JPS6022379A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6022379A
JPS6022379A JP13141383A JP13141383A JPS6022379A JP S6022379 A JPS6022379 A JP S6022379A JP 13141383 A JP13141383 A JP 13141383A JP 13141383 A JP13141383 A JP 13141383A JP S6022379 A JPS6022379 A JP S6022379A
Authority
JP
Japan
Prior art keywords
type layer
type
oscillation
single crystal
avalanche
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13141383A
Other languages
Japanese (ja)
Inventor
Hiroshi Morikawa
博司 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP13141383A priority Critical patent/JPS6022379A/en
Publication of JPS6022379A publication Critical patent/JPS6022379A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/864Transit-time diodes, e.g. IMPATT, TRAPATT diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To facilitate the assembling and the output synthesizing by a method wherein a group of semiconductor single crystal layer consists of two layers of a P type layer and an N type layer having a distribution of impurity concentration, wherein an avalanche oscillation can be triggered off, and the two groups or more are repeatedly and continuously formed. CONSTITUTION:A group of semiconductor single crystal layer consists of two layers of a P type layer and an N type layer having a distribution of impurity concentration, wherein an avalanche oscillation can be triggered off, and the two groups or more are repeatedly and continuously formed by an epitaxial growth method. Each group consisting of the N type layer and the P type layer forms an oscillating region. According to such a method, the difficulty of assembling to be performed by the conventional method, as seen in the case of series connection in chips, is eased, and the output synthesizing dependent on the stray inductances of connecting lead wires is made easy.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は半導体装置に関し、特にアバ2ンシエ効果を利
用する高周波、晶出力の半導体装置1C関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to a semiconductor device, and particularly to a high frequency, crystal output semiconductor device 1C that utilizes the abancié effect.

〔従来技術〕[Prior art]

PN接合あるいはショットキー接合部に2けるアバラン
シェ効果を利用したインパソトダイメードはマイクロ波
同体発振源として非常に重要な素子である。他の素子と
同様高周波化、高出力化が望まれて29、例えば高出力
化の為にチップを並列aるいは直列に接続するという試
みがなされている。しかしながら、並列接続はlチップ
の電極面積を大きくする事とほぼ同じで、接続個数ヶ増
せばそれだけ素子のインピーダンスが下がり外部回路と
の整合が困難になる。これに対し、直列接続は、逆に接
続個数を増すほどインピーダンスが上が9外部回路との
整合が容易になる。このように、外部回路との整合とい
う点では町らかに直列接続の方が有利なのであるが、一
方組立ての容易さという点では直列にチップを接続す/
)事は並列接続に比べてはるかに困難である。また、チ
ップを接続するリード線の浮遊インダクタンスの為に出
力甘酸がうまく行なわれないなどの欠点がめった。
The Impasso Dimade, which utilizes the avalanche effect in the PN junction or Schottky junction, is a very important element as a microwave homogeneous oscillation source. As with other devices, higher frequencies and higher outputs are desired29. For example, attempts have been made to connect chips in parallel or in series in order to increase output. However, parallel connection is almost the same as increasing the electrode area of the l-chip, and as the number of connected elements increases, the impedance of the element decreases and matching with an external circuit becomes difficult. On the other hand, in series connection, as the number of connected devices increases, impedance increases and matching with an external circuit becomes easier. In this way, serial connection is more advantageous in terms of matching with external circuits, but on the other hand, in terms of ease of assembly, it is better to connect chips in series.
) is much more difficult than parallel connection. In addition, there were many shortcomings, such as poor output control due to the stray inductance of the lead wires connecting the chips.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記欠点を除去し、組立が容易で、出
力合成を改良した高周波高出力の半導体装置全提供する
ことlC6る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a high-frequency, high-output semiconductor device that eliminates the above-mentioned drawbacks, is easy to assemble, and has improved output synthesis.

〔発明の構成〕[Structure of the invention]

本ビ明の半導体装置は、PN接合を有しアバランシェ効
果を利用する半導体装置において、アバランシェ発振が
可能な不純物濃度分布を持つP凰とN型との2層からな
る1組の半導体単結晶層が2組以上繰返し連続的に形成
され、前記単結晶層が発振素子として直列に接続されて
構成される。
The semiconductor device of the present invention is a semiconductor device having a PN junction and utilizing an avalanche effect, which includes a pair of semiconductor single crystal layers consisting of two layers of P-type and N-type, each having an impurity concentration distribution capable of avalanche oscillation. Two or more sets of single crystal layers are repeatedly and continuously formed, and the single crystal layers are connected in series as an oscillation element.

〔実施例の説明〕[Explanation of Examples]

次に、本発明の実施例について、図面を参照して説明す
る。
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の不純物濃度分布を示す図で
るる。図において、縦軸は不純物濃度の絶対筒、横軸は
表面からの距離である。N+は低抵抗N型半導体基板で
、この上のN−の高抵抗N型層がエピタキシャル成長に
工9形成され、高抵抗N型層に重ねて、P+である低抵
抗P型層が同じくエピタキシャル成長に工9形gされて
いる。
FIG. 1 is a diagram showing an impurity concentration distribution in one embodiment of the present invention. In the figure, the vertical axis is the absolute cylinder of impurity concentration, and the horizontal axis is the distance from the surface. N+ is a low-resistance N-type semiconductor substrate, on which a high-resistance N-type layer is epitaxially grown, and a low-resistance P-type layer, P+, is also epitaxially grown over the high-resistance N-type layer. It has a type 9 g.

前記Nm層及びPm層は更に繰返し成長され、都合3回
連続的に成長されている。各々のN型層とP型層とから
成る組は発振領域會形成し、本災施例ではSDR(Si
ngle DrifO型インバツインバットダイオード
濃度分布と同じで、例えば発振周波数が10GHzの場
合は、N型層の厚さ、fA度及びP型層の厚さ、濃度は
各々5〜6μm、 8 X 10”5cInシ及び2〜
3μm、 10 tyn に選べばよい。
The Nm layer and Pm layer are further grown repeatedly, three times in total. Each set consisting of an N-type layer and a P-type layer forms an oscillation region, and in this disaster example, an SDR (Si
Same as the concentration distribution of DrifO type inva-in-butt diode, for example, when the oscillation frequency is 10 GHz, the thickness of the N-type layer, fA degree, and the thickness and concentration of the P-type layer are each 5 to 6 μm, 8 x 10" 5cInshi and 2~
It is sufficient to select 3 μm and 10 tyn.

この場合、従来の81)R型インパッドダイオードが3
個直列に接続されたものが1チツプでできることになる
。結晶の成長はスライディングボート法による液相成長
やMBE(molecular BeatnEp 1t
axy)等で行えばよい。
In this case, the conventional 81) R type in-pad diode is
This means that devices connected in series can be made with one chip. Crystal growth is carried out by liquid phase growth using the sliding boat method or MBE (molecular beatnEp 1t).
axy) etc.

なお、N型及びP型層の不純物濃度分布を変えることに
エリDDR(Double pri ft)型インバッ
トダイオード、リード型インバットダイオードの1チツ
プ内での直列接続化ができることは以上の説明から明ら
かである。
It is clear from the above explanation that by changing the impurity concentration distribution of the N-type and P-type layers, it is possible to connect a DDR (Double pre ft) type invat diode and a lead type invat diode in series within one chip. It is.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明に工れば、従来のチップで
の直列接続に見られた組立の困難性、接続リード線の浮
遊インダクタンスによる出力合成の困難性等の欠点が除
去され、出力合成がうまく行われる高周波高出力の半導
体装置が得られる。
As explained above, the present invention eliminates the drawbacks of conventional serial connection of chips, such as difficulty in assembly and difficulty in output synthesis due to stray inductance of connection lead wires, and A high-frequency, high-output semiconductor device in which this process is successfully performed can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の不純物@度分布金示す図で
ある。 \−1 ¥1ヅ
FIG. 1 is a diagram showing the impurity @degree distribution of gold according to an embodiment of the present invention. \−1 ¥1ヅ

Claims (1)

【特許請求の範囲】[Claims] PN接合を有しアバランシェ効果を利用する半導体装置
において、アバランシェ発振が可能な不純物濃度分布t
もつP型とN型との2層からなる1組の半導体単結晶層
が2組以上繰返し連続的に形成され、前記単結晶層が発
振素子として直列に接続されていること?!−特徴とす
る半導体装置。
In a semiconductor device that has a PN junction and utilizes the avalanche effect, impurity concentration distribution t that allows avalanche oscillation
Two or more sets of semiconductor single crystal layers consisting of two layers, P type and N type, are repeatedly and continuously formed, and the single crystal layers are connected in series as an oscillation element? ! -Featured semiconductor device.
JP13141383A 1983-07-19 1983-07-19 Semiconductor device Pending JPS6022379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13141383A JPS6022379A (en) 1983-07-19 1983-07-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13141383A JPS6022379A (en) 1983-07-19 1983-07-19 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6022379A true JPS6022379A (en) 1985-02-04

Family

ID=15057385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13141383A Pending JPS6022379A (en) 1983-07-19 1983-07-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6022379A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018225855A1 (en) * 2017-06-09 2020-04-09 株式会社Uacj Semiconductor layer, oscillation element, and method of manufacturing semiconductor layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018225855A1 (en) * 2017-06-09 2020-04-09 株式会社Uacj Semiconductor layer, oscillation element, and method of manufacturing semiconductor layer

Similar Documents

Publication Publication Date Title
CN109887911A (en) Semiconductor device
CN104867968B (en) For Terahertz low-frequency range GaAs based high-power Schottky frequency doubled diodes
CN109994440A (en) Semiconductor device
JPH05304175A (en) Field-effect transistor and high-frequency signal oscillator and frequency inverter circuit
US3271685A (en) Multipurpose molecular electronic semiconductor device for performing amplifier and oscillator-mixer functions including degenerative feedback means
JPS6022379A (en) Semiconductor device
JP2554672B2 (en) Field effect type semiconductor device
JP2002334837A (en) Semiconductor substrate and semiconductor device
JPS63157467A (en) Hetero junction bipolar transistor
JPS62134965A (en) Manufacture of semiconductor device
JPS6228788Y2 (en)
JPS6024592B2 (en) Manufacturing method of wide-gap emitter transistor
Chen et al. Millimeter-Wave Monolithic Gunn Oscillators
TW436935B (en) Forming method of gallium arsenic hetero-junction bipolar transistor and its single chip high-density layout
JPS6228789Y2 (en)
JPH04152577A (en) Variable capacitance diode device
JPS58186961A (en) Semiconductor device
JPH01168081A (en) Series operation type gunn diode
JPS63160377A (en) Heterojunction bipolar transistor
CN117894769A (en) Chip and electronic equipment
JPS637648A (en) Microwave monolithic integrated circuit
JPS5866353A (en) Semiconductor device
JPH04312986A (en) Semiconductor device
JPS6185862A (en) Integrated type gallium arsenic schottky diode
JPS5827683B2 (en) Hatsushin Cairo