JPS60224950A - Characteristic matching method and apparatus of operation machinery - Google Patents

Characteristic matching method and apparatus of operation machinery

Info

Publication number
JPS60224950A
JPS60224950A JP60061075A JP6107585A JPS60224950A JP S60224950 A JPS60224950 A JP S60224950A JP 60061075 A JP60061075 A JP 60061075A JP 6107585 A JP6107585 A JP 6107585A JP S60224950 A JPS60224950 A JP S60224950A
Authority
JP
Japan
Prior art keywords
matching
slope
integrator
offset
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60061075A
Other languages
Japanese (ja)
Other versions
JPH0574698B2 (en
Inventor
コルネリウス・ペーター
クラウス・ルツプマン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JPS60224950A publication Critical patent/JPS60224950A/en
Publication of JPH0574698B2 publication Critical patent/JPH0574698B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Electrotherapy Devices (AREA)
  • Radio Transmission System (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Feedback Control In General (AREA)
  • Fluid-Damping Devices (AREA)
  • Chairs Characterized By Structure (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Glass Compositions (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

1. Claims for contracting states AT, IT Method is conjunction with a control or regulation system for the speed of an internal combustion engine in the case of idling via an electromechanical final control element, for controlling the air quantity or mass taken in by means of an adaptation of the shape of a characteristic of the continuously operating final control element of the internal combustion engine by converting the controlling variable (Qset , mset ) fed to the final control element (12, Id-ACT.) by the control or controller output into an adapted electrical manipulated variable (tau) for the final control element in which the controlling variable (Qset , mset ) is combined multiplicatively and/or by summation with at least one stored value (I1 , I2 ) influencing the offset and/or the slope of the characteristic of the final control element, the stored values representing an output signal of in each case one control loop which is activated in the event of certain operating conditions and, from a comparison of the controlling variable (Qset , mset ) with an actual measured value of the air-mass or air-quantity measuring device, generates the output signal with which at least one of the stored values (I1 , I2 ) is altered to produce a relatively slight control deviation, the value thus altered being stored at the temporal end of the particular operating condition. 1. Claims for contracting states DE, FR, GB Method is conjunction with a control or regulation system for the speed of an internal combustion engine in the case of idling via an electromechanical final control element, for controlling the air quantity or mass taken in by means of an adaptation of the shape of a characteristic of the continuously operating final control element of the internal combustion engine by converting the controlling variable (Qset , mset ) fed to the final control element (12, Id-ACT.) by the control or controller output into an adapted electrical manipulated variable (tau) for the final control element in which the controlling variable (Qset , mset ) is combined multiplicatively or by summation with at least one stored value (I1 , I2 ) influencing the offset and/or the slope of the characteristic of the final control element, the stored values representing an output signal of in each case one control loop which is activated in the event of certain operating conditions and, from a comparison of the controlling variable (Qset , mset ) with an actual measured value of the air-mass or air-quantity measuring device, generates the output signal with which at least one of the stored values (I1 , I2 ) is altered to produce a relatively slight control deviation, the value thus altered being stored at the temporal end of the particular operating condition, characterized in that an interlocking of offset and slope adaptation takes place to the effect that, after each slope adaptation, an offset adaptation (Qset = Qactual ) first of all takes place before another slope adaptation is enabled.

Description

【発明の詳細な説明】 イ)技術分野 本発明は、操作機器の特性整合方法及び装置、更に詳細
には特にアイドリング時内燃機関に供給される空気量を
制御する内燃機関のフィトリング充填効率制御を行なう
操作機器に作用する外乱量並びにその他好ましくない量
を除去する為に操作機器の特性を整合させる操作機器の
特性整合方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION A) Technical field The present invention relates to a method and apparatus for matching the characteristics of operating equipment, and more particularly to a fitting filling efficiency control for an internal combustion engine that controls the amount of air supplied to the internal combustion engine during idling. The present invention relates to a method and apparatus for matching the characteristics of operating devices to eliminate disturbances and other undesirable amounts acting on the operating devices.

口)従来技術 従来特に自動制御分野で任意の操作機器に調節器から得
られる駆動信号(操作信号)を入力して閉ループあるい
は開ループを行ない所定の値や所定の量を定めたりある
いは位置を設定することが行なわれている。その場合調
節器は所定の入力信号を処理し又操作機器の動作によっ
て得られた量を考慮して調節を行なっている。このよう
な制御においてもっばら操作機器の特性に起因する外乱
量やその他好ましくない影響量が発生する。即ち言葉を
変えると操作機器にはその操作特性において必ずしも操
作機器に入力された目標値に対応した動作をするとは限
らない、このような場合に偏差が顕著となり時定数に従
って行きすぎ量が大きくなったりあるいは制御が非常に
緩慢になってしまうという問題が発生する。
(1) Prior art Conventionally, especially in the field of automatic control, a drive signal (operation signal) obtained from a controller is input to any operating device and a closed loop or open loop is performed to determine a predetermined value or quantity or to set a position. things are being done. In this case, the regulator processes the predetermined input signals and takes into account the variables obtained by the actuation of the control device to carry out the adjustment. In this type of control, disturbance amounts and other undesirable influence amounts mainly due to the characteristics of the operating equipment occur. In other words, the operation characteristics of the operating device do not necessarily correspond to the target value input to the operating device. In such cases, the deviation becomes noticeable and the amount of overshoot increases according to the time constant. The problem arises that the control becomes very slow.

例えば操作機器を内燃機関に供給される空気量を制御す
る内燃機関のフィトリング充填効率制御(LFR)を行
なう操作機器の場合を考えてみる。従来アイドル回転数
の調#(アイドリング調速)は次の様にして行なわれて
いる。すなわちアイドリング速度調節器に内燃機関の実
際の駆動状態を表わす種々の量、例えば吸気管の圧力、
実際回転数、アイドリング時の所望目標回転数その他の
絞り弁位置、バイパス弁の位置等の周辺データ、吸入さ
れた空気量あるいは空気質量に関するデータ等の種々の
データが入力される。アイドリング速度調節器がこれら
の量に基づき駆動信号(同時に目標値でもある)、例え
ば空気流量目標値Qsollあるいは空気質量目標値m
gall(以下空気量目標値という)を発生し、この信
号がフィトリング操作機器に入力される。アイドリング
操作機器はこの操作機器に入力された空気量目標値に従
って例えばバイパス弁の開口断面積を変化させそれに空
気量を制御するようにしている。
For example, consider the case where the operating device is an operating device that performs fitting efficiency control (LFR) of an internal combustion engine that controls the amount of air supplied to the internal combustion engine. Conventionally, adjustment of the idle speed (idling speed control) has been carried out as follows. This means that the idle speed regulator is supplied with various variables representing the actual operating state of the internal combustion engine, such as the pressure in the intake pipe,
Various data such as actual rotational speed, desired target rotational speed during idling, peripheral data such as throttle valve position, bypass valve position, and data regarding intake air amount or air mass are input. The idle speed regulator generates a drive signal (which is also a setpoint value at the same time) on the basis of these variables, for example an air flow setpoint value Qsoll or an air mass setpoint value m.
gall (hereinafter referred to as air amount target value), and this signal is input to the fitting operation device. The idling operating device controls the air amount by changing, for example, the opening cross-sectional area of the bypass valve in accordance with the air amount target value inputted to the operating device.

内燃機関のフィトリング充填効率制御では種々の条件、
例えば燃料消費量をできるだけ少なくしたり、負荷が突
然変化しても最小アイドリング回転数を一定に保ったり
するという条件を実現しなければならない、ドイツ特許
公開公報第30311435号に記載されたアイドリン
グ速度調節器の場合には偏差が生じた場合この偏差を小
さな値にしたりあるいはゼロにするように構成されてい
る。しかし回転数の変動は最終的には内燃機関が外部の
量に反応した結実風われるものであり、内燃機関に及ぼ
される作用が内燃機関に作用して反応が現われるまでに
は必然的にある時間が経過してしまうという問題がある
。従って特に低速で回転数が維持されるアイドリング時
では例えばクーラ等大きな負荷が突然用いられた場合に
は内燃機関が止まってしまうという危険が発生する。こ
の問題は操作機器の特性がそれぞれの温度や内燃機関の
電源電圧に顕著に依存することからさらに大きくなって
しまうという欠点がある0通常アイドリング操作機器は
必要な空気量を内燃機関に供給する開口断面部を調節す
る働きをし、電磁変換器(この場合アンチインダクタ(
EWD)あるいは弁を、作動させる電磁弁)として構成
することができる。アイドリング操作機器が冷却してい
る場合には操作機器の巻き線は大きな電流を必要としそ
れに対応して不整合が発生する。同様な問題が電源電圧
の変動が大きくなった場合にも現われる。
In internal combustion engine fitting efficiency control, various conditions,
For example, the idling speed regulation described in DE 30 31 1 435 has to achieve conditions such as keeping the fuel consumption as low as possible or keeping the minimum idling speed constant even if the load suddenly changes. In the case of a device, if a deviation occurs, it is configured to reduce this deviation to a small value or to zero. However, fluctuations in rotational speed are ultimately the result of the internal combustion engine reacting to external quantities, and it takes a certain amount of time for an action on the internal combustion engine to act on the internal combustion engine and for a reaction to appear. The problem is that the period has passed. Therefore, especially during idling when the rotational speed is maintained at a low speed, there is a risk that the internal combustion engine will stop if a large load such as a cooler is suddenly applied. This problem is further exacerbated by the fact that the characteristics of the operating devices are significantly dependent on the respective temperature and supply voltage of the internal combustion engine.Normally, the idling operating device is an opening that supplies the required amount of air to the internal combustion engine. It serves to adjust the cross-section and is connected to an electromagnetic transducer (in this case an anti-inductor).
EWD) or the valve can be configured as an actuated solenoid valve). If the idling operating device is cooling, the operating device windings require a large current and a corresponding mismatch occurs. A similar problem occurs when power supply voltage fluctuations become large.

従ってこのような不整合をできるだけ小さくする為にフ
ィトリング操作機器は複雑な構成とし正確に再生可能な
特性を持つ様にしなければならない。
Therefore, in order to minimize such mismatches, the fitting operating equipment must be of complex construction and must have precisely reproducible characteristics.

又たとえ問題なく作用することができるアイドリング操
作機器であっても絞り弁の位置に避けがたい依存性を持
っていてアイドリング位置においても漏れ空気量が発生
したり、アイドリング操作機器によって得られる断面開
口部に大きく依存したりする。
Furthermore, even if the idling operating device is able to function without problems, there is an unavoidable dependence on the position of the throttle valve, and leakage air may occur even in the idling position, or the cross-sectional opening provided by the idling operating device may It depends a lot on the department.

ハ)目 的 従って本発明はこのような従来の欠点を除去するために
為されたもので、操作機器に供給される駆動信号を整合
(補正)し、正確な制御を可能にする操作機器の特性整
合方法及び装置を提供することを目的とする。
C) Purpose Therefore, the present invention has been made in order to eliminate such conventional drawbacks, and is to provide an operating device that matches (corrects) the drive signal supplied to the operating device and enables accurate control. An object of the present invention is to provide a characteristic matching method and device.

ニ)発明の構成 本発明はこの目的を達成するために、調節器の出力から
操作機器に供給される目標値を操作機器の特性(曲線)
のオフセット値あるいはその傾斜を変化させる積分器の
出力信号と少なくとも乗算的あるいは加算的に結合させ
、それにより操作機器に入力される駆動信号を整合ない
し補正する構成を採用した。
D) Structure of the Invention In order to achieve this object, the present invention converts the target value supplied from the output of the regulator to the operating device into a characteristic (curve) of the operating device.
The present invention employs a configuration in which the drive signal input to the operating device is matched or corrected by at least multiplicatively or additively combining the drive signal with the output signal of the integrator that changes the offset value or the slope thereof.

ホ)実施例 以下、図面に示す実施例に従い本発明の詳細な説明する
E) Examples Hereinafter, the present invention will be explained in detail according to examples shown in the drawings.

以下に説明するのは内燃機関(ガソリン機関)のフィト
リング充填効率制御(アイドリング時内燃機関に供給さ
れる空気量の制御)(LFR)を最適化させる実施例に
ついて行なわれる。その場合アイドリング速度調節器か
ら得られる空気量の目標値Qsollが特性整合回路な
らびにアイドリング操作機器を介してQistに変換さ
れQsoll漫Qistとなるように制御が行なわれる
The following is an example of optimizing the fitting efficiency control (control of the amount of air supplied to the internal combustion engine during idling) (LFR) of the internal combustion engine (gasoline engine). In this case, the target air amount Qsoll obtained from the idling speed regulator is converted into Qist via the characteristic matching circuit and the idling operating device, and control is performed so that Qsoll is equal to Qist.

本発明の基本的な考え方はアイドリング速度調節器から
得られる目標値に加算的あるいは乗算的にあるいはその
両方で作用させるようにし、それにより各時点でのアイ
ドリング操作機器の特性並びに漏れ空気量に対して補償
を行なうようにしている。このようにして漏れ空気量に
対するバイパス路を介した調整を省略することができる
The basic idea of the present invention is to act additively, multiplicatively, or both on the target value obtained from the idling speed regulator, thereby controlling the characteristics of the idling operating device and the amount of leakage air at each point in time. We are trying to provide compensation. In this way, adjustment of the leakage air amount via the bypass path can be omitted.

第1図にはアイドリング速度調節器が符号lOで、また
特性整合回路11を介してアイドリング速度調節器から
得られる信号を受ける操作機器(アイドリング操作機器
)が符号12で図示されている。アイドリング操作機器
(LL−S)は本実施例の場合バイパス路を拡大あるい
は縮小することによりあるいは絞り弁を調節することに
より内燃機関13の吸気管の実効断面を調節する手段な
いし機器である。
In FIG. 1, an idling speed regulator is designated by the reference numeral 1O, and an operating device (idling operating device) receiving a signal obtained from the idling speed regulator via a characteristic matching circuit 11 is designated by the reference numeral 12. In this embodiment, the idle control device (LL-S) is a means or device for adjusting the effective cross section of the intake pipe of the internal combustion engine 13 by enlarging or reducing the bypass passage or by adjusting the throttle valve.

内燃機関13が最終的に得る空気Qistはアイドリグ
操作機器を介して送られる空気量すなわちその操作機器
を駆動することによって得られる空気量と、絞り弁を介
して流れる漏れ空気量QJから成っている0本発明によ
る特性整合回路11によりアイドリング速度調節器lO
から得られる空作信号)τに変換され、この信号がフィ
トリング操作機器12に入力される。アイドリング操作
機器12によって所定の空気量が設定され、漏れ空ろい
は空気重量m1st)が得られる。この場合、本発明に
よる整合は駆動状態を調べながらゆっくり行なわれる。
The air Qist that the internal combustion engine 13 finally obtains consists of the amount of air sent through the idling operating device, that is, the amount of air obtained by driving the operating device, and the amount of leakage air QJ flowing through the throttle valve. 0 The idling speed regulator 10 is controlled by the characteristic matching circuit 11 according to the present invention.
The idle signal obtained from the above is converted into τ, and this signal is input to the fitting operation device 12. A predetermined amount of air is set by the idling operation device 12, and the leakage airflow is obtained by the air weight m1st). In this case, the alignment according to the invention is performed slowly while checking the driving conditions.

第1図に図示した回路で符号11は増幅度(ゲイン)が
1の比例要素を示し、従って安定性に対しては何ら影響
を与えない。この特性整合回路によりτ=τ(、+mφ
Qの信号が形成される(第3図参照)。
In the circuit shown in FIG. 1, reference numeral 11 indicates a proportional element with an amplification degree (gain) of 1, and therefore has no effect on stability. With this characteristic matching circuit, τ=τ(, +mφ
A Q signal is formed (see FIG. 3).

操作機器の特性(曲線)を整合させるため(操作機器の
特性曲線のオフセット、すなわちゼロ点移動を行なう積
分器IIと特性曲線の傾斜を変化させる積分器I2が設
けられる。これらの積分器は所定の駆動条件が得られて
特性整合を行なわしめる時にのみ作動するものである。
In order to match the characteristics (curves) of the operating equipment, an integrator II that offsets the characteristic curve of the operating equipment, that is, moves the zero point, and an integrator I2 that changes the slope of the characteristic curve are provided. It operates only when the driving conditions are obtained and the characteristics are matched.

そのためにオ、フセット用積分器11には作動素子FG
Iが、また傾斜を変える積分器工2には作動素子FG2
が接続される。
For this purpose, the offset integrator 11 has an actuating element FG.
I also has an actuating element FG2 in the integrator 2 that changes the slope.
is connected.

それにより積分器工2は調節器10から得られる目標値
に対し乗算係数を有する乗算器Mを介して乗算的に作用
し、また積分器11から得られるオフセット補正値が加
算点S1に加算的に作用する。
Thereby, the integrator 2 acts multiplicatively on the target value obtained from the regulator 10 via the multiplier M having a multiplication coefficient, and the offset correction value obtained from the integrator 11 acts additively on the summing point S1. It acts on

両端分器If、I2には目標値(Qsollあるいはm
5all)と実際値(4iatあるいは;n1st)の
偏差に対応する空気量の差値Δaが第2の加算点すなわ
ち比較点S2を介して入力される。空気量の実際値Qi
stは吸気管に配置された空気量センサあるいは他のよ
く知られた方法により得ることが可能である。
The target value (Qsoll or m
An air amount difference value Δa corresponding to the deviation between the actual value (4iat or ;n1st) is inputted via the second addition point, that is, the comparison point S2. Actual value of air volume Qi
st can be obtained by an air flow sensor placed in the intake pipe or by other well known methods.

したがって2つのパラメータを変化させることにより、
すなわちオフセット値Klならびに傾斜に2を変えるこ
とにより特性を補償し所望の関係Q igt=Qsol
lが得られるように制御することができる。所定の初期
値を得るために積分器II。
Therefore, by changing the two parameters,
That is, by changing the offset value Kl and the slope by 2, the characteristics are compensated and the desired relationship Q igt=Qsol
It can be controlled so that l can be obtained. Integrator II to obtain a predetermined initial value.

I2の後段に加算点S3,34が接続され、この加算点
にはオフセットに対する初期値KIO1ならびに傾斜に
対する初期値に20が入力される。
A summing point S3, 34 is connected after I2, and 20 is input to this summing point as an initial value KIO1 for the offset and an initial value for the slope.

アイドリング操作機器(LL−3)の特性ならびに漏れ
空気量のcap)に対する整合は次のようにして行なわ
れる。オフセット用積分器Ifは、絞り弁が所定の時間
(Tt=f(n))以上閉じかつエンジンの回転数nが
アイドリング領域にある時のみ動作される。そのために
積分器I l。
Matching to the characteristics of the idling operating device (LL-3) and the amount of leakage air (cap) is performed as follows. The offset integrator If is operated only when the throttle valve is closed for a predetermined time (Tt=f(n)) or more and the engine speed n is in the idling range. For that purpose the integrator I l.

用作動素子FGIに絞り方位at信号DKならびに回転
数信号nが印加され、この両条件が満たされた時のみオ
フセット用積分器11が作動される。
The aperture azimuth at signal DK and the rotational speed signal n are applied to the offset operating element FGI, and the offset integrator 11 is operated only when both conditions are satisfied.

一方、特性値を回転させ(傾斜を変化させる)駆動信号
τに対して強力に、すなわち乗算的に作用させる積分器
I2は絞り弁が所定の時間T2(たとえば100履S)
閉じた時のみ作動される。
On the other hand, the integrator I2, which rotates the characteristic value (changes the slope) and acts strongly on the drive signal τ, that is, in a multiplicative manner,
Activated only when closed.

T2に対しては T2<t<TI=f (n) が成立しそれにより空気量センサの行き過ぎ特性ならび
にそれに基づいた誤差を抑圧することが可能になる。さ
らに傾斜整合を行なうときのQgollは絞り弁を開放
する直前の値Qsollよりも大きな値である。すなわ
ち積分器■2に対するその時点での動作点は積分器If
の動作によって得られる動作点以上に位置しなければな
らないことになる。
For T2, T2<t<TI=f (n) holds true, which makes it possible to suppress the excessive characteristic of the air amount sensor and the error based thereon. Furthermore, Qgoll when performing slope matching is a larger value than the value Qsoll immediately before opening the throttle valve. In other words, the operating point for integrator 2 at that point is integrator If
This means that the position must be above the operating point obtained by the operation of .

第3図には電源電圧、温度、差圧、漏れ空気量等に関係
する操作機器の特性曲線Q=f(τ)が図示されている
FIG. 3 shows the characteristic curve Q=f(τ) of the operating device, which is related to the power supply voltage, temperature, differential pressure, leakage air amount, etc.

同図において斜線で図示した部分は非常走行用の特性曲
線であって本発明による方法によって影響されない部分
で参考のために図示しである。符号1で示すものは、初
期状態での基準特性曲線であり、2はオフセットによる
整合後の特性曲線、3は傾斜による整合後の特性曲線で
あり、実際の操作機器の特性曲線となる。まず第1ステ
ツプとしてオフセットにより矢印Aで図示したように動
作点が移動される1次に行なわれる第2ステツプの傾斜
〈よる乗算作用(矢印B)はオフセットの動作点以下の
動作点で行なってはならない、というのは、その場合に
逆の望ましくない効果が発生するからである。従って傾
斜による整合は常にオフセット動作点以上の動作点で行
なわれる。
The shaded area in the figure is a characteristic curve for emergency running, which is not affected by the method according to the invention, and is shown for reference. The reference characteristic curve 1 is the standard characteristic curve in the initial state, 2 is the characteristic curve after matching by offset, and 3 is the characteristic curve after matching by slope, which is the characteristic curve of the actual operating device. First, in the first step, the operating point is moved as shown by arrow A by an offset.The second step, which is performed by inclination (arrow B), is performed at an operating point below the operating point of the offset. should not be done, because in that case the opposite undesirable effect would occur. Therefore, alignment by tilting is always performed at an operating point above the offset operating point.

そのために作動素子FG2に対する条件としてたとえば
アイドリング時に発生する最少空気量よりも大きな空気
量が得られる時にのみ傾斜を整合させるという条件が付
は加えられる。
For this purpose, a condition is added to the actuating element FG2, for example, that the inclination is adjusted only when an air quantity greater than the minimum air quantity that occurs during idling is obtained.

この条件を達成するためにメモリSBを設は絞り弁開放
時その時のQsoll(あるいはm5all)を格納し
、このメモリに絞り弁位置信号DKならびにQsoll
の値が入力される。上述した格納はオフセット用積分器
11によって整合化された後の動作点を格納したことに
なる。第2ステツプの傾斜整合を行なう場合、今要求さ
れている空気量の目標値(Qsoll、 m5all)
が前回格納された値よりも大きいか否かが調べられ、そ
うなった時にのみ傾斜整合が行なわれる0両目標値を比
較する回路がw42図でVGで図示されている。
In order to achieve this condition, a memory SB is provided to store Qsoll (or m5all) at that time when the throttle valve is opened, and store the throttle valve position signal DK and Qsoll in this memory.
The value is entered. The above storage is equivalent to storing the operating point after being matched by the offset integrator 11. When performing the second step of slope matching, the target value of the currently required air volume (Qsoll, m5all)
It is checked whether or not the value is larger than the previously stored value, and only when this is the case, slope matching is performed. A circuit for comparing the two target values is indicated by VG in the diagram W42.

この条件は補助的に以下の条件と置き換えることもでき
る。すなわち実際回転数が所定の回転数以上にある時、
すなわちn>nLし (アイドリング回転数) + 5
00/分にある時に傾斜を整合させるようにする。とい
うのは回転数が大きい場合には動作点もアイドリング点
以上の特性をとっていると考えられるので、正しい特性
曲線部分にあるからである。このよな回転数が大きくな
る場合には、たとえばアクセルペダルを踏んだ時、ある
いはエンジンブレーキの時に現われる。しかしこのよな
代替は補助的に用いるべきで絞り弁開放前の目標値を格
納する方が好ましいことに注意しておく。
This condition can also be supplementarily replaced with the following condition. In other words, when the actual rotational speed is higher than the predetermined rotational speed,
That is, n>nL (idling speed) + 5
00/min to align the slope. This is because when the rotational speed is high, the operating point is considered to have characteristics higher than the idling point, so it is on the correct characteristic curve. This increase in rotational speed occurs, for example, when the accelerator pedal is depressed or during engine braking. However, it should be noted that such an alternative should be used auxiliary and it is preferable to store the setpoint value before opening the throttle valve.

さらに乗算器Mの前段に加算点S5が設けられ、そこで
目標値Qsollと空気量Qoの引き算が行なわれる。
Furthermore, an addition point S5 is provided before the multiplier M, and subtraction of the target value Qsoll and the air amount Qo is performed there.

これにより動作領域の最適化が行なわれる。その場合Q
oの値は鰻少空気量目櫟値よりも大きくない方が良いの
で、加算点S5を軽た後乗算器Mに達する量は好ましく
は常にゼロ以Eの値となる(勿論Qoが最小空気量目櫟
値よりも大きくても良い)、この負のQoの値を加算す
ることにより特性曲線の回動点をできるだけ動作点近く
に置くことが可能になる。入力されたQOの値がちょう
ど動作点上にある場合を考えると単に積分するだけで、
すなわちオフセット調節をし傾斜調節をするだけで特性
を整合させることができる。しかしQOの値がその動作
点とずれることにより回動点が低い所にあった場合でも
、全体として積分工程を少なくして済ますことが可能で
ある。
This optimizes the operating area. In that case Q
It is better that the value of o is not larger than the eel low air amount criterion value, so the amount that reaches the multiplier M after reducing the addition point S5 is preferably always a value greater than or equal to zero (of course, if Qo is the minimum air amount) By adding this negative Qo value, it is possible to place the turning point of the characteristic curve as close to the operating point as possible. If we consider the case where the input QO value is exactly on the operating point, we can simply integrate it,
That is, the characteristics can be matched simply by adjusting the offset and adjusting the slope. However, even if the QO value deviates from the operating point and the rotation point is at a low location, it is possible to reduce the number of integration steps as a whole.

また各積分器If、I2の時定数を大きくし、特性整合
の作用を緩慢にして本来のフィトリング充填効率制御に
影響を与えないようにすることができる。
Furthermore, the time constant of each integrator If, I2 can be increased to slow down the effect of characteristic matching so as not to affect the original fitting efficiency control.

また1本発明による操作機器の特性曲線の整合を向上さ
せ、積分工程を減少し従ってより急速に整合させないし
は不整合を避けるようにすることもできる。すなわち絞
り弁が閉じ、傾斜積分器I2が作動せず、所定時間T2
が経過した時には常にオフセット積分器IIを駆動させ
るようにする。またQspを絞り弁開放時それぞれ記憶
された値としΔQを所定の空気量としてQigt≧Qs
p+ΔQである時のみ傾斜積分器I2を駆動させる。ま
た各傾斜整合後まずオフセット整合を成功させ、(Q 
goll= Q is t ) 、続いて新しい傾斜整
合を行なうようにする。さらに傾斜整合時同時に所定の
計算式に従いオフセット積分器11も調整させ、それに
より特性曲線の回転をQoではなく前回の動作点Qsp
を中心に行なうようにする。このようにしてTlがかな
り大きい場合には必要な積分ステップ数を1つに減少さ
せることができる。
It is also possible to improve the matching of the characteristic curves of the operating device according to the invention, reducing the integration steps and thus matching more rapidly or avoiding mismatches. That is, the throttle valve closes, the slope integrator I2 does not operate, and the predetermined time T2
The offset integrator II is always driven when the time period elapses. In addition, Qsp is the value stored when the throttle valve is opened, and ΔQ is the predetermined air amount, Qigt≧Qs.
The slope integrator I2 is driven only when p+ΔQ. In addition, after each slope matching, offset matching is first performed successfully, and (Q
goll=Q is t ), followed by a new slope match. Furthermore, at the same time as adjusting the slope, the offset integrator 11 is also adjusted according to a predetermined calculation formula, thereby changing the rotation of the characteristic curve to the previous operating point Qsp instead of Qo.
Make sure to focus on In this way, the number of required integration steps can be reduced to one if Tl is quite large.

このような方法を本発明によるアイドリング充填効率制
御に用いるようにするために、′@2図に図示したよう
に回路ブロックFBが設けられる。
In order to use such a method for idle charging efficiency control according to the invention, a circuit block FB is provided as shown in FIG.

このブロックFBは内積分器を互いにロックする機能を
有し、この回路ブロックFBには絞り弁が前回開放した
時の値Qgpを格納するメモリSBの出力信号1両積分
器並びにこれに関連した作動素子からの出力信号がそれ
ぞれ入力される。このブロックFBの出力信号は作動素
子FGI、FG2に入力される。それにより上述した条
件、すなわち絞り弁が閉じ積分器■2が作動せずT2の
時間が経過した時の条件が満たされた時には常に作動素
子FGIを介してオフセット積分器を作動させるように
している。またこのブロックFBにより実際の空気量信
号Qistが絞り弁開放時に格納された値と所定空気量
の和よりも大きいか等しくなった時のみ傾斜積分器を作
動させるようにする。このようにして傾斜整合により駆
動信号に比較的強く作用させることができる。
This block FB has the function of locking the inner integrators to each other, and this circuit block FB contains the output signal of the memory SB which stores the value Qgp when the throttle valve was last opened. Output signals from the elements are respectively input. The output signal of this block FB is input to actuating elements FGI, FG2. As a result, whenever the above-mentioned condition is satisfied, that is, when the throttle valve is closed and the integrator 2 is not activated and the time T2 has elapsed, the offset integrator is activated via the activation element FGI. . Further, this block FB causes the slope integrator to operate only when the actual air amount signal Qist is greater than or equal to the sum of the value stored when the throttle valve is opened and the predetermined air amount. In this way, the slope matching allows a relatively strong influence on the drive signal.

また回路ブロックFBはオフセット積分器と傾斜積分器
の作動を相互にロックさせる働きをするので、傾斜変化
によって強く整合が行なわれ、その間にオフセット整合
により脚点ないし回動点も整合されることを防止するこ
とができる。
In addition, since the circuit block FB functions to mutually lock the operations of the offset integrator and the slope integrator, it is ensured that the adjustment is strongly performed by the slope change, and that the leg point or the rotation point is also aligned by the offset adjustment. It can be prevented.

上述した実施例はブロー7り図として図示されたが、こ
れらを実施するのにアナログ的、デジタル的あるいはハ
イブリッド的に構成することができ、また例えばマイク
ロプロセッサ、マイクロコ、ンピュータ、デジタル論理
回路などプログラム制御されたデジタル装置を用いて実
現することも可能である。
Although the embodiments described above are illustrated as blow diagrams, they can be implemented in analog, digital or hybrid configurations, such as microprocessors, microcomputers, computers, digital logic circuits, etc. It is also possible to implement it using program-controlled digital devices.

また本発明はアイドリング操作機器だけでなく自動制御
系における任意の操作機器に対しても応用できるもので
ある。
Further, the present invention can be applied not only to idling operating equipment but also to any operating equipment in an automatic control system.

へ)効果 以上説明したように本発明では操作機器の特性あるいは
その他外乱優等望ましくない量の補償は操作機器の特性
がどのようなものであっても行なうことができるので操
作機器(アイドリング充填効率制御に用いた場合にはア
イドリング操作機器)を特に複雑に構成する必要がない
という効果が得られる。この様に本発明によれば簡単な
操作機器の構成であっても空気量を測定する場合内燃機
関がどの様な駆動状態にあるか無関係にする事ができ、
又空気量測定は内燃機関の駆動状態の依存度を顕著に減
少させることができる。又本発明では漏れ空気量にも無
関係となるのでエンジンの調節が不必要となり全体の制
御領域において本来のアイドリング充填効率制御に影響
を与えない様に操作機器の特性を整合させる事が可能に
なる。
f) Effects As explained above, in the present invention, compensation for undesirable amounts such as characteristics of the operating device or other disturbances can be performed regardless of the characteristics of the operating device. When used for this purpose, the advantage is that there is no need to configure the idling operation device in a particularly complicated manner. As described above, according to the present invention, even with a simple configuration of operating equipment, it is possible to make the driving state of the internal combustion engine irrelevant when measuring the amount of air.
The dependence of the air quantity measurement on the operating state of the internal combustion engine can also be significantly reduced. Furthermore, since the present invention is independent of the amount of leaked air, engine adjustment is not required, and it is possible to match the characteristics of the operating equipment in the entire control area so as not to affect the original idling charging efficiency control. .

また、本発明の好ましい実施例によれば積分工程の減少
、従って急速な整合を次のようにして。
Also, in accordance with a preferred embodiment of the present invention, the integration steps are reduced and thus rapid alignment is achieved as follows.

すなわち傾斜整合時同時に所定の計算式に従いオフセッ
ト積分器も調整させるようにし特性曲線を前回の絞り開
放時に格納された空気量の実際値の動作点を中心に回転
させることができる。
That is, the offset integrator is also adjusted according to a predetermined calculation formula at the same time as the slope adjustment, so that the characteristic curve can be rotated around the operating point of the actual value of the air amount stored when the aperture was previously opened.

さらに何回も行なわれる傾斜整合によって生じる不整合
を次のようにすることにより、すなわち各傾斜整合後ま
ずオフセット整合を行ない、その後新しい傾斜整合を行
なうことによって避けることができる。その場合オフセ
ット積分器は、絞り弁が閉じ傾斜積分器が動作せず、所
定のロック時間が経過した時に常に作動させるようにす
る。また傾斜積分器は通常実際の空気量が絞り弁開放時
格納された値と所定の空気量との和よりも大きくなった
時にのみ作動させるようにする。
Additionally, misalignments caused by multiple tilt alignments can be avoided by first performing an offset alignment after each tilt alignment, followed by a new alignment. In that case, the offset integrator is activated whenever the throttle valve is closed and the slope integrator is inactive and a predetermined locking time has elapsed. Additionally, the slope integrator is normally activated only when the actual amount of air is greater than the sum of the value stored when the throttle valve is open and a predetermined amount of air.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアイドリング速度調節器並びにフィトリング操
作機器の構成を示したブロック図、第2図は特性整合回
路の詳細を示したブロック図、第3図は操作機器の特性
を整合させる動作を説明する線図である。 10・・・アイドリング速度調節器 11・・・特性整合回路 12・・・操作機器13・・
・内燃機関 II、I2・・・積分器FG1.FG2・
・・作動素子 M・・・乗算器 C) ・OE
Figure 1 is a block diagram showing the configuration of the idling speed regulator and fitting operating equipment, Figure 2 is a block diagram showing details of the characteristic matching circuit, and Figure 3 explains the operation of matching the characteristics of the operating equipment. FIG. 10... Idling speed regulator 11... Characteristic matching circuit 12... Operation device 13...
- Internal combustion engine II, I2... Integrator FG1. FG2・
...Operating element M...Multiplier C) ・OE

Claims (1)

【特許請求の範囲】 l)特に内燃機関に供給される空気量を制御する操作機
器に作用する外乱量並びにその他望ましくない量を除去
し操作機器の特性を整合する操作機器の特性整合方法に
おいて、調節器の出力から操作機器(12、LL−3)
に供給される目標値(Q 5oil 、 m 5oil
)を操作機器の特性曲線のオフセット値あるいはその傾
斜を変化させる積分器(I 1 、 I 2)の出力信
号と少なくとも乗算的あるいは加算的に結合させ、その
場合オフセット積分器(I 1)と傾斜積分器(I2)
の作動を相互に関連させ、それにより得られた実際値(
Q ist 、 m ist )を考慮して目標値を整
合された駆動信号(τ)に変換し、操作機器を駆動する
ことを特徴とする操作機器の特性整合方法。 2)@配積分器(If、I2)は内燃機関の所定の駆動
状態に従って作動され操作機器に入力される駆動信号(
τ)を変化させる特許請求の範囲第1項に記載の操作機
器の特性整合方法。 3)オフセット値びに傾斜の整合を積分器(II、I2
)の時定数を大きくし本来のアイドリング充填効率制御
に影響を与えないようにした特許請求の範囲第1項又は
第2項に記載の操作機器の特性整合方法。 4)内燃機関の絞り弁が所定の時間(Tl−f(n))
閉じかつエンジンの回転数がフィトリング領域にある時
のみオフセット用積分器(11)を作動させるようにし
た特許請求の範囲第1項又は第2項に記載の操作機器の
特性整合方法。 5)絞り弁が所定時間(I2)閉じしかも傾斜整合を行
なう動作点がオフセット整合によって得られた動作点よ
り上にある時にのみ傾斜整合用の積分器(I2)を動作
させるようにした特許請求の範囲第1項から第4項まで
のいずれか1項に記載の操作機器の特性整合方法。 8)絞り弁が開放時に記憶された空気酸目標値(Qso
ll)と要求されている目標値とを比較し傾斜整合の動
作点がオフセット整合の動作点よりも常に上にあるよう
にして傾斜整合を行なうようにした特許請求の範囲第5
項に記載の操作機器の特性整合方法。 7)アイドリング速度調節器(10)から得られる空気
量目標値(Qsoll)から好ましくは最少空気量目標
値よりも小さな一定の空気量(QO)を減算しオフセッ
ト並びに傾斜整合用の積分を減少させるようにした特許
請求の範囲第1項から第6項までのいずれか1項に記載
の操作機器の特性整合方法。 8)前記オフセット積分器(I l)は、絞り弁(D 
K)が閉じ、傾斜積分器(工2)が動作せず、所定の時
間(I2)が経過した時には常に作動される特許請求の
範囲第1項から第7項までのいずれか1項に記載の操作
機器の特性整合方法。 3)前記傾斜積分器(工2)は実際空気量が絞り弁開放
時結納された空気量値と所定の空気量の和よりも大きい
かあるいは等しい時にのみ作動される特許請求の範囲第
1項から第8項までのいずれか1項に記載の操作機器の
特性整合方法。 10)各傾斜整合後まずオフセット整合を行ない、その
後新しい傾斜整合を開始できるようにオフセット整合と
傾斜整合を相互にロー7りするようにした特許請求の範
囲第1項から第9項までのいずれか1項に記載の操作機
器の特性整合方法。 +1)各傾斜整合時同時にオフセット積分器も調整し傾
斜整合によって得られた特性曲線をそれぞれ前回の動作
点を中心に回転させるようにした特許請求の範囲第1項
から第10項までのいずれか1項に記載の操作機器の特
性整合方法。 12)特に内燃機関に供給される空気量を制御する操作
機器に作用する外乱量並びにその他望ましくない量を除
去し、操作機器の特性を整合する操作機器の特性整合装
置において、操作機器の特性のオフセット整合を行なう
積分器(If)と、操作機器の特性の傾斜整合を行なう
積分器(I2)を設け、少なくとも積分器(If、I2
)の出力により調節器(10)から得られる目標値(Q
soll)を少なくとも乗算的あるいは加算的に変化さ
せ、その場合オフセット積分器(I 1)と傾斜積分器
(I2)の作動を相互に関連させ、操作機器の特性のオ
フセットあるいは傾斜整合を行なうようにした操作機器
の特性整合装置。 13)前記オフセット用積分器(I 1)と傾斜整合用
積分器(I2)を空気量目標値と実際値が加算される加
算点(S2)に接続し、又両積分器の出力をそれぞれ初
期値(KIO,に20)が入力される加算点(S3.S
4)にそれぞれ接続し、傾斜整合用積分器の加算点(S
4)の出力と乗算器(M)を接続し、又オフセット整合
用の積分器(I1)の後段に接続された加算点(S3)
の出力を乗算器(M)と直列に接続された加算点(Sl
)に接続し、調節器(10)から得られる空気量目標値
を加算的あるいは乗算的に調節するようにした特許請求
範囲第12項に記載の操作機器の特性整合装置。 、14)前記両積分器(I 1 、 I 2)に作動素
子(FG l 、FG2)を設け、積分器を内燃機関の
駆動状態に従って作動させるようにした特許請求の範囲
第12項又は第13項に記載の操作機器の特性整合装置
。 15)前記調節器(10)から得られる空気量目標値か
ら好ましくは最少空気量目標値以下の空気量を減算する
ようにした特許請求の範囲第12項から第14項までの
いずれか第1項に記載の操作機器の特性整合装置。 1B)オフセット積分器と傾斜積分器間の相互の作用を
ロックする手段を設けるようにした特許請求の範囲第1
2項から第15項までのいずれか1項に記載の操作機器
の特性整合装置。
[Scope of Claims] l) In particular, a method for matching the characteristics of an operating device that removes disturbance amounts and other undesirable amounts acting on an operating device that controls the amount of air supplied to an internal combustion engine, and matches the characteristics of the operating device, Control equipment (12, LL-3) from the output of the controller
The target value supplied to (Q 5 oil , m 5 oil
) is combined at least multiplicatively or additively with the output signal of an integrator (I 1 , I 2 ) that changes the offset value or the slope of the characteristic curve of the operating device, in which case the offset integrator (I 1) and the slope Integrator (I2)
The actual values obtained (
A method for matching characteristics of an operating device, comprising converting a target value into a matched driving signal (τ) in consideration of Q ist , m ist ), and driving the operating device. 2) @Distribution integrator (If, I2) is activated according to a predetermined driving state of the internal combustion engine and receives a drive signal (
A method for matching characteristics of an operating device according to claim 1, wherein τ) is changed. 3) Offset value and slope matching using integrator (II, I2
2. A method for matching characteristics of an operating device according to claim 1 or 2, wherein the time constant of ) is increased so as not to affect the original idling filling efficiency control. 4) The throttle valve of the internal combustion engine is activated for a predetermined time (Tl-f(n))
3. The method for matching characteristics of an operating device according to claim 1, wherein the offset integrator (11) is operated only when the engine is closed and the engine speed is in the fitting range. 5) A patent claim in which the integrator (I2) for slope matching is operated only when the throttle valve is closed for a predetermined time (I2) and the operating point for performing slope matching is above the operating point obtained by offset matching. The method for matching the characteristics of an operating device according to any one of the ranges 1 to 4. 8) Air acid target value (Qso) stored when the throttle valve opens
ll) with a required target value, and the slope matching is performed by comparing the operating point of the slope matching with the required target value so that the operating point of the slope matching is always higher than the operating point of the offset matching.
Method for matching the characteristics of the operating equipment described in Section. 7) Subtracting a constant air quantity (QO), preferably smaller than the minimum air quantity target value, from the air quantity target value (Qsoll) obtained from the idle speed regulator (10) to reduce the integral for offset and slope matching. A method for matching characteristics of an operating device according to any one of claims 1 to 6, wherein the method is as follows. 8) The offset integrator (I l) is connected to the throttle valve (D
K) is closed and the slope integrator (I2) is not activated and is activated whenever a predetermined time (I2) has elapsed. A method for matching the characteristics of operating equipment. 3) The inclination integrator (part 2) is activated only when the actual air amount is greater than or equal to the sum of the air amount collected when the throttle valve is opened and the predetermined air amount. 8. The method for matching characteristics of an operating device according to any one of paragraphs 1 to 8. 10) Any one of claims 1 to 9, wherein after each slope alignment, an offset alignment is first performed, and then the offset alignment and the slope alignment are rowed relative to each other so that a new slope alignment can be started. The method for matching the characteristics of the operating device according to item 1. +1) Any one of claims 1 to 10, wherein the offset integrator is also adjusted at the same time as each slope matching, and each characteristic curve obtained by slope matching is rotated around the previous operating point. The method for matching the characteristics of the operating device according to item 1. 12) In particular, in an operating equipment characteristic matching device that eliminates disturbance amounts and other undesirable amounts acting on operating equipment that controls the amount of air supplied to the internal combustion engine, and matches the characteristics of the operating equipment, An integrator (If) that performs offset matching and an integrator (I2) that performs slope matching of the characteristics of the operating device are provided, and at least the integrators (If, I2) are provided.
) is obtained from the regulator (10) by the output of the target value (Q
soll) at least multiplicatively or additively, in which case the operation of the offset integrator (I1) and the slope integrator (I2) is correlated, so as to effect an offset or slope matching of the characteristics of the operating device. Characteristic matching device for controlled operating equipment. 13) Connect the offset integrator (I1) and the slope matching integrator (I2) to the addition point (S2) where the air volume target value and actual value are added, and also connect the outputs of both integrators to the initial value. Addition point (S3.S) where the value (KIO, 20) is input
4) and the summing point (S) of the integrator for slope matching.
A summing point (S3) connects the output of 4) to the multiplier (M), and is also connected to the downstream of the integrator (I1) for offset matching.
The output of the summing point (Sl) connected in series with the multiplier (M)
13. The characteristic matching device for operating equipment according to claim 12, wherein the device is connected to a controller (10) and adjusts the air amount target value obtained from the regulator (10) in an additive or multiplicative manner. , 14) Both of the integrators (I 1 , I 2 ) are provided with actuating elements (FG l , FG2), and the integrators are actuated according to the driving state of the internal combustion engine. Characteristic matching device for operating equipment as described in Section 1. 15) The first aspect of any one of claims 12 to 14, wherein an air amount preferably equal to or less than a minimum air amount target value is subtracted from the air amount target value obtained from the regulator (10). Characteristic matching device for operating equipment as described in Section 1. 1B) Claim 1 providing means for locking the interaction between the offset integrator and the slope integrator.
The characteristic matching device for an operating device according to any one of items 2 to 15.
JP60061075A 1984-04-21 1985-03-27 Characteristic matching method and apparatus of operation machinery Granted JPS60224950A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3415183.4 1984-04-21
DE19843415183 DE3415183A1 (en) 1984-04-21 1984-04-21 METHOD AND DEVICE FOR ADAPTING AN ACTUATOR CHARACTERISTICS

Publications (2)

Publication Number Publication Date
JPS60224950A true JPS60224950A (en) 1985-11-09
JPH0574698B2 JPH0574698B2 (en) 1993-10-19

Family

ID=6234216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60061075A Granted JPS60224950A (en) 1984-04-21 1985-03-27 Characteristic matching method and apparatus of operation machinery

Country Status (5)

Country Link
EP (1) EP0162203B1 (en)
JP (1) JPS60224950A (en)
AT (1) ATE49458T1 (en)
AU (1) AU577843B2 (en)
DE (2) DE3415183A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634706U (en) * 1986-06-27 1988-01-13
US5366039A (en) * 1991-06-26 1994-11-22 Nippondenso Co. Ltd. Acceleration slip control device for a motor vehicle

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3439927A1 (en) * 1984-06-30 1986-01-09 Bosch Gmbh Robert METHOD AND DEVICE FOR ADAPTIVE INTERFERENCE SIGNALING IN REGULATORS
DE3429351C2 (en) * 1984-08-09 1994-06-23 Bosch Gmbh Robert Method and device for controlling and / or regulating the idle speed of an internal combustion engine
DE3621555A1 (en) * 1986-06-27 1988-01-07 Hella Kg Hueck & Co DEVICE FOR ADJUSTING THE SPEED OF A MOTOR VEHICLE
JPH0718371B2 (en) * 1986-11-24 1995-03-06 三菱電機株式会社 Internal combustion engine speed control device
DE3744222A1 (en) * 1987-12-24 1989-07-06 Bosch Gmbh Robert METHOD AND DEVICE FOR INFLUENCING THE AIR MEASURING IN AN INTERNAL COMBUSTION ENGINE, ESPECIALLY IN IDLE IDLE AND SLIDING MODE
JP2559480B2 (en) * 1988-11-07 1996-12-04 株式会社日立製作所 Electronic valve opening controller
DE3926031C1 (en) * 1989-08-07 1990-11-29 Robert Bosch Gmbh, 7000 Stuttgart, De Adapting characteristic working of adjuster - limiting signal affecting base point of characteristic curve to predetermined min. value
DE4029537A1 (en) * 1990-09-18 1992-03-19 Bosch Gmbh Robert METHOD AND DEVICE FOR CONTROLLING AND / OR REGULATING AN OPERATING SIZE OF AN INTERNAL COMBUSTION ENGINE
JP2762350B2 (en) * 1995-06-23 1998-06-04 株式会社ゼクセル Idle rotation control apparatus and method for diesel engine
DE10217596B4 (en) * 2001-04-20 2006-07-13 Honda Giken Kogyo K.K. Control system for a throttle valve actuator device
JP4450228B2 (en) * 2005-10-28 2010-04-14 株式会社デンソー Engine control device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4108127A (en) * 1977-04-01 1978-08-22 Autotronic Controls, Corp. Modulated throttle bypass
JPS5498424A (en) * 1978-01-19 1979-08-03 Nippon Denso Co Ltd Air supply controller for engine
DE3036107C3 (en) * 1980-09-25 1996-08-14 Bosch Gmbh Robert Control device for a fuel metering system
US4437340A (en) * 1981-11-23 1984-03-20 Ford Motor Company Adaptive air flow meter offset control
DE3238189A1 (en) * 1982-10-15 1984-04-19 Robert Bosch Gmbh, 7000 Stuttgart IDLE CONTROL SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
JP2503384B2 (en) * 1983-04-07 1996-06-05 三菱自動車工業株式会社 Engine controller
DE3334062A1 (en) * 1983-09-21 1985-04-11 Robert Bosch Gmbh, 7000 Stuttgart METHOD AND DEVICE FOR ADAPTING AN ACTUATOR CHARACTERISTICS

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634706U (en) * 1986-06-27 1988-01-13
US5366039A (en) * 1991-06-26 1994-11-22 Nippondenso Co. Ltd. Acceleration slip control device for a motor vehicle

Also Published As

Publication number Publication date
AU577843B2 (en) 1988-10-06
JPH0574698B2 (en) 1993-10-19
ATE49458T1 (en) 1990-01-15
DE3575330D1 (en) 1990-02-15
DE3415183A1 (en) 1985-10-31
EP0162203A3 (en) 1988-01-07
EP0162203A2 (en) 1985-11-27
AU4079985A (en) 1985-10-24
EP0162203B1 (en) 1990-01-10

Similar Documents

Publication Publication Date Title
JP2755754B2 (en) Method and apparatus for controlling tank vent valve
US4492195A (en) Method of feedback controlling engine idle speed
JPS60224950A (en) Characteristic matching method and apparatus of operation machinery
US4622936A (en) Electronic fuel controller for an automotive internal combustion engine
JPS6313404Y2 (en)
JP3324344B2 (en) Idle speed control device for internal combustion engine
JP2007536458A (en) Adaptive engine control
JP2831367B2 (en) Air metering method and air metering device
US4508076A (en) Idling speeding control system for internal combustion engine
US4592320A (en) Method of and device for adaptive feeding forward a disturbance variable in a regulator
US4457276A (en) Idling speed control system for internal combustion engine
JPS6073027A (en) Method and apparatus for matching characteristics of operation machinery
US6253748B1 (en) Method and device for controlling an internal combustion engine
US4672934A (en) Method and apparatus for adapting the characteristic of a final controlling element
KR20010023770A (en) Method and device for regulating a gas flow by means of a throttle valve in an internal combustion engine
US4471741A (en) Stabilized throttle control system
US5070837A (en) Revolution speed control apparatus for an internal combustion engine
US5163398A (en) Engine idle speed control based upon fuel mass flow rate adjustment
US4686830A (en) System for control of the supercharging of an internal combustion engine
US5722368A (en) Method and apparatus for adjusting the intake air flow rate of an internal combustion engine
JPH0599045A (en) Rotational frequency controller for internal combustion engine
JP2660624B2 (en) Idle speed control device for internal combustion engine
JPS60212648A (en) Learning controller for idle revolution speed of internal-combustion engine
JPH08338281A (en) Engine control device by electronic control throttle
JPH04292547A (en) Method for controlling engine speed