JPS60223331A - Differential modulator - Google Patents

Differential modulator

Info

Publication number
JPS60223331A
JPS60223331A JP7949684A JP7949684A JPS60223331A JP S60223331 A JPS60223331 A JP S60223331A JP 7949684 A JP7949684 A JP 7949684A JP 7949684 A JP7949684 A JP 7949684A JP S60223331 A JPS60223331 A JP S60223331A
Authority
JP
Japan
Prior art keywords
voltage
output
signal
charge
adder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7949684A
Other languages
Japanese (ja)
Other versions
JPH0746774B2 (en
Inventor
Akira Yugawa
湯川 彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP7949684A priority Critical patent/JPH0746774B2/en
Publication of JPS60223331A publication Critical patent/JPS60223331A/en
Publication of JPH0746774B2 publication Critical patent/JPH0746774B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/322Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M3/368Continuously compensating for, or preventing, undesired influence of physical parameters of noise other than the quantisation noise already being shaped inherently by delta-sigma modulators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/412Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution
    • H03M3/422Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only
    • H03M3/424Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only the quantiser being a multiple bit one
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/436Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type
    • H03M3/456Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type the modulator having a first order loop filter in the feedforward path

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

PURPOSE:To obtain the titled modulator suitable for circuit integration by bringing a clock frequency to 1/2<2/3> for the same noise level with less number of added elements and constituting a signal coder with simple structure. CONSTITUTION:A voltage signal inputted from a signal input terminal 11 is impressed to an adder 12 in a form of a charge by a means 18 converted into a charge proportional to the voltage signal. When an output of an integration device 13 exceeds 1/2Vp succeedingly, a vharge corresponding to a -Vp is fed to the adder, and when the output reaches -1/2Vp or below, a charge corresponding to a +Vp is fed to the adder. Only the input signal is fed to the integration device when the output is -1/2Vp. Then the feedback loop is operated so that the output of the integration device does not exceed + or -1/2Vp. Since the value is + or -Vp in a conventional circuit, it is expected that thenoise voltage of the converted output is decreased to 1/2. It is known in the noise voltage per unit band width of a delta sigma modulator that it is proportional to fc<3/2> when the maximum input voltage is constant, where fc is the sampling frequency. Thus, the clock frequency is decreased to 1/2<2/3> to obtain the same noise level by using the device of this invention.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は低周波のアナログ信号を比較的高速のディジタ
ル信号に符号化する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an apparatus for encoding a low frequency analog signal into a relatively high speed digital signal.

(従来技術とその問題点) 従来低周波のアナログ信号をディジタル信号に変換する
とき、被変換アナログ信号の最大周波数の2倍から3倍
程度のサンプリング周波数で、分解能の高いA/D変換
を行うのが通常であった。
(Prior art and its problems) Conventionally, when converting a low-frequency analog signal into a digital signal, high-resolution A/D conversion is performed at a sampling frequency that is approximately two to three times the maximum frequency of the analog signal to be converted. It was normal.

このときサンプリング周波数の1/2以上の周波数を有
する信号は雑音としてディジタル信号に混入するため、
変換に際してあらかじめ高精度の帯域制限フィルタをと
うしてサンプリング周波数の1/2以上の信号を充分減
衰させてからA/D変換が行われてきた。しかしこの帯
域制限フィルタを精度よく作ることは非常に困難である
。そこで近年簡単なA/D変換器で信号周波数より充分
高いサンプリング周波数でA/D変換した後ディジタル
フィルタによって信号成分だけを抽出する方法が検討さ
れている。ディジタルフィルタはクロタシグマ変調があ
る。デルタシグマ変調は第1図にブロック図で示される
ように、アナログ加算器2、積分器3、電圧比較器4、
リファレンス電圧発生器6を直列に接続してループを構
成することにより実現される。ここでリファレンス電圧
発生器は端子5のコード出力が”1”のときはリファレ
ンス電圧として入力信号の最小電圧値として設計した電
圧を発止し、コード出力が10”のときは入力信号の最
大値として設計した電圧を発生する。
At this time, signals with a frequency higher than 1/2 of the sampling frequency are mixed into the digital signal as noise, so
At the time of conversion, A/D conversion has been performed after sufficiently attenuating signals of 1/2 or more of the sampling frequency through a high-precision band-limiting filter. However, it is extremely difficult to make this band-limiting filter with high precision. Therefore, in recent years, a method has been studied in which A/D conversion is performed using a simple A/D converter at a sampling frequency sufficiently higher than the signal frequency, and then only the signal components are extracted using a digital filter. The digital filter has Crota sigma modulation. As shown in the block diagram in FIG. 1, delta-sigma modulation consists of an analog adder 2, an integrator 3, a voltage comparator 4,
This is realized by connecting the reference voltage generators 6 in series to form a loop. Here, the reference voltage generator generates a voltage designed as the minimum voltage value of the input signal as the reference voltage when the code output of terminal 5 is "1", and when the code output is 10", the voltage is the maximum value of the input signal. Generates a voltage designed as

その動作は、入力端1から入力される電圧とリファレン
ス電圧発生器6により出力される電圧を加え、それまで
積分器3により積算されてきた電圧と累算した結果を比
較器により比較し、正であれば工”を出力し、負であれ
ば”0″を出力する。
Its operation is to add the voltage input from input terminal 1 and the voltage output from reference voltage generator 6, and compare the accumulated result with the voltage that has been integrated by integrator 3 up to that point using a comparator. If it is negative, it outputs "0".

このようにして1ビツトの符号化が行われる。この符号
化方式によれば、例えば3.4KHzの電話信号を12
ビット精度で符号化するためには数■h以上のサンプリ
ングが必要となり、非常な高速動作が要求される。
In this way, one bit is encoded. According to this encoding method, for example, a 3.4KHz telephone signal is
In order to encode with bit precision, sampling of several h or more is required, and extremely high-speed operation is required.

(発明の目的) 本発明の第一の目的は少ない付加素子により、この高す
ぎて実現困難なりロック周波数を1/27′に減少せし
める手段を提供するものである。このことは集積回路の
回路設計を容易ならしめると供に一般にクロック周波数
に比例して増大する消費電力も1/2 に減少せしめる
効果をあわせ持つ。
OBJECTS OF THE INVENTION A first object of the present invention is to provide a means for reducing this too high locking frequency to 1/27' with a small number of additional elements. This not only simplifies the circuit design of the integrated circuit, but also has the effect of reducing power consumption, which generally increases in proportion to clock frequency, to 1/2.

本発明の第二の目的は集積回路化に適した回路構成を提
供することである。
A second object of the present invention is to provide a circuit configuration suitable for integration.

(発明の構成) 本発明は、被変調信号を入力してこの入力に比例した電
荷に変換する手段と、この被変調信号の最大振幅に相当
する電荷量の2分の1で各々正および負の電荷を供給す
る手段と、この3つの電荷をそれまでに貯えられていた
電荷と積分加算してその結果を電圧に変換する手段と、
前記最大振幅の1/2に対応した電荷で正の電荷だけが
前記積分加算する手段に供給されたとき出力される電圧
の1/2の電圧を発生する手段と、前記最大振幅の1/
2に対応した電荷で負の電荷だけが前記積分加算する手
段に供給されたとき出力される電圧の1/2の電圧を発
生する手段と、前記積分手段の出力と前記正の1/2の
電圧を比較する手段と、前記積分手段の出力と前記負の
1/2の電圧を比較する手段と、この2つの比較を行う
出段からの出力結果により前記正負1/2の電荷を加算
するか否かを制御する手段とを有することを特徴とする
差分変調器にある。
(Structure of the Invention) The present invention provides a means for inputting a modulated signal and converting it into a charge proportional to this input, and a positive and a negative charge, respectively, with half the amount of charge corresponding to the maximum amplitude of the modulated signal. means for supplying electric charges; and means for integrating and adding these three electric charges with the electric charges stored up to that time and converting the result into a voltage;
means for generating a voltage that is 1/2 of the voltage that is output when only positive charges corresponding to 1/2 of the maximum amplitude are supplied to the means for integrating and adding; and 1/2 of the maximum amplitude;
means for generating a voltage that is 1/2 of the voltage that would be output when only negative charges corresponding to 2 are supplied to the means for integrating and adding; means for comparing voltages, means for comparing the output of the integrating means and the negative 1/2 voltage, and adding the positive and negative 1/2 charges based on the output results from the output stage that compares the two. A differential modulator is characterized in that it has a means for controlling whether or not.

(構成の詳細な説明) 本発明の基本的動作を第2図を用いて説明する。(Detailed explanation of configuration) The basic operation of the present invention will be explained using FIG.

信号入力端子11#こより入力された電圧信号はこれに
比例する電荷に変換する手段18により電荷の形で加算
器12に印加される。一方比較器14−1および14−
2の出力により制御される最大入力信号振幅の1/2の
電圧に対応した正負の電荷を発生ずる手段16−1およ
び16−2から供給される電荷も加算器12に印加され
る。この加算結果は積分器13によりそれまで貯えられ
ていた電荷と加算され、結果を電圧として比較器14−
1および14−2に供給される。比較器14−1は積分
器出力電圧が入力の最大振幅の中心を零とし、最大値を
vp最小値を−Vp としたとき779以上であるか否
かを判別して以上であれば1111を出力し、以下であ
れば”0″を出力する。端子17−1はこの■p/2を
発生する手段に接続される。また、比較器14−2は、
積分器出力電圧が一1vp以下であるか否かを判別して
以下であれば1″を出力し、以上であればO”を出力す
る。この比較器の出力は、端子15−1および15−2
よりディジタル信号処理用の符号として出力されると供
にそれぞれ前記負および正の電荷を発生する手段に供給
される。したがって積分器の出力がl/2Vpを越えた
場合には−Vpに相当する電荷が加算器に加えられ、−
1/2vp以下になったときは+Vpに相当する電荷が
加算器に加えられる。そして出力が一1/2Vpから1
/2Vpでは入力信号だけが積分器に供給される。この
ようにしてこのフィードバックループは積分器出力で±
1 /2 V pを越えないように動作する。従来回路
によるとこれが±Vpであるので変換出力の雑音電圧が
1/2に減少することが期待できる。一般にデルタシグ
マ変調器の単位帯域幅あたりの雑音電圧は、最大入力電
圧で本方式によればロー雑音レベルを得るのにクロック
周波数を1/2Jに減することができる。
The voltage signal input from the signal input terminal 11# is applied to the adder 12 in the form of a charge by a means 18 for converting it into a charge proportional to the voltage signal. On the other hand, comparators 14-1 and 14-
Charges supplied from means 16-1 and 16-2 for generating positive and negative charges corresponding to a voltage of 1/2 of the maximum input signal amplitude controlled by the output of 2 are also applied to the adder 12. The result of this addition is added to the charge stored up to that point by the integrator 13, and the result is used as a voltage for the comparator 14-
1 and 14-2. The comparator 14-1 determines whether the integrator output voltage is 779 or more when the center of the input maximum amplitude is zero and the maximum value is vp and the minimum value is -Vp. If the value is below, output “0”. The terminal 17-1 is connected to means for generating this p/2. Moreover, the comparator 14-2 is
It is determined whether the integrator output voltage is below 11 vp, and if it is below, it outputs 1'', and if it is above, it outputs O''. The output of this comparator is at terminals 15-1 and 15-2.
The signals are output as codes for digital signal processing, and are also supplied to the means for generating negative and positive charges, respectively. Therefore, when the output of the integrator exceeds l/2Vp, a charge corresponding to -Vp is added to the adder, and -
When it becomes 1/2vp or less, a charge corresponding to +Vp is added to the adder. And the output is from 1 1/2 Vp to 1
At /2Vp only the input signal is fed to the integrator. This feedback loop thus has a ±
It operates so as not to exceed 1/2 Vp. According to the conventional circuit, since this is ±Vp, it can be expected that the noise voltage of the conversion output will be reduced to 1/2. In general, the noise voltage per unit bandwidth of a delta-sigma modulator can be reduced to 1/2 J using this method at the maximum input voltage to obtain a low noise level.

(実施例) 本発明を集積回路化する、より詳しい回路例を第3図に
示す。本図中81から812 はスイッチ素子でφ1と
ψ2なるお互いに同時には導通しない逆位相のクロック
で駆動される。信号は端子21から入力されφ、で21
と接続されφ、で接地されるスイッチS2をとうして蓄
電器C1の片方の電極に至る。C1のも゛う片方の電極
はφ1で接地されφ、で演算増幅器23の負入力端子に
接続されるスイッチS1と接続されることにより入力電
圧に比例した電荷に変換する手段が構成される。
(Embodiment) A more detailed circuit example in which the present invention is integrated into an integrated circuit is shown in FIG. In the figure, numerals 81 to 812 are switch elements driven by clocks φ1 and ψ2, which are opposite in phase and do not conduct at the same time. The signal is input from the terminal 21 and 21 at φ.
It reaches one electrode of the capacitor C1 through a switch S2 connected to and grounded at φ. The other electrode of C1 is grounded at φ1 and connected to the switch S1 connected to the negative input terminal of the operational amplifier 23 at φ1, thereby forming a means for converting the input voltage into a charge proportional to the input voltage.

2つの比較器24−4.24−2の出力25−1および
25−2はそれぞれ論理積ゲート40および41により
端子37にψ2を入力することにより論理積をとり、そ
の、出力35および36によりそれぞれS3.S4およ
びS5、S6の対を駆動する。φ1においてはS3.S
4.85は接地されS6はリファレンス電源に接続され
る端子38に接続される。ここで83.84間には蓄電
器C3が接続され、85゜S6の間にはC2と等しい値
の蓄電器C3が接続され、このC2,C,,83,84
,85,36によって最大電圧振幅に相当する電荷量の
1/2で正および負の電荷を供給する手段が形成される
。S3およびS5はそれぞれ出力35および36が論理
1となったとき演算増幅回路の入力端に接続される。
The outputs 25-1 and 25-2 of the two comparators 24-4 and 24-2 are ANDed by inputting ψ2 to the terminal 37 by the AND gates 40 and 41, respectively, and the outputs 35 and 36 are S3. Drive S4 and the pair S5, S6. At φ1, S3. S
4.85 is grounded, and S6 is connected to a terminal 38 connected to a reference power source. Here, a capacitor C3 is connected between 83 and 84, and a capacitor C3 with a value equal to C2 is connected between 85°S6, and these C2, C, , 83, 84
, 85, and 36 form means for supplying positive and negative charges with 1/2 of the amount of charge corresponding to the maximum voltage amplitude. S3 and S5 are connected to the input end of the operational amplifier circuit when outputs 35 and 36, respectively, become logic 1.

この時84.86はそれぞれリファレンス電圧源および
グラウンドと接続される。演算増幅器23およびC4は
枡分手段を構成すると供にC1,C2C。
At this time, 84 and 86 are connected to the reference voltage source and ground, respectively. Operational amplifier 23 and C4 constitute a dividing means, as well as C1 and C2C.

の電荷をSl、S、、S、がそれぞれ導通したときC4
上に加算する役割も果たす。ここでC,、C,、C,に
より31に充電される電荷量は入力電圧をVl、IJフ
ァレンス電圧をVaとするとそれぞれ−C,V、 。
When Sl, S, , S conduct the charges of C4
It also plays the role of adding to the top. Here, the amount of charge charged to 31 by C, , C, , C, is -C, V, respectively, where the input voltage is Vl and the IJ reference voltage is Va.

C,VR、−C,VRで表わされる。一方積分回路の電
荷Qの変化があったとき節点32にあられれる出力電圧
の変化はΔv、 =−Q/C4で表わされる。
It is represented by C, VR, -C, VR. On the other hand, when there is a change in the charge Q of the integrating circuit, the change in the output voltage appearing at the node 32 is expressed as Δv, =-Q/C4.

次に節点32の出力電圧がVp/2を越えたか判定する
には、比較器24−1の入力に直列に接続されたC5お
よびS7およびS9の2組を接続し、φ!のサイクルに
おいて87が接地、S9が前記リファレンス電圧を供給
する手段に接続される端子39に接続されている。比較
を行うφ、においてはS7は前記演算増幅器23と接続
し、S9を接地側に接続すると、比較器の入力Viは入
力容量をCi演算増幅器の出力を■。とすると、 ■i”” (C2Vl、−Cq ■u)/(Cs +c
、 +c i )なる電圧となる。C7又はC3の電荷
が1回にjVo として伝達される電圧はjVo ’=
 (Ct /、C4) 、■nであるからC3とC2の
比はi :(C,’・C5/2・C4責れば第2図の説
明でいうVp/2の比較が行える。
Next, to determine whether the output voltage of node 32 exceeds Vp/2, two sets of C5, S7, and S9 connected in series are connected to the input of comparator 24-1, and φ! In the cycle 87 is grounded, and S9 is connected to the terminal 39 connected to the means for supplying the reference voltage. When comparing φ, S7 is connected to the operational amplifier 23, and S9 is connected to the ground side, so that the input Vi of the comparator has an input capacitance Ci and the output of the operational amplifier 2. Then, ■i”” (C2Vl, -Cq ■u)/(Cs +c
, +c i ). The voltage at which the charge of C7 or C3 is transferred as jVo at one time is jVo'=
(Ct/, C4), ■n, so the ratio of C3 and C2 is i:(C,'.C5/2.C4), and the comparison of Vp/2 in the explanation of FIG. 2 can be made.

−Vp/2の比較はVp/2の場合の構造とほぼ同じで
あるが1度S9に相当する810がψ、のとき接地ψ、
でVRと接続するこみにより達せられる。
-Vp/2 comparison has almost the same structure as Vp/2, but when 810 corresponding to S9 is ψ, grounding ψ,
This can be achieved by connecting to VR.

この比較はφ、のサイクルの終りで状態決定がなされ、
その結果は外部へ出力されるとともに論理積ゲートへ供
給される8 (発明の効果) 以上述べたように本発明によれば同一雑音レベルを得る
のにクロック周波数を1/2”にできしかも非常に簡単
な構造により信号の符号化装置が構成でき、集積回路化
にも向いている。
This comparison makes the state determination at the end of the cycle of φ,
The result is output to the outside and also supplied to the AND gate. The signal encoding device can be constructed with a simple structure and is suitable for integrated circuit implementation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のデルタシグマ変調器のブロック図。2は
アナログ加算器、3は積分器、4は比較器。第2図は本
発明による回路で、18は電圧を電荷に変換する装置、
12は加算器、13は積分器、14−1.14−2は比
較器。第3図は第2図の回路を具体化した本発明の実施
例の回路図。 71−1 図 72 図
FIG. 1 is a block diagram of a conventional delta-sigma modulator. 2 is an analog adder, 3 is an integrator, and 4 is a comparator. FIG. 2 shows a circuit according to the present invention, in which 18 is a device for converting voltage into charge;
12 is an adder, 13 is an integrator, and 14-1.14-2 is a comparator. FIG. 3 is a circuit diagram of an embodiment of the present invention embodying the circuit of FIG. 2. 71-1 Figure 72

Claims (1)

【特許請求の範囲】[Claims] 被変調信号を入力してこの入力に比例した電荷に変換す
る手段と、この被変調信号の最大電圧振幅に相当する電
荷量の2分の1で、各々正および負の電荷を供給する手
段と、この3つの電荷をそれまでに貯えられていた電荷
と積分加算してそのに対応した電荷で正の電荷だけが前
記積分加算する手段に供給されたとき出力される電圧の
1/20)電圧を発生する手段と、前記最大振幅の1/
2に対応した電荷で負の電荷だけが前記積分加算する手
段に供給されたとき出力される電圧の1/2の電圧を発
生する手段と、前記積分手段の出力と前記圧の1/2の
電圧を比較する手段と、前記積分手段の出力と前記負の
1/2の電圧を比較する手段と、この2つの比較を行う
手段からの出力結果により前記正負1/2の電荷を加算
するか否かを制御する手段とを有することを特徴とする
差分変調器。
means for inputting a modulated signal and converting it into a charge proportional to the input; and means for supplying positive and negative charges, respectively, with half the amount of charge corresponding to the maximum voltage amplitude of the modulated signal. , 1/20 of the voltage that is output when these three charges are integrally added to the previously stored charges and only positive charges corresponding thereto are supplied to the means for integrating and adding. and means for generating 1/of the maximum amplitude.
means for generating a voltage that is 1/2 of the voltage that would be output when only negative charges corresponding to 2 are supplied to the means for integrating and adding; A means for comparing voltages, a means for comparing the output of the integrating means and the negative 1/2 voltage, and a means for adding the positive and negative 1/2 charges based on the output results from the means for comparing the two. 1. A differential modulator comprising: means for controlling whether
JP7949684A 1984-04-20 1984-04-20 Differential modulator Expired - Lifetime JPH0746774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7949684A JPH0746774B2 (en) 1984-04-20 1984-04-20 Differential modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7949684A JPH0746774B2 (en) 1984-04-20 1984-04-20 Differential modulator

Publications (2)

Publication Number Publication Date
JPS60223331A true JPS60223331A (en) 1985-11-07
JPH0746774B2 JPH0746774B2 (en) 1995-05-17

Family

ID=13691522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7949684A Expired - Lifetime JPH0746774B2 (en) 1984-04-20 1984-04-20 Differential modulator

Country Status (1)

Country Link
JP (1) JPH0746774B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194726A (en) * 1987-10-07 1989-04-13 Matsushita Electric Ind Co Ltd Input circuit for oversampling type analog/digital converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194726A (en) * 1987-10-07 1989-04-13 Matsushita Electric Ind Co Ltd Input circuit for oversampling type analog/digital converter

Also Published As

Publication number Publication date
JPH0746774B2 (en) 1995-05-17

Similar Documents

Publication Publication Date Title
KR910009070B1 (en) Delta to sigma converter
KR900008049B1 (en) Delta-signal modulator with switch capacitor implementation
US5150324A (en) Analog arithmetic circuit that can perform multiplication division expansion and compression by using delta sigma modulator
US5061928A (en) System and method of scaling error signals of caseload second order modulators
DE60216302T2 (en) CYCLIC ANALOG DIGITAL CONVERTERS WITH LOW POWER CONSUMPTION
WO1991011863A1 (en) Sigma delta modulator
CA1093697A (en) Digital-to-analogue converter
US4731602A (en) Converter
JPH0946230A (en) D/a converter
US5355134A (en) Digital to analog converter circuit
JPH01254025A (en) Waveform encoder and decoder
JPS60223331A (en) Differential modulator
DE69611324T2 (en) Direct digital synthesizer
EP0190694B1 (en) Oversampling converter
JPH114166A (en) Consecutive comparison a/d converter
JPS59153324A (en) Analog-digital converter
US4021658A (en) Angular rate deriving apparatus
US4470019A (en) Rate multiplier square root extractor with increased accuracy for transmitter applications
US20050057383A1 (en) Sigma-delta modulator using a passive filter
US11611353B2 (en) Quantizer for sigma-delta modulator, sigma-delta modulator, and noise-shaped method
CN118783968A (en) Feedback type analog-to-digital converter based on LC voltage-controlled oscillator and implementation method thereof
JP2651240B2 (en) A / D converter
JPH0797747B2 (en) Pulse width modulator
JPS63267017A (en) Analog-digital conversion circuit device
SU807051A1 (en) Method of converting rotation angle to voltage

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term