JPS6022363A - Manufacture of mis dynamic memory cell - Google Patents

Manufacture of mis dynamic memory cell

Info

Publication number
JPS6022363A
JPS6022363A JP58130209A JP13020983A JPS6022363A JP S6022363 A JPS6022363 A JP S6022363A JP 58130209 A JP58130209 A JP 58130209A JP 13020983 A JP13020983 A JP 13020983A JP S6022363 A JPS6022363 A JP S6022363A
Authority
JP
Japan
Prior art keywords
layer
gate
deposited
insulating film
floating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58130209A
Other languages
Japanese (ja)
Other versions
JPH0680803B2 (en
Inventor
Fumio Horiguchi
文男 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58130209A priority Critical patent/JPH0680803B2/en
Publication of JPS6022363A publication Critical patent/JPS6022363A/en
Publication of JPH0680803B2 publication Critical patent/JPH0680803B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor

Abstract

PURPOSE:To reduce the coupling capacity CG of a p<+> layer and a word wire by a method wherein a linear CVDSiO2 is formed on the side wall of a gate electrode, and the overlapping of the p<+> layer and the gate electrode is prevented in a self-matching manner. CONSTITUTION:After a thermal oxide film 12 has been formed on the whole surface of a p type substrate 11, Si3N4 13 is deposited on the whole surface of said film 12, and the Si3N4 13 located on the area other than the region where an element will be formed is removed by etching. Then, a thick thermal oxide film 15 is formed on an element isolation region. Resist 16 is covered, and p-well is formed. Subsequently, a gate electrode 18 is formed by performing a patterning, and a CVDSiO2 19 is deposited on the whole surface. Said CVDSiO2 19 is left on the side wall part only of the gate electrode. Then, a p<+> layer 20 is formed. At this time, care is to be given to prevent the overlapping of a p<+> layer and a gate. Then, an n<+> layer is formed. Besides, a CVDSiO2 26 is deposited on the whole surface, an aperture is provided on the n<+> diffusion layer 27 which will be turned to a bit line, Al is deposited, and a metal wiring 26 is formed.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、半導体記@装置に係り、特に、j−流センス
方式の匣OSダイナミックRAMセルの製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to a semiconductor memory device, and more particularly to a method for manufacturing a J-flow sense type box OS dynamic RAM cell.

〔従来技術とその問題点〕[Prior art and its problems]

今後、タイナミックメモリは、ますますその集積度を上
げていくことが予想されるが、′従来の1Tr 、 I
 Capaci tor方式では リーク・・ζ流+7
) i&ll l’l カら、セルキャパシタ面積を減
少させることが固相tであり、メモリセル内部で電流増
幅イ「用のあるセル方式が高集積化の可能1生を待つと
期侍されている。この方式の一例が、K 、 T’er
ada、etal”ANewV L S I Memo
ry Ce1l TJs ing (:apacita
nce Couol −ing’、IEDM、 198
2.であり、このメモリセル構造の断面図を第1図、等
価回路を第21図に示す。
It is expected that the density of dynamic memory will continue to increase in the future.
In the Capacitor method, leak...ζ flow +7
) Since it is important to reduce the area of the cell capacitor, it is expected that a cell system that can be used for current amplification within the memory cell will be available until high integration becomes possible. An example of this method is K, T'er
ada, etal”ANew V L S I Memo
ry Ce1l TJs ing (:apacita
nce Couol-ing', IEDM, 198
2. A cross-sectional view of this memory cell structure is shown in FIG. 1, and an equivalent circuit is shown in FIG.

構造は、P型基板にスイッチングトランジスタのゲート
(8)下にゲート共通の0MO8構造7−2−3−6を
作り、p層層(6)をフローティングゲートとしこのフ
ローティングゲート下にジャンクショy(juncti
on)FET(1−4−6)を形成するものである。(
第1図)原理は笠き込み動作において、ワード線(8)
を・負電圧にし、Q、のPMO8F”ETをONにして
、p”1ayer (6)を基板′載位のOvにする。
The structure is as follows: A common 0MO8 structure 7-2-3-6 is made under the gate (8) of the switching transistor on a P-type substrate, the p-layer layer (6) is used as a floating gate, and a junction y ( junkti
on) FET (1-4-6) is formed. (
Figure 1) The principle is that in the shading operation, the word line (8)
Set to a negative voltage, turn on the PMO8F"ET of Q, and set p"1ayer (6) to Ov on the substrate'.

′O“% 1 //を書き込むのは、ビット線電位によ
り決る。p層1ayerとビット線n+とのキャパシタ
ンスCNW(第2図24)に貯えられるチャージ量をビ
ット線により変化させ、ビット線がOVの時に1θ′が
、ビット線が正電圧の時111がp層1ayer (6
)に書き込まれる。書き込み動作後、ワード線電圧をO
vにもどし、p層層を電気的にフローティングにする。
Writing 'O"% 1 // is determined by the bit line potential. By changing the amount of charge stored in the capacitance CNW (Fig. 2 24) between the p layer 1ayer and the bit line n+ by the bit line, When the bit line is at a positive voltage, 1θ' is the p layer 1ayer (6
) is written to. After the write operation, the word line voltage is set to O.
Return to v, and make the p layer electrically floating.

′1#を書き込んだセルのビット線を正電圧から、Ov
にすると、p層層の電位がビット線とのキャパシタンス
CNW(24により、負電位となり、junction
 FETがcut offする。この時、ゲート(8)
とp層層(6)との間のカップリングキャパシタンスC
G (23) が小さけイtは小さいほど、p層層の電
圧−7ノ≦さがり、junction1i’ E Tの
cut offは完全となる7バ、ゲートとp土層間の
等量はp+ia形成時形成分ン注入の横方向拡がり、お
よび注入不j、41I物の゛社気的活性化のための熱ア
ニールによる熱拡散等により、どうしてもゲート下にp
層−71−が入り込み、CGが大きなってしまう。この
場合には11”を書き込んだセルリビソト線を正電圧か
らOVにしても、p層−畷錫;圧が十分に下らず、ju
nction FETが十分にcutoffせず、V+
(7)の電圧が13it線に伝わり、十分に11”を洸
み出すことができない。この点が、従二禾1)ε術にお
けるCapaci’t3nce Coupling 型
セルの間;M点であった。
The bit line of the cell in which '1# is written is changed from a positive voltage to Ov.
, the potential of the p layer becomes a negative potential due to the capacitance CNW (24) with the bit line, and the junction
FET is cut off. At this time, gate (8)
Coupling capacitance C between and p layer (6)
The smaller G (23) is, the smaller t is, the lower the voltage of the p layer is -7 ≦, and the cut off of junction1i' E T is complete. Due to the lateral spread of the implanted components and the thermal diffusion caused by thermal annealing for the social activation of the implanted 41I material, it is inevitable that p
The layer -71- gets in there and the CG becomes large. In this case, even if the cell voltage line written with 11" is changed from a positive voltage to OV, the voltage between the p layer and the p-layer does not drop sufficiently, and the ju
tion FET is not cut off enough and V+
The voltage of (7) is transmitted to the 13it line, and 11" cannot be sufficiently extracted. This point was the M point between Capacity't 3nce Coupling type cells in the 1) ε technique.

〔発明の月日つ〕[Date of invention]

本発明は、上記Capacitance Coupli
ng 、jlqセルの′1/TH恍み時のビット線信号
のcut off特+イbを向上するためにな゛された
ものでビット線1旨号の11Nおよび10“読みだし時
の1言号の差が大きい(:apa−citance C
ouping型セルを提供す♂)ことを目的とする。
The present invention provides the above-mentioned Capacitance Couple.
This was done to improve the cut off characteristic of the bit line signal when the '1/TH of the ng, jlq cell is read. There is a big difference in the numbers (: apa-citance C
The purpose is to provide an uping type cell.

〔発明の概要〕[Summary of the invention]

本発明は11′′および″0#読み出し時の信号差を大
きくするためCapacitance Coupl i
ng型セルのp層とワード1腺とのカップリング容量C
6を減少させる方法として、ゲート電極の側壁に線状の
CVD5iotを形成し、ごの状態で、p 層形成のだ
めのイオン注入を行ない、セルファライン的にp層層と
ゲート電極とがメーバーラップしないようにする。
The present invention uses Capacitance Couple i to increase the signal difference when reading 11'' and 0#.
Coupling capacitance C between the p layer of the ng type cell and the word 1 gland
6, a linear CVD5iot is formed on the side wall of the gate electrode, and ions are implanted to form the p-layer in the same state, so that the p-layer and the gate electrode do not overlap in a self-aligned manner. Do it like this.

〔発明の効果〕〔Effect of the invention〕

本発明により、(:apacitance Coupl
ing 型セルのワード線とp層層とのカップリング容
量をいちじるしく減少させることができ、したがって、
′l“12よび10“の読み出し信号差を太き(するこ
とができる。したがってセル酵報をセンスアンプで読み
出す際にセンスアンプの感度を上げな(ても良く、高感
度な検出を可能とする。高感度な検出を可能とすること
によりセル清報の検出スピードを早くすることができ、
アクセス時間を速(することが可能で高性能なダイナミ
ックRAMを実現することができる。
According to the present invention, (: apacitance couple
The coupling capacitance between the word line of the ing type cell and the p layer can be significantly reduced, and therefore,
It is possible to widen the readout signal difference between '12 and 10'. Therefore, when reading out cell fermentation information with a sense amplifier, it is possible to increase the sensitivity of the sense amplifier and enable highly sensitive detection. By enabling highly sensitive detection, the detection speed of cell cleanup can be increased.
It is possible to realize a high-performance dynamic RAM with fast access time.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を、製造方法工程図第3図順に以下説明
する。
Embodiments of the present invention will be described below in the order of manufacturing method process diagrams and FIGS.

5Ω・Cm〜10Ω争Cmのp型(ioo)基板(11
)に全面にSi表面保護のための熱酸化膜(12) f
形成した後、その上にsi、N、(13)を全面に堆積
し、素子形成・碩域外をエツチング除去する。この鏝、
素子分離領域に、チャネルストップ用B+をインプラす
る。(1%) (第3図(イ))次に、Si3N4をマ
スクとして熱酸化し、素子分離領域に厚い熱ト俊化膜(
15)を形成する。この後、素子分離領域の一部をレジ
スト(16)でおおい、(ロ)これをマスクとしてp 
をインプラし、 p well(17)を形成する。こ
の後レジストをエツチング除去し、ワード線となるゲー
ト電極(18)をパターニングして形成し、全面にCV
D5 ’ Ot (19)を堆積する。(第3因G/−
1)次に、方向性イオンエツチングによりC’VDSi
O&エツチングし、ゲート電極の側壁部でcvasto
tが厚(付着することを利用して、ゲート電極の側壁部
のみにCVD5i02(19)を残す。CノCV D 
、S j’ Otおよびゲート電極ヲマスクとしてB+
をインプラし、p 層(20)i形成する。〔第3図に
)〕この時、p+層と、ゲートとがオーバーラツプしな
いように、cvi)sio2厚み、およびB+のインプ
ラ時の加速エネルギを、調節する。
P-type (IOO) substrate (11
) to protect the Si surface (12) f
After the formation, Si, N, (13) is deposited on the entire surface, and the area outside the element forming area is removed by etching. This iron,
A channel stop B+ is implanted in the element isolation region. (1%) (Figure 3 (a)) Next, thermal oxidation is performed using Si3N4 as a mask, and a thick thermally atomized film (
15). After this, a part of the element isolation region is covered with a resist (16), and (b) this is used as a mask for p
and form a p well (17). After that, the resist is removed by etching, and a gate electrode (18) which will become a word line is patterned and formed, and a CV
Deposit D5' Ot (19). (Third cause G/-
1) Next, C'VDSi is etched by directional ion etching.
O&etch and cvasto on the sidewalls of the gate electrode.
CVD5i02 (19) is left only on the side wall of the gate electrode by taking advantage of the fact that t is thick (attached).
, S j' Ot and B+ as a mask for the gate electrode.
is implanted to form a p layer (20)i. [See FIG. 3] At this time, the cvi) sio2 thickness and the acceleration energy during implantation of B+ are adjusted so that the p+ layer and the gate do not overlap.

次に、ゲート電1返のn we目側を一部おおうように
レジスト(21)をパターニングし、これをマスクとし
て、p+をインプラし、B+層(22)’il−形成す
る。(筆3図(ホ)) 次に、レジスト(21)’j)エツチング除去して、全
面にCVD S r 02 (26)を准潰し、ビット
線となるn+拡散lip (27)上のCVD5iO!
に穴を開孔し。
Next, a resist (21) is patterned to partially cover the nth side of the gate electrode 1, and using this as a mask, p+ is implanted to form a B+ layer (22)'il-. (Figure 3 (E)) Next, the resist (21)'j) was etched away, CVD S r 02 (26) was almost crushed on the entire surface, and CVD5iO! on the n+ diffusion lip (27) which became the bit line!
Drill a hole in.

A4を全面に堆積して、パターニングす−ることにより
、ビット線の金属配線(26)が形成される。
By depositing A4 on the entire surface and patterning it, the metal wiring (26) of the bit line is formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術によるCapacitance (:
oupling型セルの断面図、第2図はその等価回路
図、第3図(イ)〜(へ)は本発明のCapacita
nce Coupling型セルの工程UI面一である
。 代理人弁理士 則 近 憲 佑(ほか1名)第1図 第2図 第8図 B+
Figure 1 shows Capacitance (:
A sectional view of an upling type cell, FIG. 2 is its equivalent circuit diagram, and FIGS.
nce Coupling type cell process UI is on the same page. Representative Patent Attorney Noriyuki Chika (and 1 other person) Figure 1 Figure 2 Figure 8 B+

Claims (1)

【特許請求の範囲】[Claims] (1) 1つのビット線と、1つのワード線を有し、1
つのワード線に接続されるゲートが、pch とnch
 の2つの1VIIsFFJTc/)ゲートを共ML、
前記IVf I S F E Tのソースのみをフロー
ティングとなるようにし、このフローティングソースを
ジャンクションFETのゲートをかね %l“、10”
の清報書き込みに対してBit線とフローティングゲー
トとの容量カップリングを利用してフローティングゲー
トに電荷を貯え、ジャンクションFETをON、OFF
させる゛mm耽読出し型メモリセルにおいて、ワード線
を形成するPo1ySi形成後に、全面に絶縁膜を堆u
■する工程とPo1ySiの側壁で絶縁膜が厚く堆積す
ることを利用して、全面の絶縁膜を方向性イオンエツチ
ングし、Po1ySiの側壁にのみ、絶縁膜を線状に残
す工程と、ゲートおよび、側壁の絶縁膜をマスクとして
、フローティングソースのイオン注入を行う工程を有し
、フローティングソースおよびゲートのオーバーラツプ
(1) Has one bit line and one word line, and has one
The gates connected to two word lines are pch and nch
The two 1VIIsFFJTc/) gates are co-ML,
Only the source of the IVf ISFET is made floating, and this floating source serves as the gate of the junction FET.
When writing information, charge is stored in the floating gate using the capacitive coupling between the Bit line and the floating gate, and the junction FET is turned on and off.
In a read-out type memory cell with 200 mm, an insulating film is deposited on the entire surface after forming the PolySi that forms the word line.
(2) Taking advantage of the fact that the insulating film is thickly deposited on the sidewalls of Po1ySi, the entire insulating film is subjected to directional ion etching, leaving the insulating film in a linear form only on the sidewalls of Po1ySi, and the gate and The floating source ion implantation process uses the sidewall insulating film as a mask, which eliminates the overlap between the floating source and gate.
JP58130209A 1983-07-19 1983-07-19 MIS dynamic memory cell and method of manufacturing MIS dynamic memory cell Expired - Lifetime JPH0680803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58130209A JPH0680803B2 (en) 1983-07-19 1983-07-19 MIS dynamic memory cell and method of manufacturing MIS dynamic memory cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58130209A JPH0680803B2 (en) 1983-07-19 1983-07-19 MIS dynamic memory cell and method of manufacturing MIS dynamic memory cell

Publications (2)

Publication Number Publication Date
JPS6022363A true JPS6022363A (en) 1985-02-04
JPH0680803B2 JPH0680803B2 (en) 1994-10-12

Family

ID=15028696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58130209A Expired - Lifetime JPH0680803B2 (en) 1983-07-19 1983-07-19 MIS dynamic memory cell and method of manufacturing MIS dynamic memory cell

Country Status (1)

Country Link
JP (1) JPH0680803B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6021306A (en) * 1989-08-21 2000-02-01 Futech Interactive Products, Inc. Apparatus for presenting visual material with identified sensory material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5764966A (en) * 1980-10-08 1982-04-20 Semiconductor Energy Lab Co Ltd Semiconductor device
JPS5880864A (en) * 1981-11-10 1983-05-16 Fujitsu Ltd Semicondutor memory
JPS5891680A (en) * 1981-11-26 1983-05-31 Fujitsu Ltd Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5764966A (en) * 1980-10-08 1982-04-20 Semiconductor Energy Lab Co Ltd Semiconductor device
JPS5880864A (en) * 1981-11-10 1983-05-16 Fujitsu Ltd Semicondutor memory
JPS5891680A (en) * 1981-11-26 1983-05-31 Fujitsu Ltd Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6021306A (en) * 1989-08-21 2000-02-01 Futech Interactive Products, Inc. Apparatus for presenting visual material with identified sensory material

Also Published As

Publication number Publication date
JPH0680803B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
US7151690B2 (en) 6F2 3-Transistor DRAM gain cell
US4495693A (en) Method of integrating MOS devices of double and single gate structure
EP0175378B1 (en) Dynamic random access memory (dram)
US6703673B2 (en) SOI DRAM having P-doped poly gate for a memory pass transistor
JPS60130160A (en) Semiconductor memory device
JPH0499060A (en) Semiconductor storage element and manufacture thereof
JPS6235668A (en) Semiconductor memory device
JP2003031696A (en) Semiconductor memory and its manufacturing method
JP3467510B2 (en) DRAM cell and manufacturing method thereof
US4511911A (en) Dense dynamic memory cell structure and process
JPS63310162A (en) Mis type semiconductor memory device
KR900005664B1 (en) Semiconductor memory device
US4388121A (en) Reduced field implant for dynamic memory cell array
JP2599856B2 (en) Junction electric field type dynamic RAM and manufacturing method thereof
JPH05275642A (en) Manufacture of bipolar dynamic ram having vertical structure, and structure of the dynamic ram
JPS6022363A (en) Manufacture of mis dynamic memory cell
JPH03218666A (en) Semiconductor memory device and manufacture thereof
JPS6322069B2 (en)
JPS63237571A (en) Manufacture of thin film transistor
JPS6235559A (en) Semiconductor memory
JPH05283641A (en) Semiconductor storage device
JP2563685B2 (en) Semiconductor device
JPS5814747B2 (en) semiconductor storage device
JPH05152431A (en) Semiconductor device
JPS6112058A (en) Semiconductor device