JPS60224230A - Semiconductor surface protective film and manufacture thereof - Google Patents

Semiconductor surface protective film and manufacture thereof

Info

Publication number
JPS60224230A
JPS60224230A JP59079495A JP7949584A JPS60224230A JP S60224230 A JPS60224230 A JP S60224230A JP 59079495 A JP59079495 A JP 59079495A JP 7949584 A JP7949584 A JP 7949584A JP S60224230 A JPS60224230 A JP S60224230A
Authority
JP
Japan
Prior art keywords
chloride
phosphonitrile
film
protective film
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59079495A
Other languages
Japanese (ja)
Inventor
Asako Jitsukawa
實川 朝子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59079495A priority Critical patent/JPS60224230A/en
Publication of JPS60224230A publication Critical patent/JPS60224230A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To form an insulating film having preferable bondability on III-V group compound semiconductor by using a protective film which mainly contains polyphosphonitrile chloride. CONSTITUTION:A semiconductor surface protective film which mainly contains polyphosphonitrile chloride is used. Phosphonitrile chloride having 6-member annular structure as shown is opened at the ring and polymerized to form a polyphosphonitrile chloride thin film. For example, GaAs wafer 2 of III-V group compound semiconductor is placed on a carbon susceptor 3 in a quartz reaction tube 1, the tube 1 is evacuated by a pressure reduction rotary pump 4. Then, phosphonitrile chloride diluted with N2 gas is fed from a stainless steel tube 5, the susceptor is heated at 300 deg.C by a high frequency induction heating method with a high frequency power source 6 and a high frequency coil 8 to open the ring and polymerize the phosphonitrile, and to bond the polyphosphonitrile chloride film on the surface of the wafer 2.

Description

【発明の詳細な説明】 (1) 技術分野 この発明はl−V族化合物半導体表面に形成させる薄膜
及びこの薄膜形成法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field The present invention relates to a thin film formed on the surface of a l-V group compound semiconductor and a method for forming this thin film.

(2)従来の技術と問題点 半導体表面に絶縁膜の保護膜を形成させる技術は半導体
表面の安定化及び金属−絶縁体一半導体(Metal−
Insulator−8emiconductar、以
下MI8と略称す)構造トランジスタの実現に必要であ
る。しかしI−V族化合物半導体については半導体上に
形成された絶縁膜と該半導体との界面の物性を制御でき
る薄膜形成法はいまだ確立されてい盾1゜ 従来、■−v族化合物半導体に対して試みられてきた絶
縁膜の種類は多岐にわたっているが、その中で最も有望
な例として第1図に示した構造の分子より成る窒化燐層
が上げられる、広田らはこの窒化燐層を燐化インジウム
基板上に形成さ′せ、MI8界面の界面単位を評価した
ところ10”I:!II−”台の低い界面準位密度が得
られ、良好な界面を有する事を報告している。(広田他
、昭和郭年春季応物学会予稿集、p584)。I−V族
化合物半導体ではV族元素の蒸気圧が畠いためにV族元
素が解離しやすい。したがってI−V族化合物半導体の
表面はV族元素が欠乏し、I族元素が不対結合子を持っ
た状態となっている。この表面に■族化合物であA窒化
燐層を形成させる事により、上記不対結合子を閉じる事
ができる。このために、窒化燐層/I−V族化合物半導
体界面が良好となると考えられている。
(2) Conventional techniques and problems The technique of forming a protective film of an insulating film on the semiconductor surface is a technique for stabilizing the semiconductor surface and for metal-insulator-semiconductor (Metal-
It is necessary to realize an Insulator-8 semiconductor (hereinafter abbreviated as MI8) structure transistor. However, for IV group compound semiconductors, a thin film formation method that can control the physical properties of the interface between the insulating film formed on the semiconductor and the semiconductor has not yet been established. A wide variety of insulating film types have been attempted, but the most promising example is a phosphorous nitride layer made of molecules with the structure shown in Figure 1. Hirota et al. When the interface unit of the MI8 interface was evaluated on an indium substrate, it was reported that a low interface state density on the order of 10"I:!II-" was obtained, indicating a good interface. (Hirota et al., Showa Kaku Spring Proceedings of the Society of Applied Physics, p584). In group IV compound semiconductors, group V elements tend to dissociate because of their high vapor pressure. Therefore, the surface of the IV group compound semiconductor is deficient in group V elements, and the group I elements have dangling bonds. By forming an A phosphorus nitride layer made of a group (Ⅰ) compound on this surface, the above-mentioned unpaired bonds can be closed. For this reason, it is believed that the phosphorus nitride layer/IV group compound semiconductor interface becomes good.

以上述べてきたように窒化燐層はI−V族化合物半導体
に対して有望な絶縁膜ではあるが、MI8界面の特性は
膜製作の微妙な条件の違いによって異なり、再現性の良
いものが得られていないのが現状である。
As mentioned above, the phosphorus nitride layer is a promising insulating film for IV group compound semiconductors, but the characteristics of the MI8 interface vary depending on subtle differences in the film fabrication conditions, and it is difficult to obtain one with good reproducibility. The current situation is that this is not the case.

既に述べたようにI−V族化合物半導体では、V族元素
が解離しやすく熱的劣化を生じやすい。
As already mentioned, in group IV compound semiconductors, group V elements are likely to dissociate and thermal deterioration is likely to occur.

こうした熱的劣化が、絶縁膜/I−V族化合物半導体の
界面を制御できない原因の一つと考えられている。した
がりて絶縁膜を上記半導体上に形成させる場合にも低温
で行なう事により半導体表面の熱的劣化を最小限に抑え
なければならない。しかし、ジャーナル オブ アプラ
イド フィツクス(Y、Hirota etal、 J
、 Appl Phys、 53(1982)41 )
で述べられているように、従来試みられた窒化燐層はア
ンモニアとホスフィンを反応させるために、ガスの反応
温度として900℃程度の高温が必要となるために半導
体表面は熱的劣化される。またI−V族化合物半導体は
極めて酸化されやすい事が知られているが、このために
絶縁膜/上記半導体界面には、i−v族化合物の自然酸
化物がしばしば形成される。この自然酸化物は熱力学的
に不安定である。したがってアイイーイーイー トラン
スアクション エレクトロデバイ7、 (B、Bayr
actaroglu 、 IEBB、 Trans。
Such thermal deterioration is considered to be one of the reasons why the insulating film/IV group compound semiconductor interface cannot be controlled. Therefore, when an insulating film is formed on the semiconductor, thermal deterioration of the semiconductor surface must be minimized by doing so at a low temperature. However, the Journal of Applied Fixtures (Y, Hirota et al., J.
, Appl Phys, 53 (1982) 41)
As described in , the phosphorus nitride layer that has been attempted in the past requires a high gas reaction temperature of about 900° C. in order to cause ammonia and phosphine to react, resulting in thermal deterioration of the semiconductor surface. Furthermore, it is known that IV group compound semiconductors are extremely easily oxidized, and for this reason, natural oxides of IV group compounds are often formed at the interface between the insulating film and the semiconductor. This native oxide is thermodynamically unstable. Therefore, Aiiii Transaction Electrodevice 7, (B, Bayr
actaroglu, IEBB, Trans.

ED−26(1979)1854)でも述べられている
ように良好な絶縁膜/I−V族化合物を得るには、絶縁
膜中の酸素濃度を減少させ自然酸化膜の形成を抑制する
ことが肝要である。しかし、従来の窒化燐層は膜形成の
過程で大量の酸素が取り込まれる。
As stated in ED-26 (1979) 1854), in order to obtain a good insulating film/IV group compound, it is important to reduce the oxygen concentration in the insulating film and suppress the formation of a native oxide film. It is. However, in the conventional phosphorus nitride layer, a large amount of oxygen is taken in during the film formation process.

(3)発明の目的 本発明の目的はI−V族化合物半導体上に形成させる保
護膜として、その特性が製造条件に左右されない絶縁膜
及びその製法を提供する事にある。
(3) Purpose of the Invention The purpose of the present invention is to provide an insulating film whose characteristics are not affected by manufacturing conditions as a protective film formed on an IV group compound semiconductor, and a method for manufacturing the same.

(4)発明の構成 本発明の保護膜はポリ塩化ホスホニトリルを主成分とす
るもので、その製造方法は六員環構造をもつ塩化ホスホ
ニトリルを開環重合して形成することにある。
(4) Structure of the Invention The protective film of the present invention has polychlorinated phosphonitrile as its main component, and its manufacturing method consists in forming it by ring-opening polymerization of chlorinated phosphonitrile having a six-membered ring structure.

(5)構成の詳細な説明と実施例 以下、この発明を実施例に基づき詳細に説明する。(5) Detailed explanation of configuration and examples Hereinafter, this invention will be explained in detail based on examples.

第2図は塩化ホスホニトリルの分子構造を示すもので、
この分子は五塩化燐をテトラクロルエタンに溶解し塩化
アンモニウムを加え加熱する事によって得られる事が報
告されている(例えば大津他、高分子合成の実験法、 
9285化学同人(1976)λ塩化ホスホニトリルは
、窒素気流下、温度300℃で開環重合し、4〜6時間
でゴム状のポリ塩化ホスホニ)IJル(第3図)を形成
する。この高分子化合物の形成過程において、基板が用
意されているならば該高分子化合物は基板上に堆積する
。本発明の実施例では第3図に示すような減圧CVD装
置中に塩化ホスホニ) IJルを導入し熱分解する方法
を採った。
Figure 2 shows the molecular structure of phosphonitrile chloride.
It has been reported that this molecule can be obtained by dissolving phosphorus pentachloride in tetrachloroethane, adding ammonium chloride, and heating it (for example, Otsu et al., experimental method for polymer synthesis,
9285 Kagaku Dojin (1976) λ Phosphonitrile chloride undergoes ring-opening polymerization at a temperature of 300°C under a nitrogen stream to form rubber-like polyphosphonitrile chloride (Fig. 3) in 4 to 6 hours. In the formation process of this polymer compound, if a substrate is prepared, the polymer compound is deposited on the substrate. In the example of the present invention, a method was adopted in which phosphoryl chloride (IJ) was introduced into a reduced pressure CVD apparatus as shown in FIG. 3 and thermally decomposed.

第4図は1石英反応管1中にI−V族化合物半導体、例
えばGaAsウェーハ2をカーボンサセプタ3上にのせ
た状態を示している0石英反応管lの内部は減圧排気用
ロータリーポンプ4で減圧排気を行なう。ポリ塩化ホス
ホニ) IJル膜の堆積にあたってはステンレス管5よ
りN、ガスで希釈した塩化ホスホニ) IJルを導入し
、かつ高周波電源6と高周波コイル8とによる高周波誘
導加熱法によりカーボンサセプターを300℃に加熱し
て前記ホスホニ) IJルを開環重合反応させる。なお
、実施例にあっては反応管1の外壁は二重構造をとりこ
こに水7を流すことにより冷却し、外壁へのポリ塩化ホ
スホニトリル膜の付着を防止した。基板を加熱した状態
で塩化ホスホニトリルを含むN。
Figure 4 shows a state in which a group IV compound semiconductor, such as a GaAs wafer 2, is placed on a carbon susceptor 3 in a quartz reaction tube 1.The inside of the quartz reaction tube 1 is equipped with a rotary pump 4 for evacuation. Perform vacuum evacuation. For the deposition of the IJ film, a phosphoryl chloride IJ film diluted with N and gas was introduced into the stainless steel tube 5, and the carbon susceptor was heated to 300°C by high-frequency induction heating using a high-frequency power supply 6 and a high-frequency coil 8. The mixture is heated to cause a ring-opening polymerization reaction of the phosphoniol. In the example, the outer wall of the reaction tube 1 had a double structure and was cooled by flowing water 7 therein to prevent the polychlorinated phosphonitrile film from adhering to the outer wall. N containing phosphonitrile chloride with the substrate heated.

ガスを流し、熱分解する事によりI−■族化合物半導体
GaAsウェーハ2表面にポリ塩化ホスホニトリル膜を
付着した。
A polychlorinated phosphonitrile film was attached to the surface of the I-Ⅰ group compound semiconductor GaAs wafer 2 by flowing gas and thermal decomposition.

(6)効果 従来の保護膜形成にあたってはホスフィンとアンモニア
の2種のガスを反応系に入れる方法がとられていた。こ
の時ホスフィンとアンモニアから各々燐(以下Pと記す
)及び窒素(以下Nと記す)が遊離しPNとなる化学反
応が進行する。したがって残留酸素あるいは水分などが
あるとN及びPが酸素などと結合しPN膜中に酸素が取
り込まれる。
(6) Effects In the conventional method of forming a protective film, two gases, phosphine and ammonia, were introduced into the reaction system. At this time, a chemical reaction progresses in which phosphorus (hereinafter referred to as P) and nitrogen (hereinafter referred to as N) are liberated from phosphine and ammonia to form PN. Therefore, if there is residual oxygen or moisture, N and P combine with oxygen, etc., and oxygen is taken into the PN film.

しかるに本発明の塩化ホスホニ) IJルの分解では六
員環の一点が解離し生成したラジカルが反応し5重合が
進行する。したがって重合度の等しい分子を得るために
反応するラジカルの個数は従来法の6分の1となり、酸
素が重合反応の過程で分子中に取込まれる確率を減少さ
せることができる。
However, in the decomposition of the phosphonichloride (IJ) of the present invention, one point of the six-membered ring dissociates, the generated radical reacts, and pentapolymerization proceeds. Therefore, the number of radicals reacted to obtain molecules with the same degree of polymerization is reduced to one-sixth of the conventional method, and the probability that oxygen is incorporated into the molecules during the polymerization reaction process can be reduced.

また、ポリ塩化ホスホニ) IJルは、第2図に示すよ
うに不飽和二重結合を有するために1分子鎖のタワミ性
が大きい。このため上記分子は固体表面の活性点に近づ
きやすく、I−V族化合物半導体表面に付着した場合に
そのダングリングボンドを閉じる効果をもたらす。また
分子鎖のタワミ性により、ポリ塩化ホスホニトリル膜の
膜中の内部歪は緩和される。したがって、内部歪の発生
が原因となる固体表面からの剥離が防止でき、固体表面
との付着性を良好にする。
Furthermore, polychlorinated phosphoryl (IJ) has an unsaturated double bond, as shown in FIG. 2, and therefore has a large degree of sway in one molecular chain. Therefore, the above-mentioned molecules easily approach the active sites on the solid surface, and when attached to the surface of the IV group compound semiconductor, have the effect of closing the dangling bonds. Furthermore, due to the sway of the molecular chains, internal strain in the polychlorinated phosphonitrile film is alleviated. Therefore, peeling from the solid surface due to internal strain can be prevented, and adhesion to the solid surface can be improved.

さらに、ポリ塩化ホスホζトリルは分子鎖中で電子親和
度の大きく異なるPとNが隣接するために同分子は極性
を示す、一般に金属面に対して極性分子は良好な接着性
を示す事が知られているがこれは金属中の自由電子が、
金属表面に接近した極性分子中の双極子による静電場を
打ち消す方向に移動し結果として逆方向の双極子を形成
し、極性分子と金属表面との間に引力を生じるためであ
る。したがって本発明のポリ塩化ホスホニトリルもI−
v族化合物表面に接近した際に、I−V族化合物表面に
双極子を誘起し、良好な接着性を示すようになる。
Furthermore, polychlorinated phosphozetatolyl has polar molecules because P and N, which have significantly different electron affinities, are adjacent to each other in the molecular chain. Generally, polar molecules exhibit good adhesion to metal surfaces. It is known that this means that free electrons in metals
This is because the polar molecules move in a direction that cancels out the electrostatic field due to the dipoles in the polar molecules that are close to the metal surface, resulting in the formation of dipoles in the opposite direction, which creates an attractive force between the polar molecules and the metal surface. Therefore, the polychlorinated phosphonitrile of the present invention also has I-
When approaching the surface of the group V compound, dipoles are induced on the surface of the group IV compound, resulting in good adhesion.

以上説明したように、本発明によると、鳳−V族化合物
半導体上に接着性の良好な絶縁膜を形成でき、MI8界
面の界面準位の評価結果では10HcIIL−”程度が
再現性よく得られる。
As explained above, according to the present invention, an insulating film with good adhesion can be formed on the Otori-V group compound semiconductor, and the evaluation result of the interface state at the MI8 interface is about 10HcIIL-'' can be obtained with good reproducibility. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来試みられた窒化燐の分子構造を示す図、a
gz図は本発明の膜を形成するときに用いる塩化ホスホ
ニ) IJルの分子構造を示す図、第3図はポリ塩化ホ
スホニトリルの分子構造を示す図。 第4図は実施例に用いた塩化ホスホニトリルを分解しI
−V化合物表面にポリ塩化ホスホニトリル膜を形成させ
るための装置の概略図である。 第4図中、1は石英反応管、2はGaAsウェーハ、3
はカーボンサセプタ、4はロータリーポンプ、5は塩化
ホスホニトリル導入用ステンレス管、6は高周波電源、
7は冷却水、8は高周波コイルである。 第1図 一←P−N← 7?2図 ct cQ \ / り \ N j −+ P = N← l 手続補正書(鯖) 特許庁長官 殿 1、事件の表示 昭和59年 特許願第079495号
2、発明の名称 半導体表面保護膜及びその製造方法3
、補正をする者 事件との関係 出 願 人 東京都港区芝五丁目33番1号 4、代理人 5、補正の対象 明細書の発明の詳細な説明の欄 6、補正の内容 (1) 明細書第3頁第16行目から第18行目にかけ
て「ジャーナル オプ アプライド フィツクス(Y、
Hirots et ml Jeムppl Phya、
 53(1982)No、1)Jとあるノt−「応用物
理学会予稿集(広田他、昭和58年春季応物学会予稿集
、P2S5)J と補正する。
Figure 1 is a diagram showing the molecular structure of phosphorus nitride that has been attempted in the past.
The gz diagram is a diagram showing the molecular structure of phosphonitrile chloride used when forming the membrane of the present invention, and FIG. 3 is a diagram showing the molecular structure of polychlorinated phosphonitrile. Figure 4 shows the decomposition of phosphonitrile chloride used in the examples.
FIG. 2 is a schematic diagram of an apparatus for forming a polychlorinated phosphonitrile film on the surface of a -V compound. In Fig. 4, 1 is a quartz reaction tube, 2 is a GaAs wafer, and 3 is a quartz reaction tube.
is a carbon susceptor, 4 is a rotary pump, 5 is a stainless steel tube for introducing phosphonitrile chloride, 6 is a high frequency power supply,
7 is cooling water, and 8 is a high frequency coil. Figure 1 1←P-N← 7?2 Figure ct cQ \ / ri \ N j −+ P = N ← l Procedural amendment (mackerel) Commissioner of the Japan Patent Office 1, Indication of case 1982 Patent application No. 079495 No. 2, Title of the invention: Semiconductor surface protective film and method for manufacturing the same 3
, Relationship to the case of the person making the amendment Applicant: 4, 5-33-1 Shiba, Minato-ku, Tokyo, Agent 5, Detailed explanation of the invention in the specification subject to amendment 6, Contents of the amendment (1) From line 16 to line 18 on page 3 of the specification, it says “Journal Op Applied Fixtures (Y,
Hirots et ml Jemu ppl Phya,
53 (1982) No. 1) J and a certain note - ``Proceedings of the Japan Society of Applied Physics (Hirota et al., Spring 1982 Proceedings of the Japan Society of Applied Physics, P2S5) J'' amended.

Claims (1)

【特許請求の範囲】 1)主成分がポリ塩化ホスホニトリルから成ることを特
徴とする半導体表面保護膜。 2)六員環構造を有する塩化ホスホニトリルを開環重合
させてポリ塩化ホスホニトリル薄膜を形成することを特
徴とする半導体表面保護膜の製造方法。
[Claims] 1) A semiconductor surface protective film characterized in that its main component is polychlorinated phosphonitrile. 2) A method for producing a semiconductor surface protective film, which comprises forming a polychlorinated phosphonitrile thin film by ring-opening polymerization of chlorinated phosphonitrile having a six-membered ring structure.
JP59079495A 1984-04-20 1984-04-20 Semiconductor surface protective film and manufacture thereof Pending JPS60224230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59079495A JPS60224230A (en) 1984-04-20 1984-04-20 Semiconductor surface protective film and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59079495A JPS60224230A (en) 1984-04-20 1984-04-20 Semiconductor surface protective film and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS60224230A true JPS60224230A (en) 1985-11-08

Family

ID=13691488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59079495A Pending JPS60224230A (en) 1984-04-20 1984-04-20 Semiconductor surface protective film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60224230A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347396A (en) * 1976-10-12 1978-04-27 Armstrong Cork Co Manufacturing process for phosphatidic polymer
JPS55136107A (en) * 1979-03-19 1980-10-23 Akzo Nv Preparation of phosphagen polymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347396A (en) * 1976-10-12 1978-04-27 Armstrong Cork Co Manufacturing process for phosphatidic polymer
JPS55136107A (en) * 1979-03-19 1980-10-23 Akzo Nv Preparation of phosphagen polymer

Similar Documents

Publication Publication Date Title
US4987008A (en) Thin film formation method
US5512519A (en) Method of forming a silicon insulating layer in a semiconductor device
JP3110857B2 (en) Method for producing product including TiN x layer
JP2789587B2 (en) Manufacturing method of insulating thin film
JP3046643B2 (en) Method for manufacturing semiconductor device
US5116640A (en) Process for preparing an electroluminescent device
JP3310386B2 (en) Method of forming insulating oxide film and semiconductor device
JPS60224230A (en) Semiconductor surface protective film and manufacture thereof
JP3334286B2 (en) Manufacturing method of diamond semiconductor
JP3561388B2 (en) Method and apparatus for growing a dielectric layer on a semiconductor wafer at low temperatures
US3397094A (en) Method of changing the conductivity of vapor deposited gallium arsenide by the introduction of water into the vapor deposition atmosphere
US3614829A (en) Method of forming high stability self-registered field effect transistors
US4443489A (en) Method for the formation of phosphorous-nitrogen based glasses useful for the passivation of III-V semiconductor materials
JPS6015933A (en) Thin film forming process
US4546372A (en) Phosphorous-nitrogen based glasses for the passivation of III-V semiconductor materials
US4778625A (en) Electroconductive polymer and process for preparation thereof
KR20010091519A (en) Method for forming a gate oxide layer of a semiconductor device
KR940010158B1 (en) Tungsten film depositing method using pecvd
JPH042767A (en) Production of thin film
US20230096838A1 (en) Methods and systems for filling a gap
KR100451507B1 (en) Method for manufacturing semiconductor device
KR100205075B1 (en) Method for fabrication epitaxial of iii-v compound semiconductors
KR100291183B1 (en) A method for forming gate dielectric layer in semiconductor device
JPH0426587A (en) Crystal growing method for iii-v group compound semiconductor and crystal growing device used for this method
JPS61252675A (en) Blue-light emitting element and manufacture thereof