
もあるが耐熱、耐火性に劣ることは周知のことである。
Furthermore, it is well known that thermoplastic resin pipes are lightweight, corrosion resistant, and inexpensive, but have poor heat resistance and fire resistance.

そこで耐熱性、耐火性、耐腐蝕性、断熱性等にづ・− 富む熱硬化性樹脂管なこの用途に提供することイ考えら
れるが、従来の成形法では高価なものとなり物性的にも
問題があるためこの用途には実用されていない。
Therefore, it would be possible to provide thermosetting resin pipes with high heat resistance, fire resistance, corrosion resistance, heat insulation properties, etc. for this purpose, but conventional molding methods would be expensive and have physical problems. Because of this, it has not been put into practical use for this purpose.

即ち、熱硬化性樹脂の長尺管は、プランジャー押出成形
法により成形されているのが、一般的であるがこの成形
法に於ては金型部における押出圧力が高く、しかも間欠
押出であるため均一な成形品を得ることが困難であり、
月つ生産性も低い。
In other words, long tubes of thermosetting resin are generally formed by plunger extrusion, but this molding method requires high extrusion pressure in the mold, and moreover, it is not possible to use intermittent extrusion. Therefore, it is difficult to obtain uniform molded products,
Monthly productivity is also low.

かkる事情からダイスとスクリュー型押出機を用いる成
形法も開発されているが、この方法に於ては樹脂の滞留
が起りやすく、局部的に硬化反応が進行したり、僅かな
圧力や温度の変化で硬化反応が急激に起るなどの問題を
引き起し、連続して安定な成形を行なうことが困難であ
る。
For these reasons, a molding method using a die and a screw extruder has been developed, but this method tends to cause resin to stagnate, cause the curing reaction to proceed locally, or cause molding to occur under slight pressure or temperature. This causes problems such as rapid curing reactions due to changes in the temperature, making it difficult to perform continuous and stable molding.

しかも、プランジャ一式押出法、およびダイスとスクリ
ュー押出機による押出法のいずれの方法に於ても、従来
の成形法では管の円周方向の強度が低いものしか得られ
ず、その結果、内外圧に対して弱く、例えば僅かな衝撃
により管の軸方向に割れを生じやすく実用上問題であっ
た。これは従来の押出法では、樹脂自体および充填物な
どが押出方向、即ち管の軸方向に配向するためと考えら
れる。
Moreover, in both the extrusion method using a plunger set and the extrusion method using a die and screw extruder, conventional forming methods can only provide pipes with low strength in the circumferential direction, and as a result, the internal and external pressure For example, a slight impact can easily cause cracks in the axial direction of the tube, which is a practical problem. This is thought to be because in conventional extrusion methods, the resin itself and the filler are oriented in the extrusion direction, that is, in the axial direction of the tube.

発明の目的: 上記の如〈従来の方法においては、溶融した樹脂が金型
内へ導びかれ金型内の流路に沿って移動する間に賦形お
よび硬化が進行するが、その間の樹脂の移動方向は押出
方向、すなわち管軸方向のみであるために、樹脂や充填
物などがその方向へ配向するためと考えられる。
Purpose of the invention: As described above, in the conventional method, shaping and curing proceed while the molten resin is introduced into the mold and moves along the flow path within the mold. This is thought to be because the direction of movement is only in the extrusion direction, that is, in the tube axis direction, so the resin, filler, etc. are oriented in that direction.

本発明者らは、これらの欠点を解決し、耐熱性、耐炎性
、耐腐蝕性を有し、軽量かつ安価な流体移送管を提供す
べく種々検討を行なった結果、樹脂及びまたは充填物が
不規則に配向した押出成形された熱硬化性樹脂管が、管
軸方向および管軸に対して直角な方向の圧縮強度のバラ
ンスが良く、その結果内外圧に対して強く且つ衝撃に対
しても縦割れしにくい性質を有することを見出し、更に
この熱硬化性樹脂管の表面を熱可塑性樹脂で被覆するこ
とにより、耐熱性、耐炎性、耐衝撃性等に優れ、流体移
送管として好適な複合管が得られることを見出した。更
に先端部に平滑部を有するスクリューを使用し、平滑部
に於て押出後自己形状を保持できろ程度にまで賦形した
熱硬化性樹脂管に熱可塑性樹脂を被覆することにより、
これらの合成樹脂複合管が得られることを見出して本発
明に到達した。
The inventors of the present invention have conducted various studies to solve these drawbacks and provide a lightweight and inexpensive fluid transfer pipe that has heat resistance, flame resistance, and corrosion resistance. The irregularly oriented extruded thermosetting resin tube has a good balance of compressive strength in the tube axis direction and in the direction perpendicular to the tube axis, making it strong against internal and external pressure and shock resistant. We discovered that this thermosetting resin tube has properties that make it difficult to crack vertically, and by coating the surface of this thermosetting resin tube with a thermoplastic resin, we have created a composite tube that has excellent heat resistance, flame resistance, impact resistance, etc., and is suitable for use as a fluid transfer tube. It was found that a tube can be obtained. Furthermore, by using a screw with a smooth part at the tip and coating a thermoplastic resin on a thermosetting resin tube that has been shaped to the extent that the smooth part can maintain its own shape after extrusion,
The present invention was achieved by discovering that these synthetic resin composite pipes can be obtained.

発明の構成: 即ち、本発明は、樹脂および又は充填物が不規則な方向
へ配向して成ることを特徴とずろ押出成形された熱硬化
性樹脂管の表面に熱可塑性樹脂を被覆してなる流動移送
用合成樹脂複合管であり、複合管の内層を形成する熱硬
化性樹脂管は管軸に対し直角方向の圧縮強度と管軸方向
の圧縮強度の比が0.4〜1.5であることを特徴とす
る。
Structure of the invention: That is, the present invention is a tube made of a thermosetting resin tube, which is characterized in that the resin and/or filler is oriented in irregular directions, and is formed by coating the surface of a thermosetting resin tube with a thermoplastic resin. This is a synthetic resin composite tube for fluid transfer, and the thermosetting resin tube forming the inner layer of the composite tube has a ratio of compressive strength in the direction perpendicular to the tube axis to compressive strength in the tube axis direction of 0.4 to 1.5. characterized by something.

本発明の複合管は、スクリューを内臓する押出成形機な
使用しその先端部において押出後自己形・ 状を保持で
きる程度に迄賦形硬化させて得られる熱硬化性樹脂管の
表面に熱可塑性樹脂な被覆して得られるものであり、例
えば特願昭58−218645に記載された方法により
製造される。
The composite tube of the present invention uses an extrusion molding machine with a built-in screw, and the surface of the thermosetting resin tube is made of thermoplastic material by shaping and curing the tip of the extrusion molding machine to the extent that it can maintain its own shape after extrusion. It is obtained by coating with a resin, and is manufactured, for example, by the method described in Japanese Patent Application No. 58-218645.

すなわち、先端部に平滑部を有するスクリューを使用し
、平滑部に於て熱硬化性樹脂を自己形状を保持できる程
度にまで賦形し、その表面に熱可塑性樹脂を被覆する方
法であり、その具体的方法としては先端部に平滑部を有
するスクリューを使用して平滑部に於いて自己形状を保
持できる程度にまで熱硬化性樹脂を賦形しその熱硬化性
樹脂が賦形される帯域に熱可塑性樹脂を圧入被覆して押
し出す第1の方法または同様に平滑部に於(・て自己形
状を保持できる程度にまで熱硬化性樹脂を賦形して押出
し、引きつづき他の押出機の金型内へ導入して熱可塑性
樹脂を被覆する第2の方法が採用できる。
In other words, this method uses a screw with a smooth part at the tip, shapes the thermosetting resin in the smooth part to the extent that it can maintain its own shape, and then coats the surface with the thermoplastic resin. Specifically, a screw having a smooth portion at the tip is used to shape the thermosetting resin to the extent that it can maintain its own shape in the smooth portion, and then the thermosetting resin is placed in the zone to be shaped. The first method involves press-fitting a thermoplastic resin and extruding it, or similarly, shaping the thermosetting resin to the extent that it can maintain its own shape in a smooth part and then extruding it, followed by another method of extruding the thermosetting resin by press-fitting it and extruding it. A second method can be adopted in which the resin is introduced into a mold and coated with a thermoplastic resin.

本発明の複合管の内層を形成する熱硬化性樹脂管は例え
ば特願昭58−51526に記載した方法により製造さ
れるが、この製造法の特徴は先端部に平滑部を有するス
クリューを使用し平滑部に於て押出後自己形状を保持で
きる程度にまで賦形硬化させることにあり、この方法に
より従来押出成形が困難であった熱硬化性樹脂管を生産
性良く安価に製造することが出来る。
The thermosetting resin tube that forms the inner layer of the composite tube of the present invention is manufactured, for example, by the method described in Japanese Patent Application No. 58-51526, and the feature of this manufacturing method is that it uses a screw having a smooth portion at the tip. The purpose is to shape and harden the smooth part to the extent that it can maintain its own shape after extrusion, and by this method it is possible to manufacture thermosetting resin pipes, which were conventionally difficult to extrude, with good productivity and at low cost. .

すなわち、押出機内に投入された熱可塑性樹脂材料は、
スクリュー供給部および圧縮部を経るうちに加熱溶融さ
れ、計量部な経て計量部のフライト先端部よりラセン状
で平滑部に移行し、そこでシリンダー内壁との摩擦抵抗
により、スクリューフライIIcよって生ずる間隙部分
が狭められ、ついには圧融着される。ついで樹脂は平滑
部を移行する間に硬化賦形されてシリンダー先端より連
続した管となって押出される。この間樹脂は、供給部か
ら計量部に至る間はスクリュー溝に大むね沿った方向の
せん断を受けながら移動するため、樹脂自体や充填物は
管の押出方向に対し特に定まった方向へは配向すること
なく不規則な方向へ配向し平滑部へ移行した後、硬化が
進むために結果として樹脂自体や充填物は管の軸方向と
円周方向にバランス良く配向され、得られる管の軸方向
及び管軸に直角な方向における圧縮強度のバランスが良
くなるものと考えられる。
In other words, the thermoplastic resin material fed into the extruder is
It is heated and melted as it passes through the screw supply section and the compression section, passes through the metering section, and moves from the tip of the flight of the metering section to a smooth section in a helical shape, where the gap created by the screw fly IIc due to frictional resistance with the cylinder inner wall. is narrowed and finally pressure fused. The resin is then hardened and shaped while traveling through the smooth section, and is extruded from the tip of the cylinder into a continuous tube. During this time, the resin moves while being subjected to shear in the direction generally along the screw groove from the supply section to the metering section, so the resin itself and the filler are oriented in a particular direction with respect to the extrusion direction of the tube. After the resin is oriented in irregular directions and transferred to a smooth portion, the resin itself and the filler are oriented in a well-balanced manner in the axial and circumferential directions of the tube as the curing progresses. It is thought that the balance of compressive strength in the direction perpendicular to the tube axis becomes better.

本発明の管の樹脂や充填物の配向は、例えば電子顕微鏡
によって観察することができる。
The orientation of the resin and filler in the tube of the present invention can be observed using, for example, an electron microscope.

第1図は従来の押出成形方法(プランジャ一式)により
押出成形されたフェノール樹脂管の押出方向における断
面の電子顕微鏡写真であり、第2図は同じく押出方向と
直角な方向における電子顕微鏡写真であり、第3図およ
び第4図は本発明の熱硬化性樹脂管の一つであるフェノ
ール樹脂管の夫々の断面の電子顕微鏡写真である。
Figure 1 is an electron micrograph of a cross-section in the extrusion direction of a phenolic resin tube extruded by a conventional extrusion method (with a plunger set), and Figure 2 is an electron micrograph of the cross section taken in the direction perpendicular to the extrusion direction. , 3 and 4 are electron micrographs of respective cross sections of a phenolic resin pipe, which is one of the thermosetting resin pipes of the present invention.

第1図および第2図に於てはガラス繊維が管軸方向に配
向していることが明白であるのに対し、第3および第4
図では繊維は特に一定の方向には配向しておらず、不規
則に配向していることがわかる。
In Figs. 1 and 2, it is clear that the glass fibers are oriented in the tube axis direction, whereas in Figs.
The figure shows that the fibers are not oriented in a particular direction, but are oriented irregularly.

後述の第1表には管軸に対し直角方向の圧縮強度(A)
と管軸方向の圧縮強度(B)及びA/Bの比並びに水圧
試験結果を示したが、この表からも判るとおり、従来法
による管はAl1の比が0.37と小さく、縦割れを生
じやすいのに比べ、本発明の管は〜弔の比がo、4〜1
.5と大きく縦割れを生ずることなく内圧に対しても強
いことがわかる。
Table 1 below shows the compressive strength (A) in the direction perpendicular to the tube axis.
The compressive strength (B) in the axial direction of the pipe, the ratio of A/B, and the results of the water pressure test are shown.As can be seen from this table, the pipe made by the conventional method has a small Al1 ratio of 0.37, and does not suffer from longitudinal cracking. Compared to this, the tube of the present invention has a ratio of o, 4 to 1.
.. 5, which shows that it is strong against internal pressure without causing large vertical cracks.

本発明に於て言う管軸方向の圧縮強さとは、J I S
 −K −6911の5.19.5項による試験(圧縮
強度試験)を行ない、管が破壊(亀裂が入った場合も含
む)した時の強さを表わし管軸に対し直角方向の圧縮強
さとはJIS−に−6741の5.6項による試験(へ
ん平試験)を行なって管が破壊した時の強さを表わすも
のである。
In the present invention, the compressive strength in the tube axis direction is defined by JIS
A test (compressive strength test) according to Section 5.19.5 of -K-6911 is performed, and the strength when the pipe is broken (including cracks) is expressed as the compressive strength in the direction perpendicular to the pipe axis. represents the strength when the tube breaks when tested in accordance with Section 5.6 of JIS-6741 (flattening test).

本発明の熱硬化性樹脂管に於て、上記した方法による管
軸に対し直角な方向の圧縮強度と、管軸方向の圧縮強度
の比は、一般に064〜1.5好ましくは0.5〜1.
5 の範囲のものである。この比が0.4以上であると
衝撃を受けたり、高い内外圧に接した場合に縦割れを起
しやすく、亀裂が管軸方向に長い距離にわたって及ぶこ
とになる。又この比が1.5以上の場合は管軸に直角な
方向に対して強度が弱くなり管が折れやすくなる。
In the thermosetting resin tube of the present invention, the ratio of the compressive strength in the direction perpendicular to the tube axis and the compressive strength in the tube axis direction by the above method is generally 064 to 1.5, preferably 0.5 to 1.
It is in the range of 5. If this ratio is 0.4 or more, vertical cracking is likely to occur when subjected to impact or when exposed to high internal and external pressure, and the cracks will extend over a long distance in the tube axis direction. If this ratio is 1.5 or more, the strength becomes weaker in the direction perpendicular to the tube axis, making the tube more likely to break.

このようにして得られた熱硬化性樹脂管は、耐熱性に優
れると共に重油、ガソリン、灯油等の油類、アルコール
、ケト/、エステル類、芳香族炭化水素等の有機溶剤、
酸、アルカリなどに対して耐性を有するのみならず、成
形材料として特にフェノール樹脂、メラミン樹脂、キシ
レン樹脂等を使用することにより、火炎にさらされても
延焼しない、ドロンピンクを起さない、原形をはy維持
する、有毒ガスを発生しない等の優れた耐炎特性を有し
、更に樹脂及びまたは充填物が管の押出方向と円周方向
にバランス良く配向しているために管の押出方向及びそ
れに直角な方向の強度のバランスが良く、結果として耐
圧性に優れたものとなる。
The thermosetting resin pipe thus obtained has excellent heat resistance and can withstand heavy oil, gasoline, kerosene, and other oils, alcohol, keto/, esters, aromatic hydrocarbons, and other organic solvents.
Not only is it resistant to acids and alkalis, but by using phenol resin, melamine resin, xylene resin, etc. as the molding material, it does not spread even when exposed to flame, does not cause dull pink, and is in its original shape. It has excellent flame resistance properties such as maintaining the temperature of the tube and not emitting toxic gas, and also has excellent flame resistance properties such as not emitting toxic gas. The strength in the direction perpendicular to this is well balanced, resulting in excellent pressure resistance.

本発明に使用される熱硬化性樹脂としては、フェノール
樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹
脂、エポキシ樹脂、シリコン樹脂、アリル樹脂、キシレ
ン樹脂、アニリン樹脂等が挙げられる。なかでもフェノ
ール樹脂、メラミン樹脂および尿素樹脂の利用が好適で
ある。
Examples of thermosetting resins used in the present invention include phenol resins, melamine resins, urea resins, unsaturated polyester resins, epoxy resins, silicone resins, allyl resins, xylene resins, and aniline resins. Among them, phenol resin, melamine resin and urea resin are preferably used.

本発明に用いられる熱硬化性樹脂には必要に応じて熱硬
化性樹脂の成形に於いて一般に用いられる充填剤、離型
剤、増粘剤、着色剤、分散剤、発泡剤あるいはまた重合
開始剤、硬化促進剤、重合禁止剤などを添加することが
できる。
The thermosetting resin used in the present invention may contain fillers, mold release agents, thickeners, colorants, dispersants, blowing agents, or polymerization initiators commonly used in the molding of thermosetting resins, as necessary. A curing agent, a curing accelerator, a polymerization inhibitor, etc. can be added.

本発明においては更に成形物の強度向上、特に圧縮強度
等の向上を目的として有機または無機の繊維状物、例え
ば木粉、木綿、ナイロン繊維、ビニロン繊維、硝子繊維
、カーボン繊維、金属繊維等を例えば上記した充填剤と
の総量として 20〜80重量%の様な高い量的範囲で
添加することもできる。
In the present invention, organic or inorganic fibrous substances such as wood flour, cotton, nylon fiber, vinylon fiber, glass fiber, carbon fiber, metal fiber, etc. For example, it can be added in a high quantitative range such as 20 to 80% by weight as a total amount with the above-mentioned fillers.

本発明に用いられる熱可塑性樹脂としては、例えばポリ
エチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチ
レン、ポリカーボネート、アクリロニトリル−ブタジェ
ン−スチレン共重合体、ポリメチルアクリレート、ポリ
エチレンテレフタレートなどが挙げられる。これらの熱
可塑性樹脂には必要に応じて安定剤、充填剤、加工助剤
、酸化防止剤、強化剤、着色剤、滑剤などの熱可塑性樹
脂の成形に於し・て一般的に用いられる添加剤を添加す
ることができる。
Examples of the thermoplastic resin used in the present invention include polyethylene, polypropylene, polyvinyl chloride, polystyrene, polycarbonate, acrylonitrile-butadiene-styrene copolymer, polymethyl acrylate, and polyethylene terephthalate. These thermoplastic resins may contain additives commonly used in the molding of thermoplastic resins, such as stabilizers, fillers, processing aids, antioxidants, reinforcing agents, colorants, and lubricants. agents can be added.

上述した方法により成形された熱硬化性樹脂管は前述し
た第1の方法または第2の方法により熱可塑性樹脂で被
覆された複合管が得られる。
A thermosetting resin pipe molded by the above-described method can be used to obtain a composite pipe coated with a thermoplastic resin by the above-described first method or second method.

産業上の利用分野: このようにして得られた複合管は内層が耐熱性、耐炎性
、耐腐蝕性等に優れた熱硬化性樹脂、外層が耐衝撃性に
優れた熱可塑性樹脂から成るため、流体移送管として好
適である。
Industrial applications: The composite tube thus obtained is made of a thermosetting resin with excellent heat resistance, flame resistance, corrosion resistance, etc. in the inner layer, and a thermoplastic resin with excellent impact resistance in the outer layer. , suitable as a fluid transfer tube.

本発明の複合管の用途を具体的に説明すれば、液体移送
用として一般住宅やビル・工場あるいは温泉などの給水
管、給湯管、排水管(例えば風呂、湯沸し器、クーラー
、ソーラーシステム等の給排水管、一般排水管等)、工
場や車輌、船舶、航空機等の給排油管、薬品移送管など
が挙げられる。
Specifically, the composite pipe of the present invention can be used for liquid transfer in water supply pipes, hot water supply pipes, and drainage pipes in general houses, buildings, factories, hot springs, etc. (for example, in baths, water heaters, air conditioners, solar systems, etc.). Examples include water supply and drainage pipes, general drainage pipes, etc.), oil supply and drainage pipes for factories, vehicles, ships, aircraft, etc., and chemical transfer pipes.

また、気体移送用としては、一般住宅やビル・工場等の
送気管、通気管、排気管(例えばガスレンジ、ストーブ
、内燃機関の送気管、排気管、一般通気管、一般送気管
、一般排気管等)、化学工場の気体(例えばチッソ、ア
ルゴン、ヘリウム等)の移送管などが挙げられる。
In addition, for gas transfer, air pipes, ventilation pipes, exhaust pipes of general houses, buildings, factories, etc. (e.g. gas ranges, stoves, internal combustion engine air pipes, exhaust pipes, general ventilation pipes, general air supply pipes, general exhaust pipes, etc.) pipes, etc.), and gas transfer pipes for chemical factories (for example, nitrogen, argon, helium, etc.).

以下、参考例及び製造例により更に本発明を説明する。The present invention will be further explained below using reference examples and production examples.

参考例1 0径30mm 、 L/D=22の押出機によりスクリ
ュー底部の径が26朋の計量部に続く先端部に径が26
mrn長さが105 mm (3,5D )の平滑部を
有する圧縮比が2.0のスクリューを用い、成形材料と
してフェノール樹脂(日本オイルシール(株)製、商品
名ロジャースRX−6684)を使用してパイプを連続
的に押出成形した。
Reference Example 1 An extruder with a screw diameter of 30 mm and L/D = 22 has a diameter of 26 mm at the bottom of the screw, and a diameter of 26 mm at the tip following the measuring section.
A screw with a compression ratio of 2.0 and a smooth part with a mrn length of 105 mm (3.5D) was used, and a phenol resin (manufactured by Nippon Oil Seal Co., Ltd., trade name: Rogers RX-6684) was used as the molding material. The pipe was then continuously extruded.

シリンダー内部の温度は、C,(o〜2D)=水冷、C
2(3D〜10■))=80°C,C’3(IIII)
−18D)=1oO℃、C4(19D〜22D)=12
0°Cに設定し、スクリュー回転数35 rpmの条件
で押出成形を行なって、外径30朋肉厚2.0m、のパ
イプを得た。
The temperature inside the cylinder is C, (o~2D) = water cooling, C
2(3D~10■)) = 80°C, C'3(III)
-18D)=1oO℃, C4(19D~22D)=12
Extrusion molding was carried out at a temperature of 0° C. and a screw rotation speed of 35 rpm to obtain a pipe with an outer diameter of 30 mm and a wall thickness of 2.0 m.

参考例2 参考例1と同じ押出装置により、成形材料としてフェノ
ール樹脂(日本合成化工(株)製、商品名ニツカライ)
95(1−J) を使用して、パイプを押出成形した。
Reference Example 2 Using the same extrusion device as Reference Example 1, a phenol resin (manufactured by Nippon Gosei Kako Co., Ltd., trade name: Nikkarai) was used as a molding material.
95 (1-J) was used to extrude the pipe.

シリンダー各部の温度は、C,−水冷、C2−80′c
、C3=110°C,C4=120℃に設定し、スクリ
ュー回転数35rpmの条件で成形を行ない外径30m
、肉厚2.0龍のパイプを得た。
The temperature of each part of the cylinder is C, - water cooling, C2 - 80'c
, C3 = 110°C, C4 = 120°C, and molding was carried out under the conditions of screw rotation speed 35 rpm, and the outer diameter was 30 m.
, I got a pipe with a wall thickness of 2.0 dragon.

参考例3 参考例1と同じ押出装置を使用し、成形材料としてフェ
ノール樹脂(住友ベークラ、イト(株)製、商品名PI
VI−795J)を用いてパイプな押出成形した。
Reference Example 3 Using the same extrusion equipment as Reference Example 1, phenol resin (manufactured by Sumitomo Bakelite Co., Ltd., product name PI) was used as the molding material.
VI-795J) was used to extrude into a pipe.

シリンダー各部の温度ばC1−水冷、C2−80℃、C
3二105℃、C,:]、220℃に設定し、スクリュ
ー回転数35rpmの条件で成形を行ない、外径30m
Temperature of each part of cylinder: C1 - water cooling, C2 - 80℃, C
32 105℃, C, :], 220℃, and molding was carried out under the conditions of screw rotation speed 35 rpm, outer diameter 30 m.
.

肉厚2・0朋のノ4イブを得た。I got a No. 4 Eve with a thickness of 2.0.

参考例4 0径40 mm 、 L/’D=24の押出機により、
スクリ? ニー底部の径が35m1長3Dの計量部に続いて径35
mm長さ3Dの平滑部を有するスクリューを用い、成形
材料としてフェノール樹脂(住友ベークライト@)製、
商品名PM−795J)を用いてパイプを押出成形した
。シリンダー各部の温度はC1(0〜2D)=水冷、C
2(3〜10D)=60°C,C3(11〜16D)=
80℃、C4(17〜20D)=110℃、C5(zi
〜24D)=120℃ に設定しスクリュー回転数25
rpmで外径40mTL、肉厚2.5朋のパイプを得た
Reference Example 4 Using an extruder with a diameter of 40 mm and L/'D = 24,
Scree? The diameter of the knee bottom is 35 m. Following the 3D measuring section, the diameter of the knee bottom is 35 m.
A screw with a smooth part of mm length 3D was used, and the molding material was made of phenolic resin (Sumitomo Bakelite @).
A pipe was extrusion molded using PM-795J (trade name). The temperature of each part of the cylinder is C1 (0-2D) = water cooling, C
2(3~10D)=60°C, C3(11~16D)=
80°C, C4(17~20D)=110°C, C5(zi
~24D) = 120℃, screw rotation speed 25
A pipe with an outer diameter of 40 mTL and a wall thickness of 2.5 mm was obtained at rpm.

参考例5 参考例1と同じ押出装置を使用し、成形材料としてメラ
ミン樹脂(オタライト(株)製、商品名0N−600)
を用いてパイプを連続的に押出成形した。
Reference Example 5 Using the same extrusion device as Reference Example 1, melamine resin (manufactured by Otalite Co., Ltd., product name 0N-600) was used as the molding material.
The pipe was continuously extruded using

シリンダー各部の温度はC14冷、C2=85°C1C
5二115°C,C4=130’Cに設定し、スクリュ
ー回転数35rpmの条件で成形を行ない、外径30m
m、肉厚2.0龍のパイプを得た。
The temperature of each part of the cylinder is C14 cold, C2 = 85°C1C
Molding was carried out under the conditions of 52 115°C, C4 = 130'C, screw rotation speed 35 rpm, outer diameter 30 m.
I got a pipe with a wall thickness of 2.0 m.

評免結果: 上記の製造例により得られたパイプの圧縮強度(管軸に
対し直角方向、管軸方向、及びこれらの比)及び水圧試
険の結果は第1表に示したとおりであった。
Evaluation results: The compressive strength (direction perpendicular to the pipe axis, direction of the pipe axis, and ratio thereof) and hydraulic test results of the pipe obtained in the above manufacturing example were as shown in Table 1. .

参考例S 参考例1と同じ押出装置を使用し、成形材料としてエポ
キシ樹脂(日本合成化工(株)製、商品名アリメライ)
 J=1060F)を用いてパイプを押出成形した。シ
リンダー各部の温度はC44冷、C2=85°C,C3
=115℃、C,=125℃に設定し、スクリュー回転
数35rpmの条件で成形を行ない、外径30m、、肉
厚2.0mmのパイプを得た。
Reference Example S Using the same extrusion device as Reference Example 1, epoxy resin (manufactured by Nippon Gosei Kako Co., Ltd., trade name: Alimerai) was used as the molding material.
The pipe was extruded using J=1060F). The temperature of each part of the cylinder is C44 cold, C2 = 85°C, C3
Molding was carried out under the following conditions: = 115° C., C = 125° C., and a screw rotation speed of 35 rpm to obtain a pipe with an outer diameter of 30 m and a wall thickness of 2.0 mm.

製造例1 ホッパー下より2Dの長さに水冷ジャケットを備え、続
(・て3〜9D、10〜15D、16〜19Dの各部蹟
熱制御装置を有し、更に続いて先端より2Dの位置で熱
可塑性樹脂が肉厚1.5關で供給されるようにした被覆
装置(長さ5D)を備えた1口径40mm、 L/’D
=24 (被覆装置部分を含む)のシリンダーを有する
押出機(A)、供給部3D、圧縮部12D 及びスクリ
ュー底部の径が35朋長さ4Dの計量部に続いて径35
龍長さ5Dの平滑部を有する圧縮比1.8のスクリュー
(B)、及び圧縮比2.5のスクリューを内装した口径
30 mm L/’D=22の押出機(C)を用いて複
合管を成形した。
Production example 1 A water cooling jacket is provided at a length of 2D from the bottom of the hopper, and a heat control device is installed at each section (3 to 9D, 10 to 15D, and 16 to 19D), and furthermore, at a position 2D from the tip. 1 caliber 40mm, L/'D equipped with a coating device (length 5D) that allows thermoplastic resin to be supplied with a wall thickness of 1.5 mm.
Extruder (A) with a cylinder of = 24 (including the coating device part), a feed section 3D, a compression section 12D and a metering section with a screw bottom diameter of 35mm and a length of 4D followed by a diameter 35mm cylinder.
A screw with a compression ratio of 1.8 (B) having a smooth part with a dragon length of 5D and an extruder (C) with a diameter of 30 mm L/'D = 22 and equipped with a screw with a compression ratio of 2.5 were used to perform compounding. A tube was formed.

スクリュー(B)を内装した押出機(A)の被覆装置部
に押出機(C)を連結し、成形材料として押出機(A)
にフェノール樹脂(住友ベークライト@)製、商品名P
M−795J)、押出機(C)にポリ塩化ビニルコンパ
ウンド(三井東圧化学(株)製、商品名ビニクロンER
EK−1(115)を投入し、押出機(A)はCI(0
〜2D)二水冷、C2(3〜9D)=8Q℃、C3(1
0〜15D)=95°C,C4(16〜1.9D)=1
10℃、被覆装置部(20〜24D)=180℃、スク
リュー回転数25rpm、押出機(C)は、C1(O〜
2D)=水冷、C2(3〜9D):150℃、C3(1
0〜16D)=170℃、C4(17〜22D)=17
5℃、アダプター=180℃、スクリュー回転数45r
pmの条件で押出を行ない、内層が径40mrrt肉厚
2,5市のフェノール樹脂、外層が径41.5mm肉厚
1.5朋のポリ塩化ビニル樹脂からなる外径41.5朋
肉厚4mmの複合管を得た。
The extruder (C) is connected to the coating device part of the extruder (A) equipped with a screw (B), and the extruder (A) is used as a molding material.
Made of phenolic resin (Sumitomo Bakelite@), product name P
M-795J), polyvinyl chloride compound (manufactured by Mitsui Toatsu Chemical Co., Ltd., trade name Vinicron ER) in the extruder (C)
EK-1 (115) was introduced, and the extruder (A) was
~2D) two water-cooled, C2(3~9D)=8Q℃, C3(1
0~15D)=95°C, C4(16~1.9D)=1
10°C, coating device section (20-24D) = 180°C, screw rotation speed 25 rpm, extruder (C), C1 (O-
2D)=water cooling, C2(3-9D): 150°C, C3(1
0~16D)=170℃, C4(17~22D)=17
5℃, adapter = 180℃, screw rotation speed 45r
Extrusion was carried out under pm conditions, and the inner layer was made of phenolic resin with a diameter of 40 mm and a wall thickness of 2.5 mm, and the outer layer was made of polyvinyl chloride resin with a diameter of 41.5 mm and a wall thickness of 1.5 mm. A composite tube was obtained.

製造例2 ホッパー下より2Dの長さに水冷ジャケットを備え、続
いて3〜IOD、11〜16D、17〜20D及び21
〜24I)の各部に熱制御装置を備えた口径40in 
、 L /D=24のシリンダーを有する押出機により
、供給部3D、圧縮部15D及びスクリュー底部の径が
35 mms長さ3Dの計量部に続いて径35mW。
Production Example 2 A water cooling jacket was provided at a length of 2D from the bottom of the hopper, followed by 3~IOD, 11~16D, 17~20D, and 21
~24I) with a diameter of 40 inches equipped with a thermal control device in each part
, by means of an extruder with a cylinder of L/D=24, a feed section 3D, a compression section 15D and a metering section with a screw bottom diameter of 35 mms and a length of 3D followed by a diameter of 35 mW.

長さ3Dの平滑部を有するスクリューを用い、成形材料
と亡′でメラミン−フェノニル樹脂(松下電工(株)製
、商品名ME−A)を使用してパイプを押出した。
A pipe was extruded using a screw having a smooth portion having a length of 3D using a molding material and a melamine-phenonyl resin (manufactured by Matsushita Electric Works, Ltd., trade name: ME-A).

シリンダー各部の温度はC3(0〜2D)=水冷、C2
(3〜l0D)=60℃、C3(11〜16D)=85
℃、C4(J7〜20D)=1.2(’1℃、C6(2
1〜24D)2130℃に設定しスクリュー回転数25
rpmで外径40mm肉厚2.5mmのパイプを押出し
た。このパイプをそのまま引きつVき圧縮比3.0のス
クリューを内装した口径30 mm L/D=22の押
出機に装着されたクロスヘッドダイ内へ導入し、温度設
定はCl−180℃、c2=210°QC3=220℃
、グイ−220°C、スクリュー回転数62rpm の
条件でポリプロピレン樹脂(三井東圧化学(株)製、商
品名三井ノーブレンBET3−IJS)を肉厚1.5龍
で被覆して、内層が外径40mm肉厚2.5mmのメラ
ミン−フェノール樹脂、外層が外径41.5mm、肉厚
1.5龍のポリプロピレン樹脂より成る外径41.5m
m肉厚4mmの複合管を得た。
The temperature of each part of the cylinder is C3 (0-2D) = water cooling, C2
(3~10D)=60℃, C3(11~16D)=85
°C, C4 (J7~20D) = 1.2 ('1 °C, C6 (2
1-24D) Set at 2130℃ and screw rotation speed 25
A pipe with an outer diameter of 40 mm and a wall thickness of 2.5 mm was extruded at rpm. This pipe was directly introduced into a crosshead die attached to an extruder with a diameter of 30 mm L/D = 22 and equipped with a screw with a V compression ratio of 3.0, and the temperature was set at Cl-180℃, c2 =210°QC3=220°C
Polypropylene resin (manufactured by Mitsui Toatsu Chemical Co., Ltd., trade name: Mitsui Noblen BET3-IJS) was coated with a wall thickness of 1.5 mm under the conditions of -220°C and screw rotation speed of 62 rpm. melamine-phenol resin with an outer diameter of 41.5 mm and a wall thickness of 1.5 mm, with an outer layer made of polypropylene resin with an outer diameter of 41.5 mm and a wall thickness of 1.5 mm.
A composite tube with a wall thickness of 4 mm was obtained.

比較例1 実施例2で使用した40朋押出機及びスクリューを使用
し、成形材料としてフェノール樹脂(住友ベークライト
(株)製、商品名PM−795J)を用いて押出成形を
行なった。シリンダー各部の温度は C,=オに冷、C
,、二=60’c、C1−−80’C,C,=1 10
’cA C3=120℃に設定し、スクリュー回転数2
5rpmで成形を行なって外径40mm肉厚2.5mm
のフェノールパイプを得た。
Comparative Example 1 Using the 40 mm extruder and screw used in Example 2, extrusion molding was performed using a phenol resin (manufactured by Sumitomo Bakelite Co., Ltd., trade name PM-795J) as a molding material. The temperature of each part of the cylinder is C, = cold, C
,,2=60'c,C1--80'C,C,=1 10
'cA Set C3=120℃, screw rotation speed 2
Molding is performed at 5 rpm to obtain an outer diameter of 40 mm and a wall thickness of 2.5 mm.
Obtained a phenol pipe.

第2表に各実施例および比較例により得られた管の性能
測定結果を示した。
Table 2 shows the performance measurement results of the tubes obtained in each Example and Comparative Example.

これらの結果から、本発明の合成樹脂複合管は、耐熱性
、耐燃性、耐衝撃性に優れ流体移送管として好適である
ことがわかる。
These results show that the synthetic resin composite tube of the present invention has excellent heat resistance, flame resistance, and impact resistance, and is suitable as a fluid transfer tube.

〔註)I T工業(株)製、商品名E(略称)〔註〕2
試験方法はJIS K 6742 K準L)、水圧を上
げて行き管が破壊した時の圧力を読み取る。
[Note] Manufactured by IT Kogyo Co., Ltd., product name E (abbreviation) [Note] 2
The test method is JIS K 6742 K semi-L), increase the water pressure and read the pressure when the pipe breaks.

〔註〕3長さ5cIILの管を試験液に浸漬し、下記の
条件で放置した後変化を観察した。
[Note] 3 A tube with a length of 5 cIIL was immersed in the test solution, and after being left under the following conditions, changes were observed.

熱水=100℃×24時間 他の試験液=常温 × 1週間Hot water = 100℃ x 24 hours Other test solutions = room temperature x 1 week

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、従来の押出成形法により押出成
形されたフェノール樹脂管の管軸方向および管軸に直角
な方向における夫々の断面の充填された繊維の形状に関
する電子顕微鏡写真であり、第3図および第4図は本発
明の合成樹脂複合管の内層を形成するフェノール樹脂管
の夫々の電子顕微鏡写真である。 特許出願人 三井東圧化学株式会社 第 1 図 一一一一一一一押出方向 第 2 図 第 3 図 −一一一−−一−H−押出方向 第 4 図 手続補正書 昭和59年8月24日 特許庁長官 志 賀 学 殿 1、事件の表示 昭和59年特許願第81079 号 2、発明の名称 流体移送用合成樹脂複合管 3、補正をする者 事件との関係 特許出願人 4、補正命令の日付 昭和59年7月31日(発送日) (1)明細書第23頁7行の「夫々の」とあるを「管軸
方向および管軸に直角な方向における夫々の断面の充填
された繊維の形状に関する」と訂正する。 特許出願人 三井東圧化学株式会社
Figures 1 and 2 are electron micrographs of the shape of the filled fibers in the cross section of a phenolic resin tube extruded by a conventional extrusion method, in the tube axis direction and in the direction perpendicular to the tube axis, respectively. , 3 and 4 are electron micrographs of phenolic resin tubes forming the inner layer of the synthetic resin composite tube of the present invention. Patent applicant Mitsui Toatsu Chemical Co., Ltd. No. 1 Figure 1111111 Extrusion direction No. 2 Figure 3 Figure -111--1-H-Extrusion direction No. 4 Procedural amendments August 1982 24th Japan Patent Office Commissioner Manabu Shiga 1, Indication of the case Patent Application No. 81079 of 1981 2, Name of the invention Synthetic resin composite pipe for fluid transfer 3, Person making the amendment Relationship to the case Patent applicant 4, Amendment Date of order: July 31, 1980 (shipment date) (1) On page 23, line 7 of the specification, the word "each" has been replaced with "filling of each cross section in the direction of the tube axis and in the direction perpendicular to the tube axis." It is corrected to "concerning the shape of the fibers". Patent applicant Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】 1)樹脂及びまたは充填物が不規則な方向へ配向してな
る押出成形された熱硬化性樹脂管の表面に熱可塑性樹脂
を被覆してなる流体移送用合成樹脂複合管。 2)内層を形成する熱可塑性樹脂管の管軸に対し直の流
体移送用合成樹脂複合管。 3)先端部に平滑部を有するスクリューを使用し、平滑
部に於し・て自己形状を保持できる程度にまで熱硬化性
樹脂を賦形し、その表面に熱可塑性樹脂を被覆してなる
特許請求の範囲第1項及び第2項記載の流体移送用合成
樹脂複合管。
[Scope of Claims] 1) A synthetic resin composite tube for fluid transfer, which is made by coating a thermoplastic resin on the surface of an extruded thermosetting resin tube in which resin and/or filler are oriented in irregular directions. . 2) A synthetic resin composite tube for fluid transfer directly to the tube axis of the thermoplastic resin tube forming the inner layer. 3) A patent in which a screw with a smooth part at the tip is used, a thermosetting resin is shaped to the extent that it can maintain its own shape in the smooth part, and the surface is coated with a thermoplastic resin. A synthetic resin composite tube for fluid transfer according to claims 1 and 2.
JP59081079A 1984-04-24 1984-04-24 Synthetic resin composite pipe for transporting fluid Pending JPS60227087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59081079A JPS60227087A (en) 1984-04-24 1984-04-24 Synthetic resin composite pipe for transporting fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59081079A JPS60227087A (en) 1984-04-24 1984-04-24 Synthetic resin composite pipe for transporting fluid

Publications (1)

Publication Number Publication Date
JPS60227087A true JPS60227087A (en) 1985-11-12

Family

ID=13736380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59081079A Pending JPS60227087A (en) 1984-04-24 1984-04-24 Synthetic resin composite pipe for transporting fluid

Country Status (1)

Country Link
JP (1) JPS60227087A (en)

Similar Documents

Publication Publication Date Title
US4797242A (en) Method for shaping thermosetting resins
EP1642703B1 (en) Resin composition, resin molded article and production method thereof
CN1724918A (en) Aluminium plastic composite pipe and its manufacturing method
CN107189231A (en) Polypropylene reinforced double-wall corrugated pipe
CN108943881B (en) Full-plastic heat-insulating pressure-resistant conveying pipeline and preparation method thereof
JPS60227087A (en) Synthetic resin composite pipe for transporting fluid
CN107365495A (en) The nylon alloy of high fuel oil barrier resistant to chemical etching, composite and preparation method thereof
GB2473357A (en) Method of manufacturing a flexible tubular structure
JPH0451710B2 (en)
JPS60225745A (en) Synthetic resin composite tube for protecting tube
CN109733036B (en) Building same-life drainage pipe and preparation method thereof
JPH0613189B2 (en) Thermosetting resin protection tube
CN110951146A (en) Novel aluminum-plastic composite pipe for fire-fighting pipeline and preparation method thereof
JPS6098284A (en) Thermosetting resin pipe for transporting fluid
JPS6176357A (en) Synthetic-resin composite pipe
JP2001289363A (en) Fireproof three-layer pipe
CN111410805A (en) Anti-fatigue crack power tube and preparation method thereof
JPS6095290A (en) Thermosetting resin pipe
CN114395194B (en) PP-R/PBT alloy material and preparation method and application thereof
CN100577739C (en) Resin composition, resin molded article and production method thereof
CN219667658U (en) High-impact composite pipe, pipeline part and pipeline system
Fu et al. Factors influencing the formability of GF/Nylon-66 in one-step extrusion
JPS60149448A (en) Synthetic resin composite pipe
CN220037717U (en) Continuous fiber reinforced bio-based polyamide composite pipe
CN110387088B (en) PB composite modified material, preparation method thereof and water heater prepared from PB composite modified material