JPS60223906A - Burning device - Google Patents

Burning device

Info

Publication number
JPS60223906A
JPS60223906A JP7993184A JP7993184A JPS60223906A JP S60223906 A JPS60223906 A JP S60223906A JP 7993184 A JP7993184 A JP 7993184A JP 7993184 A JP7993184 A JP 7993184A JP S60223906 A JPS60223906 A JP S60223906A
Authority
JP
Japan
Prior art keywords
burner
supplied
air
upstream
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7993184A
Other languages
Japanese (ja)
Inventor
Kunpei Ozaki
尾崎 勲平
Michihiro Shiraha
白羽 陸宏
Kenji Mori
建二 森
Kenichi Fujii
健一 藤井
Chikatoshi Kurata
親利 蔵田
Hidekazu Harada
英一 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP7993184A priority Critical patent/JPS60223906A/en
Publication of JPS60223906A publication Critical patent/JPS60223906A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • F23C6/047Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure with fuel supply in stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2201/00Staged combustion
    • F23C2201/10Furnace staging
    • F23C2201/101Furnace staging in vertical direction, e.g. alternating lean and rich zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2201/00Staged combustion
    • F23C2201/30Staged fuel supply
    • F23C2201/301Staged fuel supply with different fuels in stages

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To control effectively generation of NOx and unburnt contents in ashes by contriving combustion by a method wherein as for an upstream side (under a state of surplus oxygen), fuel is supplied by specifying only coarse particles and as for a downstream side (under a state of oxygen starvation), the fuel is supplied by specifying only fine particles. CONSTITUTION:As for pulverized coal crushed by a mill 12, only coarse and fine particles are supplied to an upstream side burner 2 and a downstream side burner 3 respectively by a classifying device 13, an air quantity making the upstream side burner 2 into a surplus state of air is supplied to the burner 2 and the air quantity is supplied to the downstream side burner 3 so that the burner 3 is made into a starvation state of the air, through which combustion is performed within a furnace body 1 while they are being mixed with each other. In consequence of the above, along with control of generation of NOx generation of unburnt contents is controlled also and even if the unburnt contents are generated, discharge quantity itself is controlled sufficiently as a generating position is on an upstream side and sufficient dwell time for burning out unburnt contents can be taken until the unburnt contents are discharged even if the unburnt contents are generated.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、可燃性固体粒子含有撚料と酸素含有気体と
を供給するバーナを複数段に配置した燃焼装置に関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a combustion device in which burners are arranged in multiple stages for supplying a twisted material containing combustible solid particles and an oxygen-containing gas.

(従来技術) たとえば、微粉炭焚きボイラでは、炉本体の外周部にバ
ーナを設け、このパーすに、微粉炭と高温空気を供給し
て混合させながら炉本体内に噴出して燃焼を図るように
しである。こうしたものでは、炉本体の外周部に、たと
えば、上下2段のバーナ全役けることによシ、燃焼能力
の向上を図るものがあり、この場合の2段バーナは、上
流側パーすと下流側バーナとで構成され、ここに、上流
側とは、燃焼ガスの流れ方向を基準として上流側を意味
し、たとえば、竪型ボイラでは、上流側バーナが下流側
バーナの下方に設置される。
(Prior art) For example, in a pulverized coal-fired boiler, a burner is installed on the outer periphery of the furnace body, and pulverized coal and high-temperature air are supplied to the parser, mixed, and ejected into the furnace body for combustion. It's Nishide. Some of these are designed to improve the combustion capacity by, for example, having upper and lower burners all working on the outer periphery of the furnace body. The upstream side here means the upstream side with respect to the flow direction of combustion gas. For example, in a vertical boiler, the upstream burner is installed below the downstream burner.

こうした微粉炭焚きボイラでは、わが国の厳しい環境規
制を維持するために、NOxおよび灰中未燃分の排出量
全十分抑制することが要求される。
In order to maintain Japan's strict environmental regulations, such pulverized coal-fired boilers are required to fully suppress emissions of NOx and unburned matter in the ash.

この場合、NOx低減を図るには、相対的にみて上流側
パ〜すにより多くの空気量(単位時間当υ)を供給する
一方、下流側バーナにそれよシも少ない空気量を供給す
るのが有効であル、このことは、特願昭55−1867
54号明細書中に記載されている。
In this case, in order to reduce NOx, it is necessary to supply a relatively larger amount of air (per unit time υ) to the upstream side burner, while supplying a smaller amount of air to the downstream burner. is valid, and this fact can be seen in the patent application filed in 1867
It is described in the specification of No. 54.

このように、NOx低減には、上下バーナへの空気供給
量に差をもたせることが効果的であるが、NOx低減に
は、今一つ問題があった。
As described above, it is effective to provide a difference in the amount of air supplied to the upper and lower burners in reducing NOx, but there is still another problem in reducing NOx.

つまり、上記NOx低減にあたっては、空気供給量のみ
に着眼し、空気とともに供給される微粉炭については、
軽視されてきた。
In other words, in reducing NOx mentioned above, we focused only on the amount of air supplied, and regarding the pulverized coal that is supplied together with air,
It has been neglected.

従来、微粉炭の供給にあたっては、ミルで微粉砕したも
のをそのまま上流および下流の両バーすに供給する方式
をとってきた。
Conventionally, pulverized coal has been supplied by pulverizing it in a mill and then supplying it directly to both upstream and downstream burrs.

こうした微粉炭については、事前にミルによって十分な
微細粒になるまでそのすべてを粉砕しておけば、灰中未
燃分の排出がごく微量に抑制されるが、上流および下流
の両バーナに供給されるすべてについて微細化すること
は、粉砕コストが膨大化し、突用土、好ましくない。し
たがって、粉砕コストの見合う限度において粉砕がなさ
れるのが通常であり、こうして粉砕されたものには、所
定に微細化したものと、そうでない粗粒状のものとが混
在することとなる。
For such pulverized coal, if all of it is pulverized into sufficiently fine particles by a mill in advance, the emissions of unburned matter in the ash can be suppressed to a very small amount; It is not preferable to refine all the materials that are used because the crushing cost will be enormous and it will require a lot of soil. Therefore, pulverization is usually carried out within the limits that are commensurate with the pulverization cost, and the pulverized materials include a mixture of finely divided materials and coarsely granulated materials.

これらでなる微粉炭をそのままの形で、上流−下流の各
バーナに供給した場合、N(JXおよび灰中未燃分の発
生はつぎのようになる。
When the pulverized coal made of these is supplied as it is to each upstream and downstream burner, the generation of N(JX) and unburned content in the ash is as follows.

まず、NOxの発生濃度は表1のようになる。First, the NOx generation concentration is as shown in Table 1.

表lNOx発生濃度(相対比)比較表 表−1は、平均粒径が50μの微粉炭(以下、細粒とい
う)と、平均粒径が60μの微粉炭(以下、粗粒という
)とt−選定して、バーナに供給し、それぞhを、空気
過剰と空気不足の各状態で個別的に燃焼し、その結果得
られたNOx発生濃度を、表−1のSt″基準として比
較したものであり、ここに、空気比とは、(実際の空気
供給量)/(理論空気必要菫)を指し、また、空気過剰
状態と空気不足状態、ならびに、細粒と粗粒の各表現は
、絶対的な意味でなく、相対的な意味において用いられ
ている。
Table 1 Comparison table of NOx generation concentration (relative ratio) Selected and supplied to the burner, each h is individually combusted in each state of excess air and insufficient air, and the resulting NOx generation concentration is compared using the St″ standard in Table 1. Here, the air ratio refers to (actual air supply amount)/(theoretical air requirement), and the expressions for air excess and air deficiency conditions, and fine and coarse particles are as follows: It is used in a relative rather than an absolute sense.

ここにおいて、一般的には、空気過剰状態での燃焼によ
る場合が、空気不足状態での燃焼による場合よりもN0
Xvi−多く発生するのであシ、このことは、空気過剰
状態でかつ細粒を供給した場合(表−1■)にNoxQ
度が他と比べて最も高くなったことからも裏付けられる
。これは、粗粒の場合(o)は、全粒子の総表面積が大
きくなシ空気が過剰に供給されることによシ、急激に燃
焼することによるものと考えられる。その反面、粗粒の
場合(■)は、細粒の場合(■)よシもNOxの発生は
抑制される。
Here, in general, combustion in an air-excess state has a higher N0 value than combustion in an air-deficient state.
This means that when there is excess air and fine particles are supplied (Table 1■), the NoxQ
This is also supported by the fact that the degree was the highest compared to the others. This is thought to be due to the fact that in the case of coarse particles (o), the total surface area of all particles is large and the excessive supply of air causes rapid combustion. On the other hand, in the case of coarse grains (■), the generation of NOx is suppressed more than in the case of fine grains (■).

一方、これが空気不足状態となると事情が変ってくる。On the other hand, the situation changes when there is a lack of air.

つまり、空気不足状態で細粒を供給する(O)と、空気
は不足状態であるにもかかわらず、細粒にとっては、細
径であるから十分反応して燃料中の窒素針がほとんどす
べてN8に変換してしまうので、NOxの発生量は少な
く抑えられる。それに対し、空気不足状態で粗粒を供給
した場合(■)には、十分燃え切らず、粗粒中のN分が
燃え残って下流側へ流れ、下流側バーナよシ下流におい
て供給される二段燃焼用空%によって上記燃え残りのN
分が過剰空気中で急激に燃焼する結果、NOxが多く発
生すると考えられる。
In other words, when fine particles are supplied in an air-deficient condition (O), even though there is a lack of air, the fine particles react sufficiently due to their small diameter, and almost all the nitrogen needles in the fuel are N8. Therefore, the amount of NOx generated can be suppressed to a low level. On the other hand, when coarse grains are supplied in an air-deficient state (■), they are not completely burnt out, and the N content in the coarse grains remains unburned and flows downstream, resulting in the nitrogen being supplied downstream from the downstream burner. The above unburned N is determined by the empty percentage for stage combustion.
It is thought that a large amount of NOx is generated as a result of the rapid combustion of NOx in excess air.

以上のように、NOx発生要因には、空気の供給状態の
ほかに、今一つ、微粉炭の平均粒径が関係しているので
あり、そうした事実に対し、従来方式では、上記したよ
うに、細粒と粗粒とを混在させた形で、ト下各バーナに
供給し、上流側バーナに過剰空気を、また、下流側バー
ナに不足空気を供給して燃焼を行なっていたため、上流
側では、過剰空気と粗粒(■)により、また、下流側で
は、不足空気と粗粒(@)により、NOx発生濃度が高
められる結果となり、このことから、ただ単に空気供給
量のみを上下流において変えるだけでは、140x低誠
に今一つ効果的に達成できないと考えられる。
As mentioned above, in addition to the air supply condition, the NOx generation factor is also related to the average particle size of pulverized coal. A mixture of grains and coarse grains was supplied to each of the lower burners, and combustion was performed by supplying excess air to the upstream burner and insufficient air to the downstream burner. Excess air and coarse particles (■), and on the downstream side, insufficient air and coarse particles (@) result in increased NOx generation concentration, so it is necessary to simply change the air supply amount upstream and downstream. It is thought that it is not possible to achieve 140x low sincerity effectively by doing just that.

一方、灰中未燃分の発生は、燃えにくぃ粗粒が供給され
ることによるもので、とくに、粗粒が、空気不足状態の
下流側に供給された場合に、多く発生し、これは、供給
個所が、下流側であって、排出に至るまでの炉内滞留時
間が短いことから、灰中未燃分が十分に燃え切れずに排
出されるためである。
On the other hand, the generation of unburned matter in the ash is due to the supply of coarse particles that are difficult to burn, and especially when coarse particles are supplied to the downstream side where there is insufficient air, a large amount of unburned matter is generated. This is because the supply point is on the downstream side and the residence time in the furnace until discharge is short, so the unburned content in the ash is discharged without being fully burned.

(発明の目的) この発明は、上記問題に鑑みてなされたもので、NOx
と灰中未燃分の発生量をともに低減することを目的とす
る。
(Object of the invention) This invention was made in view of the above problem, and it
The aim is to reduce both the amount of unburned matter in the ash and the amount of unburned matter generated in the ash.

(発明の構成) 上記目的を達成するため、この発明は、ボイラなどの炉
本体に、上流側バーナと下流側バーナとを設けて、上流
側バーナを、燃焼ガスの流れ方向を基準として下流側バ
ーすよりも上流側に配置するとともに、上流側バーナに
供給される酸素含有気体の単位時間当りの供給量を、下
流側バーすに供給される酸素含有気体の供給量よりも多
く設定し、かつ、上流側バーナに供給される可燃性固体
粒子含有燃料の平均粒径を、下流側バーナに供給1・ 
ゎ、。、。イ□。。工。、よ、。
(Structure of the Invention) In order to achieve the above object, the present invention provides a furnace body such as a boiler with an upstream burner and a downstream burner, and sets the upstream burner to the downstream side with respect to the flow direction of combustion gas. located upstream of the burner, and the amount of oxygen-containing gas supplied to the upstream burner per unit time is set to be larger than the amount of oxygen-containing gas supplied to the downstream burner, And, the average particle size of the fuel containing combustible solid particles supplied to the upstream burner is set to 1.
Wow,. ,. I□. . Engineering. ,Yo,.

大きく設定することにより、上流側(酸素過剰状態)で
は、粗粒のみに特定して供給し燃焼を行なう一方、下流
側(酸素不足状態)では、細粒のみに特定して供給し燃
焼を行ない、NOxおよび灰中未燃分の発生を同時に抑
制するようにしである。
By setting a large value, on the upstream side (oxygen excess state), only coarse particles are specifically supplied and combusted, while on the downstream side (oxygen deficient state), only fine particles are specifically supplied and combusted. This is to simultaneously suppress the generation of NOx and unburned matter in the ash.

(実施例) 以下、この発明の実施例を図面にしたがって説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は、第1実施例を示すもので、1は、炉本体を示
し、この炉本体1は竪型で、その立壁外局部には、下部
に上流側バーナ2が、また、その上部に下流側バーナ3
が設けられている。4は、上流側燃料供給管、5は、下
流側燃料供給管であり、また、6は、上流側空気供給管
、7は、下流側空気供給管を示し、それぞれ対応する上
流側バーナ2と下流側バーナ3に接続されている。この
場合、8は、上流側燃料供給口、9は、下流側燃料供給
口を示すとともに、10は、上流側空気供給口、11は
、下流側空気供給口をそれぞれ示している。
FIG. 1 shows a first embodiment, and 1 denotes a furnace body. This furnace body 1 is vertical, and an upstream burner 2 is located at the lower part of the vertical wall of the furnace body 1, and an upstream burner 2 is located at the upper part of the vertical wall. downstream burner 3
is provided. 4 is an upstream fuel supply pipe, 5 is a downstream fuel supply pipe, 6 is an upstream air supply pipe, and 7 is a downstream air supply pipe, which are connected to the corresponding upstream burner 2. It is connected to the downstream burner 3. In this case, 8 indicates an upstream fuel supply port, 9 indicates a downstream fuel supply port, 10 indicates an upstream air supply port, and 11 indicates a downstream air supply port.

ここにおいて、上流側および下流側空気供給管4.5は
、1基のミ/L/12に接続され、そのミ/’12の下
流側に分級器13を配置することにょシ、上記でいう粗
粒のみを、上流側バーナ2に供給し、細粒のみを、下流
側バーナ3に供給する。
Here, the upstream and downstream air supply pipes 4.5 are connected to one Mi/L/12, and the classifier 13 is disposed downstream of the Mi/'12. Only coarse grains are supplied to the upstream burner 2, and only fine grains are supplied to the downstream burner 3.

その場合の粗粒は、たとえば、上記した平均粒径60μ
のものを、また、細粒は、平均粒径5oμのものとする
。一方、上流側空気供給口1oには、上記した空気比1
.2で、また、下流側空気供給口11には、空気比0.
8でそれぞれ空気を供給する。
In that case, the coarse particles have an average particle diameter of 60 μm as described above, for example.
The fine particles have an average particle size of 5 μm. On the other hand, the upstream air supply port 1o has the air ratio 1 as described above.
.. 2, and the downstream air supply port 11 has an air ratio of 0.2.
8 to supply air respectively.

なお、図中、14は、二次空気供給口で、下流側バーナ
3の上方に配置されている。
In addition, in the figure, 14 is a secondary air supply port, which is arranged above the downstream burner 3.

上記構成では、ミA/12により粉砕された微粉戻は、
分級器13に導かれ、この分級器13によって、上流側
バーナ2に粗粒のみが、また、下流側バーナ3に細粒の
みが供給されるとともに、上流側バーナ2には、空気過
剰状態となる空気量が、また、下流側バーナ3には、空
気不足状態となるように空気量が供給されて、混合され
つつ炉本体1内で燃焼が行なわれる。
In the above configuration, the fine powder returned by MiA/12 is
The classifier 13 supplies only coarse particles to the upstream burner 2 and only fine particles to the downstream burner 3, and supplies the upstream burner 2 with excess air. An amount of air is supplied to the downstream burner 3 so as to create an air shortage condition, and combustion is performed within the furnace body 1 while being mixed.

その結果、表−1におけるの(上流側)と◎(下mal
)n1m−ヒ硬−ヨI/r)シ1λ■^−y/fz9Q
d−+1.畠・rl・・a、、+++−るとともに、未
燃分の発生についても、表−1の■の状態で燃焼を行な
わないことがら、抑制され、仮に、表−1の■で示され
た燃焼の結果、未燃分が発生したとしても、発生個所が
上流側であって、排出までには燃えつきるに十分な滞留
時間をとることができるので、排出量自体は十分抑制さ
れる。
As a result, in Table 1, (upstream side) and ◎ (lower mal
) n1m-hi hard-yo I/r) shi1λ■^-y/fz9Q
d-+1. Hatake・rl・・a,,+++-, and the generation of unburned matter is also suppressed because combustion is not carried out in the state shown in ■ in Table 1, and it is temporarily shown in ■ in Table 1. Even if unburned matter is generated as a result of combustion, the generation location is on the upstream side and sufficient residence time can be taken for the unburned matter to burn out before being discharged, so the amount of discharge itself can be sufficiently suppressed.

また、上・下側バーナ2.3に供給される燃料は、その
rべてがミル12によって所定以下の細粒物とされるの
でなく、上流側バーナ2に対しては、粗粒状態で差しつ
かえないので、粉砕に手数がかからず、コスト面で有利
である。
In addition, the fuel supplied to the upper and lower burners 2.3 is not entirely reduced to fine particles below a predetermined level by the mill 12, but is sent to the upstream burner 2 in a coarse particle state. Since it is not necessary, it does not take much time to crush it, which is advantageous in terms of cost.

なお、上下段バーナに等量の空気が供給される在来の燃
焼法においても、粗粒・細粒に分級する本発明によって
灰中未燃分が減少する効果が得られる。
Note that even in the conventional combustion method in which equal amounts of air are supplied to the upper and lower burners, the present invention, which classifies the ash into coarse particles and fine particles, has the effect of reducing the unburned content in the ash.

第2図は、第2の実施例を示し、下流側バーナ3として
、上流側で発生するNoxf分解する脱硝バーナを設置
しである。この脱硝用下流側バーナ3には、脱硝用燃料
供給管15と脱硝用燃料供給管1tニー−ζt2−1嘉
・12j−レ%J!I!l!?m−コー・l−++−1
,−からは、燃えやすい細粒状とした微粉度が、また、
脱硝用空気供給口18には、空気比が1未満の空気不足
状態の空気が供給される。この実施例の場合も、第1夾
施例と同様に、NOXおよび未燃分の排出抑制効果が得
られる。この場合、上流側と下流側バーナ2,3間に、
二段燃焼用空気供給口14を、また、下流側バーナ3の
上方に、アフタエア供給口19をそれぞれ配置し、NO
xおよび未燃分の排出をより効果的に抑制するようにし
ている。
FIG. 2 shows a second embodiment, in which a denitrification burner for decomposing Noxf generated on the upstream side is installed as the downstream burner 3. This denitrification downstream burner 3 includes a denitrification fuel supply pipe 15 and a denitrification fuel supply pipe 1t knee-ζt2-1ka・12j-re%J! I! l! ? m-ko・l-++-1
From ,-, it has a fine powder that is easy to burn, and
The denitrification air supply port 18 is supplied with air in an air-deficient state where the air ratio is less than 1. In this embodiment, as in the first embodiment, the effect of suppressing emissions of NOx and unburned substances can be obtained. In this case, between the upstream and downstream burners 2 and 3,
The two-stage combustion air supply port 14 and the after-air supply port 19 are arranged above the downstream burner 3, respectively, and the NO.
This is to more effectively suppress emissions of x and unburned matter.

なお、上記燃料は、可燃性固体粒子を含有するものでお
れば、石炭のほかに、石油残滓からつくられるディレー
ドコークとか、フルードコークのようなものでもよく、
さらに、石炭と水、または、石炭と油の混合スフリーに
よる燃料であってもよい。また、上記供給気体は、広く
酸素を含有する気体でおればよく、たとえば、純粋酸素
であってもよい。
In addition to coal, the above fuel may be delayed coke made from petroleum residue or fluid coke, as long as it contains flammable solid particles.
Furthermore, the fuel may be a mixture of coal and water or coal and oil. Further, the supply gas may be any gas containing oxygen, for example, pure oxygen.

さらに、炉本体1については、上記竪型で燃焼ガスが下
降するもの、また性、横置型で、燃焼ガスが水平方向に
流動するものなど種々の態様がある。この場合、たとえ
ば、燃焼ガスが下降する型式では、上段のバーナが上流
側バーナとなる。
Furthermore, there are various types of furnace body 1, such as the above-mentioned vertical type in which the combustion gas flows downward, and a horizontal type in which the combustion gas flows horizontally. In this case, for example, in a type in which combustion gas descends, the upper stage burner becomes the upstream burner.

また、上記燃料供給手段としては、第1図のように、炉
本体1にミル12を接続する場合と、接続せず燃焼装置
とは別個に設けて搬送する場合とがある。
Further, as the fuel supply means, as shown in FIG. 1, there are cases in which the mill 12 is connected to the furnace body 1, and cases in which it is not connected and is provided and transported separately from the combustion device.

さらに、ミ/l’12は、第1図のように、1基である
場合と、複数基である場合とがあり、複数基の場合には
、各パーす2,3の要求にそれぞれ適応した粉砕能力、
つまシ、細粒および粗粒缶専用の粉砕機とする。この異
種粉砕機を設ける場合には、粗粒用粉砕機からの一部の
粗粒tM粒粒粉粉砕機連通させることもできる。
Furthermore, as shown in Figure 1, Mi/l'12 may be one unit or multiple units, and in the case of multiple units, it is adapted to the requirements of each part 2 and 3. crushing ability,
The crusher is designed exclusively for cans, fine grains, and coarse grains. When such different types of pulverizers are provided, a part of the tM granule powder pulverizer from the pulverizer for coarse granules can be communicated with the pulverizer.

また、上記分級器13は、分級機能をもつ構造のもので
あればそれに置き換えることができ、そうした分級手段
も、上記ミル12と同じく、燃焼装置に接続するものと
、接続しないものとがあシ、さらに、接続方式のいかん
を問わず、分級手段は、ミ1v12に内部循環式として
組みつけることができる。
Further, the classifier 13 can be replaced with a structure having a classification function, and similar to the mill 12, there are two types of classification means: one connected to the combustion device and one not connected. Furthermore, regardless of the connection method, the classification means can be assembled into the Mi1v12 as an internal circulation type.

また、上記分級u13を用いる場合は、気流方式、たと
えば、遠心力利用のサイクロン分級器とか、流体抵抗利
用の重力分級器などが、分級全多量に行なううえから実
用的であるが、フィルタとかストレーナなどのふるい方
式のものでもよい。
In addition, when using the above-mentioned classification u13, an airflow method such as a cyclone classifier using centrifugal force or a gravity classifier using fluid resistance is practical because it can classify a large amount of the total amount, but it is recommended to use a filter or strainer. A sieving method such as

(発明の効果) 以上説明したように、この発明によれば、上流側(酸素
過剰状態)では、粗粒のみに特定して燃料を供給し、下
流側(酸素不足状態)では、細粒のみに特定して燃料を
供給して燃焼を図るので、NOxおよび灰中未燃分の発
生をともに効果的に抑制することができ、しかも、上流
側では、粗粒を、下流側では、細粒を供給するので、す
べてを細粒化する必要がなく、粉砕コストの面でも有利
である。
(Effects of the Invention) As explained above, according to the present invention, on the upstream side (oxygen excess state), fuel is specifically supplied only to coarse particles, and on the downstream side (oxygen deficient state), fuel is supplied only to fine particles. Since combustion is achieved by supplying specific fuel to the ash, it is possible to effectively suppress the generation of both NOx and unburned matter in the ash. Moreover, it is possible to effectively suppress the generation of both NOx and unburned matter in the ash. , it is not necessary to make all the particles into fine particles, which is advantageous in terms of pulverization cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1実施例を示す燃焼装置の系統図
、第2図は第2実施例を示す系統図である。 1・・・炉本体、2・・・上流側パーす、3・・・下流
側パ〜す。 特許出願人 川崎重工業株式会社
FIG. 1 is a system diagram of a combustion apparatus showing a first embodiment of the present invention, and FIG. 2 is a system diagram showing a second embodiment. 1...Furnace main body, 2...Upstream side pass, 3...Downstream side pass. Patent applicant: Kawasaki Heavy Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] (リボイラなどの炉本体に、上流側パーすと下流側バー
ナとを設けて、上流側バーナを、燃焼ガヌの流れ方向を
基準として下流側バーナよりも上流側に配置するととも
に、上流側パーすに供給される酸素含有気体の単位時間
当シの供給量を、下流側バーナに供給される酸素含有気
体の供給量よシも多く設定し、かつ、上流側バーナに供
給される可燃性固体粒子含有撚料の平均粒径を、下流側
バーナに供給される可燃性固体粒子含有撚料の平均粒径
よりも大きく設定してなる燃焼装置。
(A furnace body such as a reboiler is provided with an upstream parser and a downstream burner, and the upstream burner is placed upstream of the downstream burner with respect to the flow direction of the combustion gas, and the upstream par The supply amount per unit time of the oxygen-containing gas supplied to the burner is set to be larger than the supply amount of the oxygen-containing gas supplied to the downstream burner, and the combustible solids supplied to the upstream burner are A combustion device in which the average particle diameter of the twisted material containing particles is set to be larger than the average particle diameter of the twisted material containing combustible solid particles that is supplied to a downstream burner.
JP7993184A 1984-04-19 1984-04-19 Burning device Pending JPS60223906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7993184A JPS60223906A (en) 1984-04-19 1984-04-19 Burning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7993184A JPS60223906A (en) 1984-04-19 1984-04-19 Burning device

Publications (1)

Publication Number Publication Date
JPS60223906A true JPS60223906A (en) 1985-11-08

Family

ID=13704053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7993184A Pending JPS60223906A (en) 1984-04-19 1984-04-19 Burning device

Country Status (1)

Country Link
JP (1) JPS60223906A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256410A (en) * 1992-03-10 1993-10-05 Tokyo Gas Co Ltd Boiler with restricted generation of nitrogen oxide
NL2001797C2 (en) * 2008-07-14 2010-01-18 Essent En Produktie B V Method for burning a second solid fuel in combination with a first solid fuel.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512311A (en) * 1978-07-06 1980-01-28 Mitsubishi Heavy Ind Ltd Granular body fuel burner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512311A (en) * 1978-07-06 1980-01-28 Mitsubishi Heavy Ind Ltd Granular body fuel burner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256410A (en) * 1992-03-10 1993-10-05 Tokyo Gas Co Ltd Boiler with restricted generation of nitrogen oxide
NL2001797C2 (en) * 2008-07-14 2010-01-18 Essent En Produktie B V Method for burning a second solid fuel in combination with a first solid fuel.
WO2010008280A1 (en) * 2008-07-14 2010-01-21 Essent Energie Productie B.V. Method for combusting a second solid fuel in combination with a first solid fuel

Similar Documents

Publication Publication Date Title
EP2799770B1 (en) Biomass fuel combustion method
US4397248A (en) Coal beneficiation/combustion system
EP2829800A1 (en) Pulverized coal/biomass mixed-combustion burner and fuel combustion method
CN209495349U (en) A kind of biomass molding fuel and coal direct-coupling pulverized coal preparation system
CS708588A3 (en) Process and apparatus for combined combustion of coal
CA2275568C (en) Reburning of coal ash
KR20130128306A (en) Method and installation for coal grinding in inert operation or in non-inert operation
JP2003240227A (en) Solid fuel burner and burning method thereof
KR101957785B1 (en) Cyclonic combustor
KR870002006B1 (en) Device for supplying pulverized coal to a coal-fired furnace
JP2005291534A (en) Combustion equipment and method of biomass fuel
JPS6021282B2 (en) Powder fuel combustion method
JPS60223906A (en) Burning device
US8316782B2 (en) Indirect heating system with upgrading of ultra-fine fuel particles
JPH1038217A (en) Fine powdered coal combustion burner
JPWO2020213091A1 (en) Burner device and combustion device
JP2575187B2 (en) Cyclone coal combustion device with pre-burner
JPH029205Y2 (en)
JPH0120486Y2 (en)
JP2005291536A (en) Crushing method and device of biomass fuel, and combustion method and equipment of biomass fuel
JPS62182526A (en) Pulverized coal combustion boiler
JPS62284107A (en) Combustion of solid fuel
JPH0268405A (en) Pulverized coal burner
JPH05256424A (en) Method of burning dusts
DD292064A5 (en) METHOD AND ARRANGEMENT FOR BURNING GREAT AND HEAVY FUELS